Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

1

Supplementary information

Mixed-ligand copper(II) complexes of guanidine derivatives containing ciprofloxacin: Synthesis, characterization, DFT calculations, DNA interactions and biological activities

Prangtip Nonkuntod,^a Atittaya Meenongwa,^b Thanaset Senawong,^c Chaiyaporn Soikum,^d

Prapansak Chaveerach,^d Athis Watwiangkham,^e Suwit Suthirakun,^e Unchulee Chaveerach^{*a}

^a Materials Chemistry Research Centre, Department of Chemistry and Centre of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand. E-mail: sunchul@kku.ac.th ^b Health Science and Aesthetic Program, Department of Science, Faculty of Science and Technology,

Rajamangala University of Technology Krungthep, Bangkok 10120, Thailand.

^c Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.

^d Department of Veterinary Public Health, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.

^e School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.

Table S1 Band assignment of vibrational modes for ciprofloxacin, the starting compounds (1 and 2) and the mixed-ligand	complexes (1Cip	and

2Cip).

Ciprofloxacin		Frequency (cm ⁻¹)				
	1	2	1Cip	2Cip		
3363br	3370s-3180s	3375br-3142w	3358br	3238br	v(OH), v(NH), v(NH ₂)	
3044m-2845m		2961w, 2856w	2951w, 2838m	2947w, 2836w	v(CH), v(=C-H)	
	1689s	1650s			ν(C=C), ν(C=N), δ(NH ₂)	
	1654s	1552s			ν(C=C), ν(C=N), δ(NH ₂)	
1615s			1613s	1613s	$v_{as}(C=O)_{py}$	
1586s					$v_{as}(C=O)_{carb}$	
			1577s	1579s	$v_{as}(CO_2)_{carb}$	
1547s	1547s	1525s	1513w	1523s	v(C=C) _{benzene ring} , v(C=N),	
					δ(NH ₂)	
	1507m	1494m		1479m	ν(C=N), ν(C-NH ₂), δ(NH ₂)	
1474m-1451m	1473m-1452m		1476s-1457s	1459m	ν(C-N), δ(C-H)	
			1376s	1374m	$v_s(CO_2)_{carb}$	
1371s					v(C-H), v(C-O) _{carb}	
1307m		1355m-1323m	1302m	1352w, 1335w	v(CH) _{ring}	
			1254s	1259s	$\nu(CO_2)_{carb}$	
	1196s-1117m	1210m-1056m		1192m-1095w	v(ring), p(NH ₂), v(C-O)	
1174m-1075w	1076w	1018w	1196w-1112w	1050m	ν (C-H) _{ring}	
1035s-1023s			1043w-1027m	1019w	v(C-F)	
978w			946s	946m	δ(NH)	
940m-706w	948	929w	896w-701m	898w	γ (=C-H), δ (NH ₂)	
652w-621s	645m	610m	655m-629m		$\delta(ring)_{aromatic}$, NH ₂ wagging	

Abbreviation: s, strong; m, medium; w, weak; br, broad; v_{as} , asymmetric stretching; v_s , symmetric stretching; δ , bending.

Table S2. Selected bond lengths [Å] and angles [°] for the optimized geometries of 1Cip and 2Cip complexes at B3LYP/def2-TZVP level of theory.

	1Cip			2Cip		
	1A	1B	1C	2A	2B	2C
Cu–O1	1.970	1.980	2.294	1.971	1.979	2.291
Cu–O2	1.918	1.956	1.924	1.919	1.961	1.923
Cu–N1	1.954	2.004	2.076	1.954	1.998	2.082
Cu–N2	1.947	_	2.021	1.947	_	2.013
Cu–Cl	_	2.250	2.295	_	2.251	2.296
O1–Cu–O2	93.42	89.78	87.43	93.31	89.79	86.92
N1–Cu–N2	88.49	-	84.15	88.68	-	84.35

		Cell cycle distribution (means ± SD)%					
Cell	Treatment	sub-G1	G0/G1	S	G2/M		
	Solvent control	2.8±0.72	60.8±1.23	13.2±0.98	20.2±1.22		
	Cisplatin	24.9±0.88*	42.2±1.20	16.9±0.54*	13.4±0.28		
	1	5.1±1.32*	32.3±1.23	19.7±0.87	40.9±1.11*		
HeLa	2	3.3±0.89	37.0±0.97	19.6±0.23	39.6±1.41*		
	1Cip	10.5±0.65*	50.9±1.04	18.3±0.57*	16.9±0.99		
	2Cip	10.9±0.99*	52.2±0.95	19.9±0.89*	17.0±0.36		
MCF-7	Solvent control	6.0±0.86	52.7±0.55	16.5±0.99	20.9±1.14		
	Cisplatin	42.4±0.78*	30.9±0.87	18.2±1.17*	7.5±1.18		
	1	11.1±0.71*	50.5±1.12	12.9±0.55	24.3±1.30*		
	2	13.0±0.54*	50.7±1.25	12.2±0.30	22.7±1.15*		
	1Cip	16.4±0.32*	58.0±0.82*	11.0±0.91	14.8±0.98		
	2Cip	15.8±0.98*	53.9±0.62*	13.7±0.20	15.6±0.99		

Table S3 The cell cycle distribution of HeLa and MCF-7 cells treated with cisplatin (25 μ g mL⁻¹), **1**, **2**, **1Cip** and **2Cip** (50 μ g mL⁻¹ with Trisbuffer containing 0.3% DMSO) on each phase of cell cycle. All data are the mean and standard errors obtained from three independent experiments.

*P < 0.01 significant difference between samples and solvent control.

Fig. S1 Absorption spectra of (a) 1Cip and (b) 2Cip (50 µM) in Tris-buffer containing 0.3% DMSO at room temperature. The absorbance values

at 273 nm for **1Cip** and 274 nm for **2Cip** were used for the calculation of k (slope of the linear fit) and $t_{1/2}(t_{1/2} = \ln(2)/k)$ values.

Fig. S2 Distribution of (a) HeLa and (b) MCF-7 cells treated by **1**, **2**, **1Cip** and **2Cip** (50 μ g mL⁻¹). Cisplatin was used as a positive control and the solvent control was Tris-buffer containing 0.3 % DMSO. The data given are means \pm SD of three independent experiments.

Fig. S3 Antibacterial activity of the complexes in a concentrations of 1.95, 3.9, 7.8, 15.6, 31.2, 62.5, 125 and 250 μ g mL⁻¹ against (a) *E. coli*, (b)

Salmonella, (c) Campylobacter by disc diffusion method.