Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Electronic Supporting Information

A new diformyl phenol based chemosensor selectively detects Zn²⁺ and Co²⁺ in nanomolar range in 100% aqueous medium and HCT live cells

Barnali Naskar,^{a,b} Chitrangada Das Mukhopadhyay^c and Sanchita Goswami*^a

^aDepartment of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata – 700009, India. E-mail:<u>sgchem@caluniv.ac.in</u>

^bDepartment of Chemistry, Lalbaba College, University of Calcutta, Howrah 711202, India.

^cCentre for Healthcare Science & Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India.

Contents of the Supporting Information

1. Characterization, Structure and Crystallographic Data
Figure S1. ¹H and ¹³C–NMR spectrum of chemosensor (Hmpye).
Figure S2. FT-IR Spectrum of Hmpye and in complexes 1 and 2.
Figure S3. ESI–MS of Hmpye and in complexes 1 and 2 in methanol.
Figure S4. PXRD pattern of complex 1 vs. simulated pattern.
Scheme S1. Coordination modes of complex 1.
Table S1. Crystallographic and structural data refinement of complex 1.
Table S2. Selected Geometrical Parameters (Distances/Å and Angles/deg) for complex 1.
Table S3. Results of continuous shape measurement analysis for the coordination spheres in complex 1.

2. Photophysical Characterization

Figure S5. UV-vis spectra of Hmpye in the presence of increasing amount of $[Zn^{2+}]$ in HEPES buffer (pH = 7.4) solution. Figure S6. UV-vis spectra of Hmpye in the presence of increasing amount of $[Co^{2+}]$ in HEPES buffer (pH = 7.4) solution. Figure S7. Job's plot for determination of stoichiometry of Zn^{2+} : Hmpye complex in solution. Figure S8. Job's plot for determination of stoichiometry of Co^{2+} : Hmpye complex in solution. **Figure S9.** Detection Limit for Zn^{2+} ion.

Figure S10. Detection Limit for Co²⁺ ion.

Figure S11. Benesi–Hildebrand plot of fluorescence titration curve of chemosensor (Hmpye) and Zn^{2+} ion.

Figure S12. Benesi-Hildebrand plot of fluorescence titration curve of chemosensor (Hmpye) and Co²⁺ ion.

Figure S13. Fluorescence emission spectra of chemosensor (Hmpye) in the presence of Zn^{2+} ion followed by addition of EDTA.

Figure S14. Fluorescence emission spectra of chemosensor (Hmpye) in the presence of Co^{2+} ion followed by addition of EDTA.

Figure S15. Emission intensity of probe Hmpye in absence and in presence of Zn^{2+} at different pH values in aqueous solution.

Figure S16. Emission intensity of probe Hmpye in absence and in presence of Co^{2+} at different pH values in aqueous solution.

Figure S17. Time–resolved fluorescence decay of Hmpye and presence of added Zn^{2+} in solution.

Figure S18. Time-resolved fluorescence decay of Hmpye and presence of added Co²⁺ in solution.

Table S4. Fluorescence lifetime measurement of chemosensor (**Hmpye**) and the presence of Zn^{2+} and Co^{2+} ion in solution.

Scheme S2. Schematic illustration of proposed mechanism for the fluorescence changes of chemosensor (Hmpye) upon addition of Co^{2+} .

3. Cell Study

Figure S19. Cell viability curve for ligand of Hmpye.

4. Miscellaneous

Table S5. Comparison with recently reported probes for selective detection of Zn^{2+} and Co^{2+} ion.

1. Characterization, Structure and Crystallographic Data.

¹H and ¹³C–NMR spectra: Hmpye was dissolved in d_6 – DMSO and recorded with TMS as internal standard on a Bruker, AV 300 Supercon Digital NMR system.

Figure S1. ¹H and ¹³C–NMR spectrum of chemosensor (Hmpye).

1. Characterization, Structure and Crystallographic Data.

FT–IR spectroscopy: Fourier transform infrared (FT–IR) spectra were recorded with a Perkin–Elmer RXI FT–IR spectrophotometer using the reflectance technique (4000–400 cm⁻¹). Samples were prepared as KBr disks.

