Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

for

Synthesis and Antioxidant Activities of *N*-Thiophenyl Ebselenamines: The ⁷⁷Se{¹H} NMR Mechanistic Study[†]

Manish Kumar and Vijay P. Singh*

Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh – 160 014, India *E-mail: <u>vijay@pu.ac.in</u>

---Table of Contents---

- p S2-S13 ¹H, ¹³C, ⁷⁷Se{¹H} NMR and HRMS spectra for compounds **8**, **9**, **15** and **7a**
- p S14-S24 The ⁷⁷Se{ 1 H} NMR data for mechanistic study of **8** with PhSH and H₂O₂
- p S25-31 The ⁷⁷Se{ 1 H} NMR data for mechanistic study of **9** with PhSH and H₂O₂
- p S32-35 The 77 Se{ 1 H} NMR mechanistic study spectra of **9** with PhSSPh
- p S36 The 77 Se{ 1 H} NMR spectrum of diselenide **15** with H₂O₂ and PhSH
- p S37-57 ¹H, ¹³C, ⁷⁷Se{¹H} NMR and HRMS spectra for **10**, **12**, **16** and **17**
- p S58-61 **Table S1-S4**. Optimized geometries, Sum of electronic and thermal Enthalpies and Cartesian coordinates
- p S62-63 **Table S5-S6**.Data obtained by DFT calculations, bond dissociation enthalpies, and 77 Se{ 1 H} NMR isotropic and anisotropic values
- p S64 **Figure S56**. Spin density maps of the radical cations of **12** and **17** formed upon 1-electron oxidation calculated at the UB3LYP/6-311+G(d) level in gas phase
- pS65 Scheme S1. Proposed mechanism for 12 from diselenide 9

Figure S1. The ¹H NMR spectrum of compound 8 in CDCl₃

Figure S2. The ¹³C NMR spectrum of compound **8** in CDCl₃

Figure S3. The ⁷⁷Se{¹H} NMR spectrum of compound **8** in CDCl₃

Figure S5. The ¹³C NMR spectrum of diselenide **9** in CDCl₃

Figure S6. The ⁷⁷Se{¹H} NMR spectrum of diselenide **9** in CDCl₃

Figure S7. The ¹H NMR spectrum of diselenide **15** in CDCl₃

Figure S8. The ¹³C NMR spectrum of diselenide **15** in CDCl₃

Figure S9. The ⁷⁷Se{¹H} NMR spectrum of diselenide **15** in CDCl₃

Figure S10. The 77 Se{ 1 H} NMR spectrum of compound **7a** in DMSO-d₆

Figure S11. The 13 C NMR spectrum of compound **7a** in DMSO-d₆

Figure S12. The 77 Se{ 1 H} NMR spectrum of compound **7a** in DMSO-d₆

Mechanistic study of 8 with PhSH and H2O2

Figure S13. The ⁷⁷Se{¹H} NMR spectrum of compound **8** in CDCl₃

Figure S14. The ⁷⁷Se{¹H} NMR spectrum of **8** with PhSH (8 equiv)

Figure S15. The 77 Se{ 1 H} NMR spectrum of **8** with PhSH (8 + 8 equiv)

Figure S16. The ⁷⁷Se{¹H} NMR spectrum of **8** with PhSH (24 equiv)

Figure S17. The 77 Se{ 1 H} NMR spectrum of **8** with PhSH (24 equiv) and H₂O₂ (6 equiv)

Repeated mechanistic experiment of 8 with PhSH and H2O2

Figure S19. The ⁷⁷Se{¹H} NMR spectrum of **8** with PhSH (8 equiv) in CDCl₃)

Figure S20.The ⁷⁷Se{¹H} NMR of **8** and PhSH (8+8 equiv) in CDCl₃

Figure S21. The 77 Se{ 1 H} NMR of 8 with PhSH (16 equiv) + H₂O₂ (4 equiv) in CDCl₃

Figure S22. The 77 Se{ 1 H} NMR of 8 with PhSH (16 equiv) + H₂O₂ (6 equiv) in CDCl₃)

