Supporting Information

Nitrogen-Doped Hollow Sphere Carbon-Based Catalyst for Efficient Selective Oxidation of C–H bonds under Mild-Conditions

Huan Zhang, ^a An Cai, ^a Hongwei He, ^a Qicheng Zhang, ^a Fengbao Zhang, ^a Guoliang Zhang, ^a Xiaobin Fan, ^a

Wenchao Peng, ^a and Yang Li^{a,b,c,*}

^aSchool of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin

University, Tianjin, 300072, China

^bHaihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China

^cInstitute of Shaoxing, Tianjin University, Zhejiang 312300, China

*Email: liyang1895@tju.edu.cn

Figure S1. SEM images of (a) and (b) N-HCS-900;(c) and (d) N-HCS-800, (e) and (f) N-HCS-1000, respectively.

Figure S2. SEM images of (a) and (b) N-HPC.

Figure S3. The total pore volume of N-HCS-800, N-HCS-900, N-HCS-1000, and N-HPC, respectively.

Figure S4. X-ray photoelectron spectroscopy N 1s spectra of (a) N-HCS-800, (c) N-HCS-1000 and (e) N-HPC, respectively. X-ray photoelectron spectroscopy C 1s spectra of (b) N-HCS-800, (d) N-HCS-1000 and (f) N-HPC, respectively.

Figure S5. GC-MS spectrum of one product after the reaction catalyzed by N-HCS-900 with retention time in 6.836-6.911 min (a). This is matched with GC-MS spectrum of acetophenone.

GC-MS spectrum of one product after the reaction catalyzed by N-HCS-900 with retention time in 8.685-8.718 min (b). This is matched with GC-MS spectrum of phenyl benzoate.

GC-MS spectrum of one product after the reaction catalyzed by N-HCS-900 with retention time in 8.844-8.891 min (c). This is matched with GC-MS spectrum of 2-methylpropyl benzoate.

Figure S6. SEM image of the HCS.

Figure S7. TEM images of the N-HCS-900 after 5 cycles reaction.

Figure S8. FTIR spectra of N-HCS-900 before and after 5 cycles reaction, respectively.

Sample	C at. %	0	N at. %				
		U at. %	Pyridinic N	Graphitic N	Oxidized N		
N-HCS-800	87.3	5.3	2.0	4.7	0.7		
N-HCS-900	88.2	5.6	1.0	4.0	1.2		
N-HCS-1000	91	3.4	1.6	3.4	0.6		
N-HPC	88	5.3	1.8	4.2	0.7		

Table S1. Quantitative XPS measurements of chemically doped carbon materials.

Table S2. The atomic percentages of surface functional groups from deconvoluted C 1s XPS spectral fitting.

Comple	C–C	C-N/C-O	C=0	СООН	$\pi \rightarrow \pi^*$
Sample	284.6 eV	286.0 eV	287.8 eV	289.0 eV	291.5 eV
N-HCS-800	53.23%	21.40%	3.47%	7.44%	1.76%
N-HCS-900	54.06%	19.40%	4.49%	6.21%	4.04%
N-HCS-1000	60.04%	19.05%	3.47%	5.35%	3.09%
N-HPC	54.00%	20.85%	5.21%	5.02%	2.92%

Table S3. Catalytic activity of N-HCS/N-HPC catalysts for the selective oxidation reaction of ethylbenzene in

water^a.

Entry	Catalyst	Temperature	Conversion		Sele	ectivity (%	6)	
Entry	Catalyst	(°C)	(%)	а	b	С	е	f
1	AC	50	17.65	62.39	10.88	1.64	24.76	trace
2	HCS	50	6.05	62.39	4.28	26.80	6.53	trace
3	N-HCS -800	50	86.01	93.63	0.10	0.66	5.41	0.20
4	N-HCS -900	30	46.19	93.00	0.51	trace	6.49	trace
5	N-HCS -900	40	78.32	96.41	trace	trace	3.59	trace
6	N-HCS -900	50	98.38	99.33	trace	trace	0.54	0.13
7	N-HCS -900	80	99.45	99.25	trace	trace	0.33	0.42
8	N-HCS -1000	50	87.75	97.98	0.20	0.17	1.65	trace
9	N-HPC	50	94.72	98.09	trace	trace	1.32	0.59

^aReaction conditions: 10.0 mg of catalyst, 0.5mmol of substrate, 500 μL of TBHP as a 70 wt% aqueous solution diluted with 6.5 mL of water for 12h. The conversion and selectivity were determined by GC analysis system equipped with HP-5 capillary and an FID.