Figure S2. FT–IR Spectrum of Hmpye and in complexes 1 and 2.

1. Characterization, Structure and Crystallographic Data.

Electrospray mass spectra (ESI-MS) were recorded on Qtof Micro YA263 mass spectrometer dissolving the samples in LC–MS quality MeOH.

Figure S3. ESI–MS of Hmpye and in complexes 1 and 2.

Powder X-ray diffraction: (PXRD) patterns were recorded on a PANalytical, XPERT–PRO diffractometer with Cu K α radiation (40 kV, 30 mA, λ = 1.5406 Å).

Figure S4. PXRD pattern of complex 1 vs. simulated pattern.

Scheme S1. Coordination modes of complex 1.

	Complex (1)
Chemical formula	$C_{45}H_{44}Cl_6N_8O_2Zn_4$
ССРС	2161072
Formula weight	547.47
Temperature/K	296(2)
λ ^a / Å	0.71073
Crystal system	orthorhombic
Space group	Pbcn
<i>a</i> (Å)	25.473(6)
<i>b</i> (Å)	11.826(3)
<i>c</i> (Å)	16.454(4)
β (°)	90.00
Z	4
$V(Å^3)$	4956.7(19)
ρ calc(g/cm ³)	1.612
$\mu(\mathrm{mm}^{-1})$	2.282
<i>F</i> (000)	2432.0
θ min–max (°)	1.60 to 24.76
Refins collected	21504
Independent refins	4194
R(int)	0.0531
S(GOF)	0.961
$R1, wR2(I>2\sigma(I))^{b}$	0.0506 ^b , 0.1536 ^c
<i>R1</i> , <i>wR2</i> (all data) ^b	0.0761 ^b , 0.1780 ^c
largest diff peak, hole/e Å ⁻³	1.644 and -0.426

 Table S1. Single Crystal X-ray diffraction: Crystallographic data for complex 1.

 ${}^{a}Graphite\ monochromator,\ {}^{b}R_{1} = \Sigma(|F_{o}| - |F_{c}|)/\Sigma|F_{o}|.\ {}^{c}wR_{2} = \{\Sigma[w(|F_{o}|^{2} - |F_{c}|^{2})^{2}]/\Sigma[w(|F_{o}|^{2})^{2}]\}^{1/2}$

Table S2. Bond distances	(Å) and angles $(^{0}$) in	the metal	coordination	spheres of com	plex 1	
--------------------------	----	----------------------	------	-----------	--------------	----------------	--------	--

Complex (1)					
Zn(1)–O(1)	2.092(3)				
Zn(1)–N(2)	2.057(5)				
Zn(1)–N(3)	2.169(5)				
Zn(2)–O(1)	2.032(4)				
Zn(2)–N(1)	2.078(5)				
Zn(2)–N(4)	2.110(5)				
O(1)–Zn(1)–N(3)	163.82(17)				
O(1)–Zn(1)–N(2)	85.50(17)				
N(2)–Zn(1)–N(3)	89.79(19)				
O(1)–Zn(2)–N(1)	85.43(16)				
O(1)–Zn(2)–N(4)	154.26(18)				
N(1)–Zn(2)–N(4)	91.88(19)				

Table S3. Results of Continuous Shape Measurement analysis for the Zn(II) coordination spheres in complex 1.

Shape analysis : Continuous Shape Measurement (CShM)^a of coordination sphere using SHAPE v2.1.

