Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

Hydrodehalogenation of aryl halides catalyzed by cost-effective

bimetallic nanoparticles under mild conditions

Jiazhu Deng, Teng Xue,* Haihong Wu,*and Peng Wu

Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of

Chemistry and Molecular Engineering, East China Normal University, Shanghai

200062, China

E-mail: hhwu@chem.ecnu.edu.cn

1. Catalyst Characterization and optimization experiments:

Sample	Ni (wt%)	Ag (wt%)	Molar ratio
Fresh	90.2	7.8	95.5:4.5
After 5 cycles	81.5	7.5	95.2:4.8

Table S1 elemental composition of the catalysts

,CI ,CI				
$Br \longrightarrow OH \xrightarrow{TBAB, H_2O} OH + OH$				
Entry	T /°C	Yie 2-CP	ld/% Phenol	
1	Fe	6	-	
2	Cu	1	-	
3	Со	28	12	
4	Ni	33	65	
5	Ni ₉₀ Fe ₁₀	51	36	
6	Ni ₉₀ Co ₁₀	44	49	
7	Ni ₉₀ Cu ₁₀	53	42	
8	Ni _{97.5} Ag _{2.5}	19	80	
9	Ni ₉₅ Ag ₅	-	99	
10	Ni ₉₀ Ag ₁₀	5	94	
11	Ni ₈₀ Ag ₂₀	19	76	
12	Ag	57	5	
13	SDBS	-	-	

Table S2 Screening of the catalysts

Reaction conditions: 4-bromo-2-chlorophenol (1 mmol), catalyst (50 mg), H_2O (3 mL), TBAB 1 equiv, 60 °C for 5 h. Yield determined by GC.

Table S3 Products of Substrate 31-33 without adding K_3PO_4

Reaction conditions: Substrate 31-33 (1 mmol), Ni₉₅Ag₅ (50 mg), H₂O (3 mL), TBAB 1 equiv, 60 °C for 10-12 h. Yield determined by GC.

Figure S1 ¹H-NMR of the product phenol use H₂O and D₂O as

solvent

 D_2O

2. Characterization data of products:

N,*N*-*Dimethylaniline*

```
<sup>1</sup>H-NMR (500 MHz, CD<sub>3</sub>CN): δ 7.26-7.21 (m, 2H), 6.80-6.77 (d, 2H), 6.72-6.68 (t, 1H), 2.93 (s, 6H); <sup>13</sup>C-NMR (125 MHz, CD<sub>3</sub>CN): δ 151.0, 128.9, 116.3, 112.5, 39.8.
```

Benzamide

CONH₂

¹H-NMR (500 MHz, CDCl₃): δ 7.86 (d, J = 8.1 Hz, 2H), 7.58 (t, J = 7.5 Hz, 1H), 7.49 (t, J = 7.4 Hz, 2H), 6.25 (br, 2H); ¹³C-NMR (125 MHz, CDCl₃): δ 169.7, 130.0, 132.3, 128.7, 127.5.

Benzoic acid

¹H-NMR (500 MHz, CDCl₃): δ 8.18 (d, J = 7.5 Hz, 2H), 7.67 (t, J = 7.4 Hz, 1H), 7.54 (t, J = 7.6 Hz, 2H); ¹³C-NMR (125 MHz, CDCl₃): δ 172.4, 133.9, 130.3, 129.3, 128.5.

Naphthalene

¹H-NMR (500 MHz, CDCl₃): *δ* 7.92-7.89 (m, 4H), 7.55-7.52 (m, 4H); ¹³C-NMR (125 MHz, CDCl₃): *δ* 133.5, 127.9, 125.7.

