Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supplementary Information

The influence of trans-ligand to NO to the thermal stability of side-bond coordinated isomer MS2

Artem A. Mikhailov^a, Gennadiy A. Kostin^a, Dominik Schaniel^b

^a Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russian Federation

^b Universite' de Lorraine, CNRS, CRM2, UMR 7036, Nancy 54000, France

Table S1. Experimental and refinement details.
--

Complex	[RuNOPy ₄ F](PF ₆) ₂ ·0.33H ₂ O	$[RuNOPy_4F](PF_6)_2 \cdot 1.5CH_3CN$		
Empirical	C20H20 57E12N5O1 22P2BU	$C_{46}H_{40}F_{26}N_{12}O_{2}P_{4}Bu_{2}$		
formula				
Formula weight	762.42	1636.00		
Temperature/K	150.0	150.0		
Crystal system	triclinic	monoclinic		
Space group	P-1	P2 ₁ /c		
a/Å	13.9264(5)	20.7752(13)		
b/Å	16.9480(7)	15.3676(9)		
c/Å	19.8185(8)	19.9513(9)		
α/°	66.7760(10)	90		
β/°	79.868(2)	99.0464(15)		
γ/°	84.6740(10)	90		
Volume/Å ³	4230.2(3)	6290.5(6)		
Z	6	4		
ρ _{calc} g/cm ³	1.796	1.727		
µ/mm⁻¹	0.782	0.708		
F(000)	2264.0	3256.0		
Crystal	0.114 0.082 0.082	0.12 + 0.1 + 0.01		
size/mm ³	0.114 × 0.083 × 0.082	$0.12 \times 0.1 \times 0.01$		
Radiation	ΜοΚα (λ = 0.71073)	ΜοΚα (λ = 0.71073)		
20 range for data collection/°	3.908 to 55.066	3.362 to 48.854		
Index ranges	-18 ≤ h ≤ 18, -22 ≤ k ≤ 22, -25 ≤ l ≤ 25	$-24 \le h \le 24, -17 \le k \le 17,$ $-22 \le l \le 21$		
Reflections collected	63937	61086		
Independent reflections	19420 [R _{int} = 0.0459, R _{sigma} = 0.0514]	10293 [R _{int} = 0.1148, R _{sigma} = 0.0769]		
Data/restraints/ parameters	19420/29/1184	10293/0/841		
Goodness-of-fit on F ²	1.200	1.016		
Final R indexes [I>=2σ (I)]	R ₁ = 0.0813, wR ₂ = 0.1596	R ₁ = 0.0579, wR ₂ = 0.1342		
Final R indexes [all data]	R ₁ = 0.0992, wR ₂ = 0.1661	$R_1 = 0.0928$, w $R_2 = 0.1575$		
Largest diff. peak/hole / e Å ⁻ ³	1.57/-1.11	1.05/-0.73		

Fig. S1. Comparison of experimental powder XRD patterns of [RuNOPy₄F](PF₆)₂·0.33H₂O (**RuF**) and *trans*-[RuNOPy₄F](PF₆)₂·1.5CH₃CN with theoretical XRD patterns of [RuNOPy₄F](PF₆)₂·0.33H₂O obtained from single crystal XRD.

Fig. S2. The structure of *trans*- $[RuNOPy_4F](PF_6)_2 \cdot 1.5CH_3CN$ with two crystallographically independent ruthenium units. Hydrogen atoms are omitted for clarity. Thermal ellipsoids are given at the 30% probability level.

	Ru1 unit	Ru2 unit		
Ru-NO	1.749(6)	1.730(6)		
N-O	1.128(8)	1.142(9)		
Ru-F	1.914(3)	1.915(3)		
Ru-N _{Py}	2.078(4); 2.091(5);	2.094(6); 2.080(6);		
	2.084(6); 2.094(5)	2.101(6); 2.100(6)		
Ru-N-O	174.0(6)	176.7(6)		

Table S2. Chosen interatomic distances [Å] and angles [°] in *trans*-[RuNOPy₄F](PF₆)₂·1.5CH₃CN.

Table S3. Chosen bond distances of $[RuNOPy_4X](PF_6)_2$ (X = F⁻, Cl⁻, Br⁻ and OH⁻) complexes. Temperatures of themeasurements are indicated in the table (T, K).