For Zn1 and Zn2 in complex 1

```
_____
SHAPE v2.1 Continuous Shape Measures calculation
(c) 2013 Electronic Structure Group, Universitat de Barcelona
              Contact: llunell@ub.edu
------
                                        Zn2L structures
PP-51D5hPentagonvOC-52C4vVacant octahedronTBPY-53D3hTrigonal bipyramidSPY-54C4vSpherical square pyramidJTBPY-55D3hJohnson trigonal bipyramid J12
For Zn1
Structure [ML5]
Complex (1),
                    PP-5
                                v0C-5
                                           TBPY-5
                                                       SPY-5
                                                                 JTBPY-5
                   PP-5 vOC-5
32.173, 2.997,
                                           3.946,
                                                       0.805,
                                                                  8.408
For Zn2
               PP-5
31.290,
Structure [ML5]
                                v0C-5
                                4.437,
                                           TBPY-5
                                                       SPY-5
                                                                 JTBPY-5
Complex (1),
                                           1.725,
                                                       2.111,
                                                                  5.461
```

^aCShM values between 0.1 and 3 usually correspond to a not negligible but still small distortion from ideal geometry.

Figure S5. UV-vis spectra of **Hmpye** (5 × 10⁻⁷ M) in the presence of increasing amount of $[Zn^{2+}]$ (0, 0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 7, 8, 9 and 10 (×10⁻⁷) M in HEPES buffer (pH = 7.4) solution. **Inset:** Absorbance spectra of **Hmpye** at 390 nm as a function of $[Zn^{2+}]$.

Figure S6. UV-vis spectra of **Hmpye** (5 × 10⁻⁷ M) in the presence of increasing amount of $[Co^{2+}]$ (0, 0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 7, 8, 9 and 10 (×10⁻⁷) M in HEPES buffer (pH = 7.4) solution. **Inset:** Absorbance spectra of **Hmpye** at 450 nm as a function of $[Co^{2+}]$.

Figure S7. Job's plot for the identification of **Hmpye-** Zn^{2+} (1:2) complex stoichiometry using absorbance values at 390 nm.

Figure S8. Job's plot for the identification of Hmpye-Co²⁺ (1:2) complex stoichiometry using absorbance values at 450 nm.

Detection limit calculation in emission spectroscopy.

The limit of detection (LOD) of Hmpye– Zn^{2+} and Hmpye– Co^{2+} was measured on the basis of fluorescence titration measurement. The detection limit was calculated using the following equation:

$$LOD = K \times \frac{\sigma}{S}$$

where K = 2 or 3 (we take 3 in this case), ' σ ' is the standard deviation of the blank solution and 'S' is the slope between the ratio of emission intensity *versus* $[Zn^{2+}]$ and $[Co^{2+}]$.

Figure S9. Determination of the detection limit of Zn^{2+} by **Hmpye** in HEPES buffer (pH = 7.4) solution at 461 nm.

Figure S10. Determination of the detection limit of Co^{2+} by **Hmpye** in HEPES buffer (pH = 7.4) solution at 503 nm.

Benesi-Hildebrand plot in emission spectroscopy.

Figure S11. Benesi–Hildebrand plot $(F - F_0)/(F_x - F_0)$ vs. $1/[Zn^{2+}]^2$ for complexation between **Hmpye** and Zn²⁺ derived from emission titration curve at 461 nm.

Figure S12. Benesi–Hildebrand plot $1/(F_0 - F)$ vs. $1/[Co^{2+}]$ for complexation between **Hmpye** and Co²⁺ derived from emission titration curve at 503 nm.

Reversibility studies in emission spectroscopy.

Figure S13. Fluorescence emission spectra of **Hmpye** in the presence of Zn^{2+} ion followed by addition of EDTA (λ_{ex} = 340 nm, λ_{em} = 461 nm).

Figure S14. Fluorescence emission spectra of **Hmpye** in the presence of Co²⁺ ion followed by addition of EDTA (λ_{ex} = 340 nm, λ_{em} = 503 nm).

Figure S15. Emission intensity of probe **Hmpye** (5×10^{-7} M) in absence and in presence of Zn²⁺ as a function of pH values in aqueous solution at 461 nm.

Figure S16. Emission intensity of probe **Hmpye** (5×10^{-7} M) in absence and in presence of Co²⁺ as a function of pH values in aqueous solution at 503 nm.

Figure S17. Time-resolved fluorescence decay of **Hmpye** in the absence and presence of added Zn^{2+} at 375 nm.

Figure S18. Time-resolved fluorescence decay of **Hmpye** in the absence and presence of added Co^{2+} at 375 nm.

