Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

SUPPORTING INFORMATION

Exploring the photophysical properties of unusual π -conjugated porphyrin nanohoops

Yanling Si^a, Nan Qu *a and Guochun Yang*b

a.College of Resource and Environmental Science, Jilin Agricultural University, Changchun 130118, China

b.State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for

Microstructural Material Physics of Hebei Province, School of Science, Yanshan University,

Qinhuangdao 066004, China

Table S1 The main concerned bond length (\AA) for compound 1 between experiment and calculation.

	Calc.	Exp.		Calc.	Exp.		Calc.	Exp.
C1-C2	1.489	1.468	C30-C32	1.392	1.407	C13`-N3	1.377	1.411
C2-C3	1.408	1.360	C31-C33	1.406	1.417	C13`-C14`	1.401	1.367
C2-C4	1.409	1.390	C32-C33	1.406	1.384	C14`-C15`	1.401	1.372
C3-C5	1.396	1.425	C33-C34	1.485	1.468	C15`-N4	1.373	1.355
C4-C6	1.388	1.388	C34-C36	1.406	1.405	Ni`-N5	1.922	1.870
C5-C7	1.406	1.384	C35-C37	1.388	1.379	Ni`-N6	1.918	1.880
C6-C7	1.405	1.348	C36-C38	1.396	1.388	Ni`-N7	1.908	1.845
C7-C8	1.485	1.487	C37-C39	1.409	1.360	Ni`-N8	1.912	1.876
C8-C9	1.406	1.411	C38-C39	1.408	1.360	N5-C16`	1.377	1.403
C8-C10	1.406	1.379	C39-C40	1.489	1.465	C16`-C17`	1.443	1.480
C9-C11	1.392	1.407	Ni-N1	1.908	1.845	C17`-C18`	1.362	1.364
C10-C12	1.392	1.392	Ni-N2	1.912	1.876	C18`-C19`	1.442	1.442
C11-C13	1.406	1.384	Ni-N3	1.922	1.870	C19`-N5	1.377	1.411
C12-C13	1.406	1.417	Ni-N4	1.918	1.880	C19`-C20`	1.401	1.367
C13-C14	1.485	1.468	N1-C1`	1.372	1.384	C20`-C21`	1.403	1.371
C14-C15	1.406	1.405	C1`-C2`	1.440	1.393	C21`-N6	1.373	1.355
C15-C17	1.396	1.388	C2`-C3`	1.365	1.376	C22`-C23`	1.408	1.360
C16-C18	1.388	1.379	C3`-C4`	1.443	1.499	C23`-C24`	1.408	1.399
C17-C19	1.408	1.360	C4`-N1	1.375	1.361	C24`-C25`	1.440	1.393
C18-C19	1.409	1.360	C4`-C5`	1.405	1.405	C24`-N7	1.372	1.384
C19-C20	1.489	1.465	C5`-C6`	1.403	1.440	C25`-C26`	1.365	1.376
C21-C22	1.489	1.468	C6`-N2	1.379	1.319	C26`-C27`	1.443	1.498
C22-C23	1.408	1.360	C6`-C7`	1.443	1.478	C27`-N7	1.375	1.361
C23-C24	1.396	1.425	C7`-C8`	1.364	1.358	C27`-C28`	1.405	1.405
C22-C25	1.409	1.389	C8`-C9`	1.441	1.457	C28`-C29`	1.403	1.440

C24-C26	1.406	1.384	C9`-N2	1.369	1.364	C29`-N8	1.379	1.319
C25-C27	1.388	1.388	C9`-C1	1.409	1.362	C29`-C30`	1.443	1.478
C26-C27	1.405	1.348	C1-C10`	1.408	1.373	C30`-C31`	1.364	1.358
C26-C28	1.486	1.487	C10`-N3	1.377	1.404	C31`-C32`	1.441	1.457
C28-C29	1.406	1.379	C10`-C11`	1.443	1.480	C32`-N8	1.369	1.364
C28-C30	1.406	1.411	C11`-C12`	1.362	1.364	C32`-C21	1.409	1.362
C29-C31	1.392	1.391	C12`-C13`	1.442	1.443	C21-C16`	1.408	1.373

Table S2 Calculated the absorption wavelengths (nm), excitation energies (eV) and oscillator strength (f) values for the spectra in Fig.1

Funcationals	λ	Е	f
B3LYP	427	2.90	1.9487
PBE0	418	2.97	2.1329
Cam-B3LYP	400	3.10	2.5005
M052X	396	3.13	2.6633
BHandHLYP	393	3.15	2.8079
Exp. ^a	446		

^aExperimental data from ref. 31.

	0 0/		5	
Compounds	λ	Е	f	Major contributions
1	427	2.90	1.9487	H-3->L+2 (41%)
				H-2->L+3 (27%)
2	419	2.96	1.7423	H-3->L+2 (51%)
				H-2->L+3 (13%)
3	423	2.93	2.3237	H-3->L+2 (35%)
				H-2->L+3 (28%)
4	422	2.94	1.1330	H-4->L+3 (22%)
				HOMO->L+6 (28%)
5	427	2.90	1.2592	H-4->L+3 (25%)
				H-3->L+4 (26%)
6	449	2.76	1.4107	H-3->L+1 (40%)
				H-1->L+3 (12%)
7	421	2.94	1.4689	H-3->L+6 (26%)
				H-2->L+7 (33%)
8	421	2.95	0.9946	H-5->L+2 (21%)
				H-3->L+4(20%)

Table S3 Calculated the absorption wavelengths (λ in nm), excitation energies (eV), oscillator strength (*f*) values and major contributions for compounds**1-8**

- · · ·			<u> </u>		
Compounds	λ	Е	R		
1	379	3.27	0.1264		
	427	2.90	-0.8494		
2	437	2.84	0.6755		
3	388	3.20	-0.0113		
	446	2.78	-0.0488		
	605	2.05	0.0368		
4	391	3.17	-0.2041		
5	450	2.75	0.4801		
	596	2.08	-00758		
6	415	2.99	-28.785		
	468	2.65	18.446		
7	421	2.94	-0.5182		
	523	2.37	0.3809		
	607	2.04	-12.7141		
8	409	3.03	-19.591		
	484	2.56	10.358		
	541	2.29	-1.201		

Table S4 Calculated the wavelengths (λ in nm), excitation energies (eV), and rotatory strengths (R) values for the CD spectra in Fig.6

266 atoms, 1026 electrons, neutral, singlet Inquire Select Atom 1 266 atoms, 1030 electrons, neutral, singlet Inquire Select Atom 1 Fig. S1. The atom, electron numbers and charges, multiplicities for compounds 4 (left) and 5 (right) in GaussView.

Fig. S2. The simulated UV-visible absorption spectra for compound 4 with two geometries from open-shell singlet and closed-shell singlet optimization, respectively.

Fig. S3 Molecular orbital isosurfaces involved in the main electron transitions of compounds 2 and 3.

Fig. S4 Molecular orbital isosurfaces involved in the main electron transitions of compounds 4 and 5.

Fig. S5 Molecular orbitals involved into the main CD transitions of compound 1.