2-Methoxynaphthalene

OMe

¹H-NMR (500 MHz, CDCl₃): δ 7.84-7.79 (m, 3H), 7.51 (ddd, *J* = 8.2, 6.9, 1.4 Hz, 1H), 7.39 (ddd, *J* = 8.0, 6.9, 1.2 Hz, 1H), 7.23-7.20 (m, 2H), 3.98 (s, 3H); ¹³C-NMR

(125 MHz, CDCl₃): δ 157.6, 134.6, 129.4, 129.0, 127.7, 126.8, 126.4, 123.6, 118.8,

105.8, 55.3. The obtained spectroscopic data were in agreement with the reported data for this compound¹.

Biphenyl

¹H-NMR (500 MHz, CDCl₃): *δ* 7.67-7.65 (m, 4H), 7.52-7.49 (m, 4H), 7.43-7.39 (m, 2H); ¹³C-NMR (125 MHz, CDCl₃): *δ* 141.3, 128.8, 127.3, 127.2.

Diphenyl ether

¹H-NMR (500 MHz, CDCl₃): δ 7.39 (t, J = 8.0 Hz, 4H), 7.16 (t, J = 7.4 Hz, 2H), 7.07 (t, J = 7.8 Hz, 4H); ¹³C-NMR (125 MHz, CDCl₃): δ 157.3, 129.8, 123.3, 118.9.

Carbazole

¹H-NMR (500 MHz, DMSO- d_6): δ 11.26 (s, 1H), 8.11 (d, J = 7.6 Hz, 2H), 7.50 (d, J = 8.1 Hz, 2H), 7.39 (ddd, J = 8.2, 7.0, 1.2 Hz, 2H), 7.16 (ddd, J = 7.9, 7.0, 1.1 Hz, 2H); ¹³C-NMR (125 MHz, DMSO- d_6): δ 140.2, 126.0, 122.8, 120.6, 118.9, 111.4. The obtained spectroscopic data were in agreement with the reported data for this compound².

Phenoxyacetic acid

¹H-NMR (500 MHz, CDCl₃): δ 7.36 (t, J = 8.0 Hz, 2H), 7.07 (t, J = 7.4 Hz, 1H), 6.98 (d, J = 8.0 Hz, 2H), 4.73 (s, 2H); ¹³C-NMR (125 MHz, CDCl₃): δ 172.50, 157.33, 129.75, 122.21, 114.68, 64.84. The obtained spectroscopic data were in agreement with the reported data for this compound³.

2-Phenoxyphenol

¹H-NMR (500 MHz, CDCl₃): δ 7.39 (t, 8.0 Hz, 2H), 7.17 (t, 7.4 Hz, 1H), 7.10-7.06 (m, 4H), 6.94-6.87 (m, 2H), 5.61 (s, 1H); ¹³C-NMR (125 MHz, CDCl₃): δ 156.8, 147.5, 143.5, 129.9, 124.8, 123.6, 120.7, 118.9, 118.0, 116.2. The obtained spectroscopic data were in agreement with the reported data for this compound⁴.

Reference:

- D. Y. Ong, C. Tejo, K. Xu, H. Hirao and S. Chiba, *Angew. Chem. Int. Ed.*, 2017, 56, 1840-1844.
- T. V. Nykaza, A. Ramirez, T. S. Harrison, M. R. Luzung and A. T. Radosevich, J. Am. Chem. Soc., 2018, 140, 3103-3113.
- M. Rafiee, M. Alherech, S. D. Karlen and S. S. Stahl, *J Am Chem Soc*, 2019, 141, 15266-15276.
- W. Li, G. L. Gao, Y. Gao, C. Yang and W. J. Xia, *Chem. Commun.*, 2017, 53, 5291.

Spectra of N, N-Dimethylaniline

Spectra of Benzamide

¹H-NMR

Spectra of Benzoic acid

¹H-NMR

Spectra of Naphthalene

¹H-NMR

Spectra of 2-Methoxynaphthalene

Spectra of Biphenyl

Spectra of Diphenyl ether

¹H-NMR

Spectra of Carbazole

Spectra of Phenoxyacetic acid

¹H-NMR

Spectra of 2-Phenoxyphenol

¹H-NMR