Table S4. Fluorescence lifetime measurement of chemosensor (**Hmpye**) and the presence of Zn^{2+} and Co^{2+} ion in solution.

	φ _f	$\tau_{av}(ns)$	$K_{r}(\times 10^{9}) S^{-1}$	$K_{nr}(\times 10^9) \text{ S}^{-1}$	χ2
Нтруе	0.325	3.56	0.091	0.189	1.011
Hmpye + Zn ²⁺	0.610	4.89	0.125	0.079	0.995
Hmpye + Co ²⁺	0.025	2.13	0.012	0.457	1.155

Scheme S2. Schematic illustration of proposed mechanism for the fluorescence changes of chemosensor (Hmpye) upon addition of Co^{2+} .

3. Cell Study.

Figure S19. Percentage (%) cell viability of Hela cells treated with different concentrations of **Hmpye** for 24 hours determined by MTT assay.

Probes	Solvent media	Detection limit	Binding constant	Ref.
	HEPES buffer (pH = 7.4) [both Zn ²⁺ and Co ²⁺]	$Zn^{2+} = 4.683 \times 10^{-9}$ (M) [From the fluorescence titration data] $Co^{2+} = 7.591 \times 10^{-9}$ (M) [From the fluorescence titration data]	$Zn^{2+} = 5.203 \times 10^{12}$ (M ⁻²) [From the fluorescence titration data] $Co^{2+} = 9.783 \times 10^{11}$ (M ⁻²) [From the fluorescence titration	Present work
	acetonitrile solution [both Zn ²⁺ and Co ²⁺]	data] $Zn^{2+} = 7.93$ $\times 10^{-7}$ (M) [From the fluorescence titration data] $Co^{2+} = 2.20$ $\times 10^{-6}$ (M) [From the UV-vis titration data]	data] $Zn^{2+} = 7.0 \times 10^{11} (M^{-2})$ [From the fluorescence titration data] $Co^{2+} = 4.0 \times 10^{11} (M^{-2})$ [From the UV-vis titration data]	23 (a)
	acetonitrile solution [both Zn ²⁺ and Co ²⁺]	$Zn^{2+} = 0.28$ × 10 ⁻⁶ (M) [From the UV-vis titration data] $Co^{2+} = 0.82$ × 10 ⁻⁶ (M)	$Zn^{2+} = 0.11 \\ \times 10^{6} (M^{-1}) \\ [From the UV-vis titration data] \\ Co^{2+} = 0.24 \\ \times 10^{6} (M^{-1})$	23 (b)

Table S5. Comparison with recently reported probes for selective detection of Zn^{2+} and Co^{2+} ion.

		[From the UV–vis titration data]	[From the UV–vis titration data]	
	bis-tris buffer solution (10 mM, pH 7.0) [both Zn ²⁺ and Co ²⁺]	$Zn^{2+} = 0.01$ × 10 ⁻⁶ (M) [From the UV-vis titration data] Co ²⁺ = 6.89 × 10 ⁻⁶ (M) [From the UV-vis titration data]	$Zn^{2+} = 1.30$ × 10 ⁵ (M ⁻¹) [From the UV-vis titration data] Co ²⁺ = 4.0 × 10 ⁴ (M ⁻¹) [From the UV-vis titration data]	23 (c)
NG OH HOLEN	$Zn^{2+} = DMF-$ buffer solution (95:5, v/v) $Co^{2+} =$ bis-tris buffer solution (10 mM, pH 7.0)	$Zn^{2+} = 0.8$ (µM) [From the fluorescence titration data] Co ²⁺ = 0.34 (µM) [From the UV-vis titration data]	$Zn^{2+} = 8.0 \times 10^{3} (M^{-1})$ [From the fluorescence titration data] $Co^{2+} = 1.1 \times 10^{4} (M^{-1})$ [From the UV-vis titration data]	23 (d)
HN N OH N NH	$Zn^{2+} = HEPES$ buffer (H ₂ O: CH ₃ OH, 1/4, v/v, pH 7.2)	$Zn^{2+} = 0.59$ (nM) [From the fluorescence titration data]	$Zn^{2+} = 2.5 \times 10^{6} (M^{-1})$ [From the fluorescence titration data]	23 (e)
	$Zn^{2+} = HEPES$ buffer (DMSO: H ₂ O, 1: 9 (v/ v), pH 7.2)	$Zn^{2+} = 3.5 \times 10^{-8} (M)$ [From the fluorescence titration data]	$Zn^{2+} = 3.1$ (±0.1) × 10 ⁷ (M ⁻¹) [From the fluorescence titration data]	23 (f)