Mechanistic Studies of Diselenide 9 with PhSH and H_2O_2

Figure S24. The 77 Se{ 1 H} NMR spectrum of diselenide 9

Figure S25. The 77 Se{ 1 H} NMR spectrum of diselenide **9** + PhSH (1 equiv)

Figure S26. The 77 Se{ 1 H} NMR spectrum of diselenide **9** + PhSH (2 equiv)

Figure S28. The ⁷⁷Se{¹H} NMR spectrum of diselenide $9 + PhSH (4 equiv) + H_2O_2 (2 equiv)$

Figure S29. The ⁷⁷Se{¹H} NMR spectrum of diselenide $9 + PhSH (4 equiv) + H_2O_2 (2 equiv)$ recorded after 30 min

Figure S30. The ⁷⁷Se{¹H} NMR of diselenide $9 + PhSH (4 equiv) + H_2O_2 (2 equiv) + PhSH (2 equiv)$

Mechanistic Studies of Diselenide 9 with PhSSPh and H₂O₂ in CDCl₃

Figure S31. The 77 Se{ 1 H} NMR spectrum of diselenide **9** + PhSSPh (3 equiv)

S32

Figure S32. The ⁷⁷Se{¹H} NMR spectrum of diselenide $9 + PhSSPh (3 equiv) + H_2O_2 (1 equiv)$

Figure S33. The 77 Se{ 1 H} NMR of diselenide + PhSSPh + 1 equiv H₂O₂ (recorded 2 days later)

