Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information Of

Exploring the membrane fluidity of phenyl boronic acid functionalized polymersomes using FRAP technique and application in pH sensitive release of curcumin

Deepthi Priyanka Damera and Amit Nag*

Department of Chemistry, BITS-Pilani Hyderabad Campus, Hyderabad, India -500078 E-mail: <u>amitnag@hyderabad.bits-pilani.ac.in</u>

Contents:

Figure S1: Synthetic route for preparation of active-targeting pluronic copolymer F127-PBA

Figure S2: ¹H NMR and FTIR spectra of F108 and F108-PBA

Video S1. Formation of the GUVs loaded with rhodamine 6G

Video S2. FRAP of F127 vesicles

Video S3: FRAP of F127-PBA vesicles

Video S4. FRAP of F108 vesicles

Video S5. FRAP of F108-PBA vesicles

Figure S3. (a) UV-Vis absorption and (b) Fluorescence spectra of F108-PBA in the presence of different concentration of curcumin in aqueous medium.

Figure S4. (a) UV-Vis absorption and (b) Fluorescence spectra of F127-PBA in the presence of different concentration of curcumin in aqueous medium.

Figure S5. ¹H NMR spectra of F127-PBA, curcumin and the complex.

Figure S6. Photograph of F127 and F127-PBA polymerosomes solutions loaded curcumin.

Figure S7. Calibration of curcumin using 50% (v/v) methanol as the solvent

Figure S8. DLS data of vesicles loaded with curcumin (a) F127 (b) F108 (c) F127-PBA (d) F108-PBA.

Method S1. HPLC procedure for curcumin

Figure S1. Synthetic route of active-targeting pluronic copolymer (F127-PBA); Reaction conditions: (i) anhydrous dichloromethane; (ii) dimethyl sulfoxide, 0.2% DMAP, at room temperature for 48 h.

Figure S2. (a) ¹H NMR spectra of F108 and F108-PBA, and CDCl₃ was used as the solvent. (b) FTIR spectra of F108, 3-APBA and F108-PBA. Red circle indicates the peak at δ : 8.2 ppm corresponding to proton of (-B(OH)₂).

Videos S1-S5: Given separately as individual files.

Figure S3. (a) UV-Vis absorption and (b) Fluorescence spectra of F108-PBA in the presence of different concentration of curcumin in aqueous medium.

Figure S4. (a) UV-Vis absorption and (b) Fluorescence spectra of F127-PBA in the presence of different concentration of curcumin in aqueous medium.

•

Figure S5. ¹H NMR spectra of F127-PBA, curcumin and the complex.

Figure S6. Photograph of F127 and F127-PBA polymersomes solutions loaded with curcumin.

Figure S7. Calibration of curcumin using 50%(v/v) methanol as the solvent.

Figure S8. DLS data of vesicles loaded with curcumin (a) F127 (b) F108 (c) F127-PBA(d) F108-PBA.

Method S1: HPLC procedure for curcumin determination

All the analysis of curcumin was determined by a (UFLC, Shimadzu, Japan) instrument system with a RP-18 column (shiseido C18; 150 mm length \times 4.6 mm width; 5 µm particle size) with an isocratic pump (Shimadzu-LC-20AD prominence) and an autosampling device (Shimadzu-SIL-20A prominence). The detection was performed using a UV detector (Shimadzu UV-Vis Abs). The curcumin samples were analysed according to the following method: isocratic method (50% of water with 2% of acetic acid (A) and 50% acetonitrile (B) and with a flow-rate of 1 mL/min. Detection was at 427 nm and the run time of 15 minutes. The curcumin retention time was 7.8 minutes. Injection volume was 20 µL.