	$Zn^{2+} = DMSO:H_2O$ (1:9)	$Zn^{2+} = 4.48$ $\times 10^{-7}$ (M) [From the fluorescence titration data]	$Zn^{2+} = 1.69$ $\times 10^4 (M^{-1})$ [From the fluorescence titration data]	23 (g)
CH3 HN OH NHN S N NS	$Zn^{2+} = DMSO:$ CH_3OH (3:7 v/v)	$Zn^{2+} = 2.31$ ×10 ⁻⁸ (M) [From the fluorescence titration data]	$Zn^{2+} = 5.22$ ×10 ³ (M ⁻¹) [From the UV–vis titration data]	23 (h)
HN N HN	Zn ²⁺ = DMSO	$Zn^{2+} = 27.80$ (nM) [From the fluorescence titration data]	_	23 (i)
	Zn^{2+} = HEPES buffer [50 µM, DMSO:water = 1:9 (v/v), pH=7.2]	$Zn^{2+} = 9.727 \times 10^{-7}$ (M) [From the fluorescence titration data]	$Zn^{2+} = 4.812$ × 10 ⁵ (M ⁻¹) [From the fluorescence titration data]	23 (j)
	Zn^{2+} = HEPES buffer [50 mM, DMSO:water = 1:9 (v/v), pH = 7.2]	_	$Zn^{2+} = 3.2 \times 10^{7} (M^{-1})$ [From the fluorescence titration data]	23 (k)
	Zn^{2+} =H ₂ O/THF buffer (HEPES, 4:6, v/v, pH 7.0)	$Zn^{2+} = 2.88$ (ng L ⁻¹) [From the fluorescence titration data]	$Zn^{2+} = 1.18$ × 10 ¹² (M ⁻¹) [From the fluorescence titration data]	23 (1)

CH ₃	$Zn^{2+} = HEPES$	HL ¹ Probe:	HL ¹ Probe:	1(e)
	buffer $(H_2O:$	$Zn^{2+} = 0.832$	$Zn^{2+} = 4.38$	
	CH ₃ OH, 1: 9,	(nM)	× (±0.09) ×	
в он и и	v/v, pH		$10^{4} (M^{-1})$	
HN	7.2)		[From the	
			fluorescence	
			titration	
CH ₃			data]	
			-	
		HL ² Probe:	HL ² Probe:	
O OH N		$Zn^{2+} = 0.474$	-	
1		(nM)		
HNNN				

CH ₃	$Zn^{2+} = CH_3CN$	HL ¹ Probe:	HL ¹ Probe:	1(d)
		—	$Zn^{2+} = 2.5 \times$	
			$10^4 (M^{-1})$	
$\bigcirc \bigcirc \bigcirc$				
HL ¹				
сн _з				
		HL ² Probe:	HL ² Probe:	
		_	$Zn^{2+} = 2.35$	
			$\times 10^{-1}$	
HL ²				
сн₃				
		HL ³ Probe:	HL ³ Probe: $7n^{2+} = 2.2 \times$	
			$2 \Pi^{-2} - 2.2 \times 10^4 (M^{-1})$	
			[From the	
			fluorescence	
HL ³			titration	
			$data = 1.5 \times 10^{2+}$	
			$10^4 (M^{-1})$	
			[From the	
			fluorescence	
			titration	
			data]	
CH ₃	$Zn^{2+} = HEPES$			23 (m)
	buffer, pH 7.4			~ /