Figure S34. The 77 Se{ 1 H} NMR of diselenide **9** + PhSSPh + 3 equiv H₂O₂

Figure S35. The 77 Se{ 1 H} NMR spectrum of diselenide $15 + H_2O_2 + PhSH$

Figure S37. The ¹H NMR Expansion spectrum of **10** in CDCl₃

manish-1 MK-162 (2) Se-5 1H_8scan CDCl3 {D:\Spectra} nmr 32

Figure S38. The ¹³C NMR spectrum of **10** in CDCl₃

Figure S39. The ¹³C NMR expansion spectrum of **10** in CDCl₃

Figure S40. The ⁷⁷Se{¹H} NMR spectrum of **10** in CDCl₃

Figure S41. The 77 Se{ 1 H} NMR spectrum of **10** in DMSO-d₆

Figure S42. The HRMS of 10

S43

Figure S43. The ¹H NMR spectrum of **12**

Figure S44. The ¹³C NMR spectrum of **12**

Figure S45. The 77 Se{ 1 H} NMR spectrum of **12**

Figure S47. The ¹H NMR spectrum of **16** in CDCl₃

Figure S49. The ¹³C NMR spectrum of **16** in CDCl₃

Figure S50. The ⁷⁷Se{¹H} NMR spectrum of **16** in CDCl₃

Figure S51. The HRMS of 16

Figure S53. The Expanded version of the ¹H NMR spectrum of **17** in CDCl₃

Figure S54. The ¹³C NMR spectrum of **17** in CDCl₃

Figure S55. The ⁷⁷Se{¹H} NMR spectrum of **17** in CDCl₃

Figure S56. The HRMS of 17

12 Sum of Electronic and Thermal Enthalpies = -3716.837267a.u.					12 Radical Sum of Electronic and Thermal Enthalpies = -3716.225659a.u.				
34	-0.000000165	0.00000393	-0.000000160	34	0.000000529	-0.00000336	0.000001825		
7	-0.000000728	-0.000001308	0.000000731	7	-0.000002985	0.000005242	-0.000008597		
6	0.00000090	0.00000655	0.000001328	6	0.000002506	-0.000003307	-0.000001019		
6	-0.000000933	-0.000000014	0.000000332	6	0.000004554	-0.000002320	0.000003349		
6	0.000002446	0.000004819	0.000002910	6	-0.000001050	0.000002396	0.000007459		
6	0.000000497	0.000000506	0.000000183	6	-0.000000685	0.000002392	-0.000002622		
6	0.000000491	-0.000001864	0.000002336	6	0.000001356	-0.000001948	-0.000000385		
8	0.00000355	-0.000000111	0.000000600	8	-0.000001507	0.000002422	-0.000000750		
6	-0.000004831	-0.000000732	-0.000001883	6	-0.000000800	-0.000000568	0.000001369		
6	0.000002610	-0.000000429	-0.000002764	6	0.000000751	0.000002619	0.000000372		
6	0.00000883	-0.000000108	0.000000713	6	0.000001805	0.00000183	-0.000001241		
7	0.000003015	0.000003050	-0.000005021	7	0.000008291	0.000005965	-0.000001184		
6	0.000000262	0.000000138	-0.000000505	6	0.000003259	0.000002254	-0.000002385		
6	0.000004877	0.000002207	-0.000001455	6	0.000000195	0.000001600	0.000002308		
1	-0.000000529	0.000000751	-0.000000534	1	-0.000001095	0.000000467	0.000001844		
6	-0.000001466	-0.00000843	-0.000001976	6	-0.00000085	0.000001357	0.000001287		
1	-0.000001185	0.000000105	0.000001167	1	0.00000379	0.000002640	0.000000610		
6	0.000000460	-0.000000108	0.000001295	6	-0.000000046	-0.000002066	-0.000002815		
1	0.00000674	-0.000000166	0.000001411	1	0.00000249	-0.000000571	-0.000001853		
16	-0.000004473	-0.000001996	0.000002198	16	-0.000007632	-0.000005713	-0.000001132		
1	0.000000214	0.000000712	0.00000303	1	0.000000918	-0.000003089	-0.000002659		
1	0.00000396	-0.000000290	0.000000900	6	-0.000001576	0.000003003	0.000003586		
6	-0.000000096	0.000003289	0.000002675	1	-0.000001729	0.000001139	0.000003204		
1	-0.000000568	0.000001365	-0.000001434	1	0.00000189	0.000003587	0.000002262		
1	0.000000416	0.000001123	0.00000805	1	0.000002126	-0.000001091	-0.000003040		
1	0.00000694	-0.000000317	0.000001260	6	-0.000004018	-0.000002692	0.000000211		
6	0.000000843	-0.000000126	0.00000895	6	0.000004079	-0.000005127	-0.000001069		
6	-0.000000136	-0.00000847	-0.00000285	6	0.000000602	0.000001528	-0.000001579		
6	-0.000000105	-0.000001337	-0.000001067	6	-0.000001860	0.000002088	-0.000001580		
6	-0.00000283	-0.000001378	-0.000000762	1	-0.000000759	-0.000002368	-0.000001724		
1	-0.00000064	-0.000000104	0.000000056	6	0.000001872	-0.000002953	0.000000766		
6	-0.00000388	-0.000001149	-0.000000420	1	-0.000000114	-0.000000221	0.000000223		
1	-0.000000222	-0.00000380	-0.000000154	6	-0.000003879	-0.000004121	0.00000765		
6	-0.000000486	-0.000001381	-0.000000626	1	-0.000000808	-0.000003511	-0.00000859		
1	-0.00000243	-0.000001338	-0.000000426	1	-0.000001414	-0.000000353	0.000000759		
1	-0.00000329	-0.000001436	-0.000000721	1	-0.000000582	-0.000001331	0.000000951		
1	-0.00000382	-0.000001783	-0.000000809	1	-0.000001038	0.000002804	0.000003341		
1	-0.000001608	0.000000431	-0.000001097						

Table S1. Optimized geometries, Sum of electronic and thermal Enthalpies (a.u.), andCartesian coordinates for compound 12 and its radical.

Table S2. Optimized geometries, Sum of electronic and thermal Enthalpies (a.u.), andCartesian coordinates for compound 17 and its radical.