Table S4. Comparison table of the catalytic performance of N-HCS-900 catalysts with those reported in

literatures.

Entry	Catalyst	Reaction conditions	Conv. (%)	Sel. (%)	TOF ^a molec3g ⁻ ¹c3h ⁻¹	Ref.
1	N-HCS-900	50°C, H₂O solvent, 500 μL TBHP, 0.5 mmol substrate, 10 mg catalysts,12h	98	99	4.10×10 ⁻³	This work
2	N-HCS-900	80°C, H ₂ O solvent, 500 μL TBHP, 0.5 mmol substrate, 10 mg catalysts, 12h	99	99	4.14×10 ⁻³	This work
3	LC-N-8.9 (N-doped layer carbon with 8.9% nitrogen)	80°C, H ₂ O solvent, 3 mmol TBHP, 0.5 mmol substrate, 10 mg catalysts, 24h	98	91	4.08×10 ⁻³	Ref. ¹
4	NGG-4-900 (N-doped graphene gel)	80°C, H₂O solvent, 500 μL TBHP, 0.5 mmol substrate, 10 mg catalysts, 12h	99	99	4.13×10 ⁻³	Ref. ²
5	NMC (N-doped mesoporou s carbon)	80°C, H ₂ O solvent, 3 mmol TBHP, 1 mmol substrate, 10 mg catalysts, 24h	88	60	3.67×10 ⁻³	Ref. ³
6	NOMC-800 (N-doped mesoporou s carbon)	80°C, H ₂ O solvent, 3 mmol TBHP, 1 mmol substrate, 50 mg catalysts, 12h	63	84	1.06×10 ⁻³	Ref. ⁴

7	3/3-DIRA- 900					
	(3D N-		83	93		
	doped	100°C, TBHP in 3 mL substrate,			1 71×10 ⁻²	Ref ⁵
,	meso/micro	100 mg catalysts, 12h			1.71~10	NCI.
	porous					
	carbon					
	beads)					
	PDNSC-800		99	99	4.95×10 ⁻³	Ref. ⁶
	(Polymer-	80°C H ₂ O solvent 500 µl TBHP				
8	derived N,S	1 0 mmol substrate				
U	co-doped	20 mg catalysts 10h				
	carbon					
	catalysts)					
9	NPS-HCS					
	(N,P,S co-	80°C H ₂ O solvent 500 µl TBHP	99	99	8.25×10 ⁻³	Ref. ⁷
	doped	10 mmol substrate				
	hollow	10 mg catalysts 12h				
	carbon					
	shells)					

amount of the converted substrate (mol)

^a Turnover frequency (TOF):

TOF= mass of catalyst (g) β reaction time (h)

References

- Y. Gao, G. Hu, J. Zhong, Z. Shi, Y. Zhu, D. S. Su, J. Wang, X. Bao and D. Ma, *Angew. Chem. Int. Ed.*, 2013, 52, 2109-2113.
- 2. A. Cai, H. He, Q. Zhang, Y. Xu, X. Li, F. Zhang, X. Fan, W. Peng and Y. Li, *ACS Appl. Mater. Interfaces*, 2021, **13**, 13087-13096.
- 3. A. Chen, Y. Yu, R. Wang, Y. Yu, W. Zang, P. Tang and D. Ma, *Nanoscale*, 2015, **7**, 14684-14690.
- 4. J. Wang, H. Liu, X. Gu, H. Wang and D. S. Su, Chem. Commun., 2014, 50, 9182-9184.
- 5. Z. Wang, Y. Jiang, H. Huo, Y. Hu, X. Xu, P. Wang, Y. Yang and K. Lin, *Carbon*, 2020, **158**, 226-237.
- 6. X. Hu, X. Sun, Q. Song, Y. Zhu, Y. Long and Z. Dong, *Green Chem.*, 2020, **22**, 742-752.
- 7. S. Yang, L. Peng, P. Huang, X. Wang, Y. Sun, C. Cao and W. Song, *Angew. Chem. Int. Ed.*, 2016, **55**, 4016-4020.