	Zn ²⁺ = HEPES buffer, pH 7.4	$Zn^{2+}=$ 6.54 (µg L ⁻¹) [From the fluorescence titration data]	$Zn^{2+} = 8.7 \times 10^3 (M^{-1})$ [From the fluorescence titration data]	23 (n)
	Zn ²⁺ = near perfect aqueous solution (bis- tris buffer:DMSO = 999:1)	$Zn^{2+} = 0.6$ (μ M) [From the fluorescence titration data]	$Zn^{2+} = 8.6$ (±0.1) × 10 ³ (M ⁻¹) [From the fluorescence titration data]	23 (o)
OH N-NH	Zn ²⁺ = MeOH– HEPES buffer (3/7, v/v, pH 7.4)	$Zn^{2+} = 2.1$ $\times 10^{-8}$ (M) [From the fluorescence titration data]	$Zn^{2+} = 1.68$ $\times 10^5 (M^{-1})$ [From the fluorescence titration data]	23 (p)
	Co ²⁺ = near perfect aqueous solution	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$Co^{2+} = 1.1 \times 10^4 (M^{-1})$ [From the UV-vis titration data]	23 (q)
	Co ²⁺ = Ethanol: water (1:9)	$\begin{array}{l} \text{Co}^{2+} = 7.09 \\ (\mu\text{M}) \\ [\text{From the} \\ \text{UV-vis} \\ \text{titration} \\ \text{data} \end{array}$	$Co^{2+} = 2.9 \times 10^{4} (M^{-1})$ [From the UV-vis titration data]	23 (r)
	$Co^{2+} = CH_3CN/HEPES$ (4/1, v/v, pH = 7.4)	$Co^{2+} =$ 0.26 (µM) [From the fluorescence titration data]	$Co^{2+} = 1.2 \times 10^{4} (M^{-1})$ [From the UV-vis titration data]	23 (s)

N N	$Co^{2+} = CH_3CN$	$Co^{2+} = 3.92$	$Co^{2+} = 5.29$	23 (t)
		(µM)	$\times 10^{2} (M^{-1})$	
ОНС		[From the	[From the	
CH2 N-N		UV–vis	UV–vis	
		titration	titration	
		data]	data]	
H C	$\mathrm{Co}^{2+} = \mathrm{H}_2\mathrm{O}$	$Co^{2+} = 0.31$	$Co^{2+} = 6.91$	23 (u)
		(µM)	(M ⁻²)	
N O S		[From the	[From the	
		UV–vis	UV–vis	
		titration	titration	
	-	data]	data]	
	$Co^{2+} = bis-tris$	$Co^{2+} = 0.99$	$Co^{2+} = 8.9 \times$	23 (v)
HN HN	buffer solution	(µM)	$10^{5} (M^{-1})$	
No NO3	containing	[From the	[From the	
	0.1% DMSO	UV-vis	UV-vis	
	(10 mM, pH 7)	titration	titration	
		data	data	
F ₃ C N N N	$Co^{2+} = B_{1s}$ -tris	$Co^{2+} = 0.11$	$Co^{2+} = 5.0 \times$	23 (w)
	Buffer	(μM)	$10^{9} (M^{-1})$	
· ·		[From the	[From the	
		UV - V1S	UV - V1S	
		titration	titration	
	$Ca^{2+} - 1$ is the	$aaa] Ca^{2+} = 0.65$	$aaa = 10 \times 10^{2+}$	22 ()
- NCOH HOLDNA	$CO^{2} = DIS - tris$	$C0^{27} = 0.03$	$C0^{-1} = 1.9 \times 105 (M-1)$	23 (X)
	(10 mM mH)	(μNI)	$\begin{bmatrix} 10^{\circ} (101^{\circ}) \\ From the$	
	(10 million, p11	IV vie	IW vie	
	()	titration	titration	
		datal	datal	
	$Co^{2+} =$	$Co^{2+} = 0.31$		23(v)
	THF/Tris-HCl	(μM)		23 (y)
HN NNNN NNN	buffer-solution	[From the		
L' LEN	(4/6, V/V)	fluorescence		
L-X.		titration		
HN		data]		
		L 1		