17 Sum of Electronic and Thermal Enthalpies = -3756.133564 a.u.					17 Radical Sum of Electronic and Thermal Enthalpies = -3755.521805 a.u.				
34	-0.00000619	-0.00000042	0.00000840	34	-0.000000713	0.000000410	-0.00000257		
7	-0.0000000551	-0.000000012	0.00000001236	7	0.0000000715	-0.000000770	0.000003637		
6	0.0000000000000000000000000000000000000	0.0000002222	-0.0000012386	6	0.000000433	-0.000000770	-0.000003037		
6	-0.000000000000000000000000000000000000	0.000002311	-0.000002567	6	-0.000001112	0.000000730	-0.000000333		
6	-0.000000289	-0.000002311	-0.000000365	6	-0.0000000402	0.0000002110	-0.000000220		
6	-0.000000209	0.000000477	0.00000000000	6	0.000000245	0.000000012	-0.000000202		
6	0.000001575	0.000001722	0.000001001	6	0.000000070	0.00000000000000000000000000000000000	0.000000074		
8	-0.000001303	0.000000709	-0.000002003	8	0.000001347	-0.000001012	0.0000000000000000000000000000000000000		
6	-0.000000771	0.000001700	0.000000074	6	-0.000000372		0.000001107		
6	0.000002704	0.000000230	0.000000940	6	0.000001121	0.000000195	0.000000027		
6	0.000000137	0.000001370	-0.000001372	6	0.000001130	0.000000832	0.00000040		
7	0.000000020	0.000001973	0.000000285	7	0.000000004	0.000000140	0.000000703		
6	0.000002438	0.000003113	0.000001407	6	0.000003178	0.000001943	-0.000000483		
6	-0.000000729	0.000001493	-0.000000140	6	0.000000233	0.000001203	-0.000000188		
1	-0.000000240	0.000001014	0.000002191	1	0.000000093	0.00000013	0.000000289		
	-0.000001383	-0.000000041	0.000001997		-0.000000443	0.000000510	0.000000555		
0	-0.000002084	0.000000342	0.000000371	0	-0.000000379	-0.000000020	0.000000399		
1	-0.000000323	0.000001038	-0.000000393	1	0.000000401	0.000000105	0.000001517		
0	-0.000000897	0.000002173	-0.000002030	0	0.00000110	-0.000000035	0.00000075		
1	-0.000000990	0.000002800	-0.000000829	1	-0.000000192	-0.00000187	0.00000043		
10	-0.000001058	0.000001068	-0.000004160	10	-0.000003571	-0.000001240	-0.000001769		
1	-0.000000521	-0.000002264	0.00000236	I	0.00000182	-0.000000801	-0.00000199		
I	0.00000025	0.000001143	-0.000000893	6	0.00000459	-0.000000126	0.000002257		
6	-0.000000300	-0.000002006	0.000000539	1	-0.000000633	0.00000399	0.000001094		
1	-0.0000018/8	-0.000001102	0.000002266	1	0.000000515	0.00000081	0.000001741		
1	-0.000000498	0.000000648	0.000000170	I	0.00000236	-0.00000109	0.00000269		
I	-0.000000469	0.000002903	-0.000000965	6	-0.000001953	-0.000001883	0.00000893		
6	0.000004770	-0.000005021	0.000008126	6	0.00000067	-0.000000556	0.000001208		
6	-0.000001606	-0.000000537	0.000001862	6	0.00000908	-0.000000241	-0.000002133		
6	-0.000001258	0.000005036	-0.000009207	6	0.00000296	0.000000300	-0.000002041		
6	0.000000755	-0.000005203	-0.000001072	1	-0.00000175	0.000000915	0.000001358		
1	-0.000000381	-0.000000586	0.000000593	1	-0.000000918	0.000000902	0.000001431		
1	-0.000001840	0.000000910	0.000001519	I	-0.00000166	0.000001003	0.000001230		
I	-0.000001738	-0.000001260	0.000002386	6	-0.00000320	0.000000779	-0.000002290		
6	0.000001326	-0.000010417	0.000001036		-0.000000042	-0.000000092	-0.000001223		
	0.000001150	-0.000002062	0.00000739	6	0.000001048	-0.000000828	-0.000001434		
6	0.000000323	0.000001281	-0.000006847		0.000000348	0.000000121	-0.00000701		
1	0.000001478	-0.000000136	-0.000000950	6	-0.000000907	-0.000000903	-0.000001229		
6	0.000006821	0.000003022	0.000003140	1	-0.000000203	-0.000000512	-0.00002047		
1	0.000002825	-0.000000938	-0.000001492	1	0.000000116	-0.000000379	-0.000001348		
1	0.000002980	-0.000001953	-0.000001174	1	0.00000038	-0.00000364	-0.000001896		
1	0.000002755	-0.000002446 -	0.000002921	1					