	N-O	Ru-NO	Ru-X	Ru-Py _{average}	Т, К	Ref.		
RuF*	1.14(1);	1.731(8);	1.902(4);	2 080	150	Present		
	1.145(9)	1.733(6)	1.910(4)	2.005	150	work		
RuCl	1.146(2);	1.755(2);	2.321(1);	2 108	180	[1]		
	1.147(2)	1.754(2)	2.323(1)	2.100	180	[±]		
RuOH	1.145(4)	1.757(3)	1.910(2)	2.103	293	[2]		
RuBr	1.131(4)	1.752(3)	2.466(1)	2.108	180	[1]		
* In case of RuF complex distances of Ru1 and Ru2 units are considered.								

Fig. S3. IR spectra of studied complexes in GS, MS1 and MS2 at 100 K. Strong band at 550 cm⁻¹ corresponds to vibration of PF_6^- anion.

Fig. S4. Difference UV-vis spectra (MS1-GS) of studied compounds at 100 K.

Fig. S5. Isothermal decay of MS2 in RuOH and RuBr measured by IR-spectroscopy.

Fig. S6. Correlation of Hirshfeld charge on X (NO *trans*-ligand) in MS1 and MS2, and decay temperatures T_d of MS1 and MS2, respectively.

Fig. S7. Correlation of Hirshfeld charge on $X-Py_4$ in MS1 and MS2, and decay temperatures T_d of MS1 and MS2, respectively.

Table S4. The Hirshfeld charges in GS, MS1 and MS2 on RuNO, X, Py_4 and X- Py_4 groups.

RuNO	GS	MS1	MS2	X	GS	MS1	MS2
RuF	0.5913	0.632	0.5604	RuF	-0.2084	-0.1954	-0.1924
RuCl	0.5528	0.5837	0.5134	RuCl	-0.0931	-0.0616	-0.0571
RuOH	0.5553	0.5883	0.5258	RuOH	-0.1276	-0.1089	-0.0991
RuBr	0.5347	0.562	0.4921	RuBr	-0.0427	-0.0066	-0.0004
X-Py ₄	GS	MS1	MS2	Py ₄	GS	MS1	MS2
RuF	1.4061	1.3682	1.4394	RuF	1.6145	1.5636	1.6318
RuCl	1.4469	1.4164	1.4867	RuCl	1.54	1.478	1.5438
RuOH	1.4447	1.4117	1.4754	RuOH	1.5723	1.5206	1.5745
RuBr	1.4653	1.438	1.5084	RuBr	1.508	1.4446	1.5088

Table S5. The difference of Hirshfeld charges in GS, MS1 and MS2 on RuNO, X, Py_4 and X- Py_4 groups.

RuNO	GS-MS1	GS-MS2	X	GS-MS1	GS-MS2
RuF	-0.0407	0.0309	RuF	-0.013	-0.016
RuCl	-0.0309	0.0394	RuCl	-0.0315	-0.036
RuOH	-0.033	0.0295	RuOH	-0.0187	-0.0285
RuBr	-0.0273	0.0426	RuBr	-0.0361	-0.0423
X-Py4	GS-MS1	GS-MS2	Py ₄	GS-MS1	GS-MS2
RuF	0.0379	-0.0333	RuF	0.0509	-0.0173
RuCl	0.0305	-0.0398	RuCl	0.062	-0.0038
RuOH	0.033	-0.0307	RuOH	0.0517	-0.0022
RuBr	0.0273	-0.0431	RuBr	0.0634	-0.0008

Fig. S8. Correlation of Hirshfeld charge on X (NO trans-ligand) in GS and decay temperatures T_d of MS1 and MS2.

Fig. S9. Correlation of Hirshfeld charge on $X-Py_4$ in GS and decay temperatures T_d of MS1 and MS2.

Fig. S10. Correlation of Hirshfeld charge on (RuNO) group in GS and decay temperatures T_d of MS1 and MS2.

Fig. S11. *a*: correlation of Hirshfeld charges on (RuNO) groups in MS1 and GS; *b*: correlation of Hirshfeld charges on (RuNO) groups in MS2 and GS.

Fig. S12. a: correlation of Hirshfeld charges on (X) in MS1 and GS; b: correlation of Hirshfeld charges on (X) in MS2 and GS.

Fig. S13. a: correlation of Hirshfeld charges on X-Py₄ in MS1 and GS; b: correlation of Hirshfeld charges on X-Py₄ in MS2 and GS.

References

- Cormary B. et al. Structural Influence on the Photochromic Response of a Series of Ruthenium 1. Mononitrosyl Complexes // Inorg. Chem. 2012. Vol. 51, № 14. P. 7492–7501.
- 2. Nishimura H. et al. Comparison of the reactivity, electrochemical behaviour, and structure of the trans-bis(acido)tetra(pyridine)nitrosylruthenium cations (acido = hydroxo or chloro) // J. Chem. Soc. Dalt. Trans. 1990. № 1. P. 137.