Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Electronic Supplementary Information for

Bimetallic Ni-Mo nitride@N-doped C as highly active and stable bifunctional electrocatalysts for full water splitting

Yu Zhang, ^a Zhuoxun Yin, *,^a Xinzhi Ma, *,^b Yang Zhou*,^c

a College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China. E-mail: <u>yzx@qqhru.edu.cn;</u>

b Ministry of Education and School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China. E-mail: <u>max20224@126.com;</u>

c College of Science, Qiqihar University, Qiqihar 161006, China. E-mail:

373133430@qq.com;

* Corresponding author. E-mail addresses: yzx@qqhru.edu.cn

Figure S1 XRD pattern of (a) MoO₃ grain (b) Ni-CN (c) Mo-CN.

Figure S2 SEM images of (a) MoO₃ grain (b) Ni-CN (c) Mo-CN.

Figure S3 SAED pattern of NiMoN -2.

Figure S5 XPS spectra of the bimetallic NiMoN-1 catalysts : (a) survey spectrum, (b) N 1s (c) Mo 3d, and (d) Ni 2p .

Figure S6 XPS spectra of the bimetallic NiMoN-3 catalysts : (a) survey spectrum, (b) N 1s (c) Mo 3d, and (d) Ni 2p.

Figure S7 XPS spectra of the bimetallic Ni-CN catalysts : (a) survey spectrum, (b) C 1s (c) N 1s, and (d) Ni 2p.

Figure S8 XPS spectra of the bimetallic Mo-CN catalysts : (a) survey spectrum, (b) C 1s (c) N 1s, and (d) Mo 3d.

Figure S9 Electrocatalytic activity in 1 M KOH (a) The polarization curves of OER, (a) The polarization curves of HER

Figure S10 Cyclic voltammographs with the scan rate from20 to 100mV/s for NiMoN-1,NiMoN-2,NiMoN-3 in 1 M KOH on electrocatalytic OER activity

Figure S11 Cyclic voltammographs with the scan rate from20 to 100mV/s for Ni-CN, Mo-CN in 1 M KOH on electrocatalytic OER activity

Figure S12 Cyclic voltammographs with the scan rate from20 to 100mV/s for NiMoN-1,NiMoN-2,NiMoN-3 in 1 M KOH on electrocatalytic HER activity.

Figure S13 Cyclic voltammographs with the scan rate from20 to 100mV/s for Ni-CN, Mo-CN in 1 M KOH on electrocatalytic HER activity.

Figure S14 (a)The OER-TOFs of the NiMoN-1,NiMoN-2,NiMoN-3 (b)The HER-TOFs of the NiMoN-1,NiMoN-2,NiMoN-3.

Figure S15 SEM images of NiMoN-2 catalysts after (a) OER and (b) HER.

Figure S17 XPS spectra of NiMoN-2 after OER.

Figure S19 Contact angles of (a) NiMoN-1, (b) NiMoN-2, and (c) NiMoN-3.

Sample	R _{CT} (Ohm)-OER	R _{CT} (Ohm)-HER
NiMoN-1	1.74	1.57
NiMoN-2	1.51	1.42
NiMoN-3	1.86	1.63
Ni-CN	2.42	1.97
Mo-CN	3.37	2.85

Table S1. Comparison of the $\ensuremath{\mathsf{R}}\xspace{\mathsf{CT}}$ values of the prepared materials .

Table S2. Comparison of the catalytic activities of OER on NiMoN-2 with recently reported catalysts in the 1.0 mol·L⁻¹ KOH medium (pH = 14)

Catalyst	η /mV vs. RHE	Ref.
NiMoN-2	202	This work
Co-NiMoN-400	294	[6]
Ni _{0.69} Co _{0.31} P	266	[17]
Ni-Fe-MoN NTs	228	[18]
Ni ₃ FeS	223	[19]
NiMoN-550	295	[20]
NiMoC/NC-100	328	[25]
CoNiMo-O/H ₂ -450	279	[27]
NiMoNS	260	[32]
Ni-NiO/HGF-1.5h	308	[36]
Ni ₃ FeN-NPs	280	[43]
Fe ³⁺ NiCo ₂ O ₄	210	[44]
Ni-BDC@NiFe-LDH-2	272	[46]
Ni ₃ N/NiMoN-5	277	[47]

Note: η is the overpotential measured at 10 mA·cm⁻².

Catalyst	Voltage / V	Ref.
NiMoN-2	1.58	This work
b-NiMoO ₄ /NF	1.55	[2]
Co-NiMoN-400	1.57	[6]
Ni _{0.69} Co _{0.31} P	1.59	[17]
Ni-Fe-MoN NTs	1.513	[18]
NiMoN-550	1.596	[20]
Ni ₃ FeS	1.57	[19]
NiMoC/NC-100	1.72	[25]
CoNiMo-O/H ₂ -450	1.59	[27]

Table S3. Bifunctional electrocatalyst for overall water splitting in 1.0 M KOH solution.