12 Radical Cation Sum of Electronic and Thermal Enthalpies = -3716.601313a.u.					17 Radical Cation Sum of Electronic and Thermal Enthalpies = -3755.902322 a.u.				
3/	0.00000036	0.000002127	-0 00000509	3/	0 000001800		-0.00000360		
7	0.000000030	0.000002127	-0.0000000398	7	0.000001899	-0.000000901	-0.000000300		
6	0.000014722	0.000024288	0.000014/18	6	-0.000005518	0.000000901	-0.000005505		
6	-0.000013001	-0.000003081	0.000002302	6	0.000002013	-0.000000393	0.000001402		
6	-0.000000289	-0.000030301	-0.000011873	6	0.000001081	-0.000001824	0.000002120		
6	-0.000017012	-0.000015105	-0.000008000	6	-0.000003077	0.000011317	0.000027204		
6	0.000010340	0.000010711	0.000000094	6	-0.000001321	0.00000018	0.000001585		
0	0.000027131	-0.000017824	-0.000002478	0	-0.000005502	-0.000002034	0.000001335		
8	-0.000005299	0.000007420	0.000004314	8	-0.000001794	-0.000001188	0.00001200		
0	0.000005842	0.000002461	0.00000189	0	-0.000024832	-0.000015041	-0.000018587		
6	0.000003055	0.000003006	0.000001097	6	0.000025090	0.000009712	-0.000017450		
6	-0.000011075	-0.000005262	0.000003286	6	-0.000002328	-0.00000856	0.000001549		
1	-0.000034429	0.000010233	0.000015168	1	-0.000003023	0.000002770	0.000001791		
6	-0.000007195	0.000007092	-0.000000/31	6	0.00000023	0.000004492	0.000002282		
6	-0.000002210	-0.000000338	-0.000000378	6	0.000022541	0.000006172	-0.000024502		
I	0.00000133	0.000000703	-0.000000594	I	0.000001979	-0.000000000	0.00000177		
0	0.000001442	-0.000001015	0.000000073	0	-0.000020771	-0.000015057	-0.000023467		
I	0.000000849	-0.000001153	-0.000000992	I	-0.000000732	-0.000003391	0.000001469		
0	0.000010047	-0.000001/08	0.000000203	0	0.000001468	-0.00000254	0.000002017		
	0.00000409	0.00000304	0.000001319		-0.00001468	-0.000000623	0.000002664		
16	0.000019907	0.000006213	-0.00000/669	16	0.000003032	0.000002985	0.000000441		
	0.000002085	0.00000151	-0.000006420		0.000000243	0.000000753	-0.00000001		
I	-0.000000786	0.000001921	0.000001088	I	-0.000001062	0.00000865	0.000001712		
6	0.000001479	0.00000067	-0.000003127	6	-0.000010917	0.00000/201	0.000063227		
1	0.000000355	-0.000000339	-0.00001056		0.000002974	-0.000006512	-0.000000488		
1	-0.000000988	-0.000001838	-0.000001656		0.000004828	-0.00000/683	-0.000000269		
I	-0.000000798	0.000000316	0.000001181	I	-0.000001838	0.00000408	0.000003012		
6	0.000001229	-0.000001617	0.000008996	6	-0.00000262	0.000001117	0.000000161		
6	-0.000004121	0.000003729	-0.000004980	6	0.000025579	-0.000042431	0.000023967		
6	-0.000002892	-0.000001191	-0.000002030	6	0.000003366	-0.000000099	0.00000863		
6	0.000002466	-0.000003145	0.000003891	6	-0.00000868	0.000002979	-0.000001836		
1	0.000001088	0.000000904	0.00000631	1	-0.000002666	0.000009174	-0.000017353		
6	0.00000820	0.000002004	0.000000516	1	-0.000009100	0.000013783	-0.000016265		
1	0.00000665	0.00000866	-0.000000227	1	-0.000002880	0.000011611	-0.000015374		
6	0.00000027	-0.000000440	-0.000004371	6	0.00000176	0.000002915	-0.000002599		
	0.000001112	0.000002050	-0.000001116		0.00000049	0.000003405	0.00000030		
	0.00000258	-0.000001133	0.000000215	6	0.000001810	-0.000001348	0.00000973		
	-0.00000239	0.000000324	0.000000752	1	-0.000000505	-0.00000084	0.000001121		
1	0.000000071	-0.000000542	-0.000001128	6	-0.000000676	0.000002402	0.000001282		
				1	0.000001084	0.000002373	-0.000000409		
				1	-0.00000261	0.00000345	-0.000000179		
				1	0.000001054	0.000001105	-0.000001208		

Table S3. Optimized geometries, Sum of electronic and thermal Enthalpies (a.u.), andCartesian coordinates for compound 12 and 17 Radical Cation.

 Table S4. Optimized geometries and Cartesian coordinates for compound 11.

Table S5. Data for **12** and **17** obtained by DFT calculations at the B3LYP/6-311+G(d) level in the gas phase. The N-H bond dissociation enthalpies (BDE_{N-H}) of **12** and **17** were calculated.

AOs	Calculated BDE _{N-H} (Kcal/mol)	Energy of 1-e oxidation (Kcal/mol)	r _{Se—N} [Å]	NPA C	harges ^a	⁷⁷ Se{ ¹ H} NMR (ppm) ^b	
				qSe	qS	Exptl.	Calcd.
12	70.03	148.81	1.897	+0.590	+0.466	833	936
17	70.12	145.85	1.896	+0.587	+0.466	856	925
10				+0.213	+0.063	452	455, 421 ^c ,403 ^d
16				+0.216	+0.063	453	440,404 ^c ,386 ^d
11						534	548

^{*a*}The NBO analysis was calculated at the B3LYP/6-311+G(d,p) level using the B3LYP/6-311+G(d)-leveloptimized geometries. ^{*b*} The ⁷⁷Se{¹H} NMR values are referenced to Me₂Se ($\delta = 0$). The experimental values are given in parentheses.^{*c*}The ⁷⁷Se{¹H} NMR value calculated in chloroform solvent. ^{*d*}The ⁷⁷Se{¹H} NMR value calculated in DMSO solvent.

Formula used for Bond Dissociation Energy:-

 $BDE_{N-H} = [Energy (Molecule Radical) + Energy (H)] - [Energy (Molecule)]$

Formula used for calculation of 1-electron oxidation:-

[Energy (Molecule Radical Cation) + Energy (electron)] - [Energy (Molecule)]

Compound 12	Compound 17
Compound 12	Compound 17
SCF GIAO Magnetic shielding tensor	SCF GIAO Magnetic shielding tensor
(nnm):	(nnm):
(ppm).	(ppm).
1 Se Isotropic = 691.1663 Anisotropy	1 Se Isotropic = 693.7769 Anisotropy
= 1312.2695	= 1313.9572
Compound 10	Compound 16
-	-
SCF GIAO Magnetic shielding tensor	SCF GIAO Magnetic shielding tensor
(ppm):	(ppm):
1 Se Isotropic = 1166.2349 Anisotropy	1 Se Isotropic = 1181.7122 Anisotropy
= 1053.4431	= 1053.3671
Compound 11	
-	
SCF GIAO Magnetic shielding tensor	
(ppm):	
1 Se Isotropic = 1073.8904 Anisotropy	
= 1228.5857	

Table S6. The calculated 77 Se{ 1 H} NMR value of isolated compounds with isotropic and anisotropic values (ppm)

The ⁷⁷Se{¹H} NMR calculations were performed at B3LYP/6-311+G (d,p) level on B3LYP/6-311+G(d)-level-optimized geometries by using the gauge-including atomic orbital (GIAO) method (referenced with respect to the peak of Me₂Se).

Figure S57. Spin density maps of the radical cations of 12 and 17 formed upon 1-electron oxidation calculated at the UB3LYP/6-311+G(d) level in gas phase.

