Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information - A

Ugi and Passerini reactions enable the incorporation of ΔAA into *N*-alkylated peptides and depsipeptides

Odette Concepcion, ^a Francisco J. Peñaloza, ^a Jhon Jairo Lopez, ^a Gustavo Cabrera-Barjas, ^b Claudio A. Jiménez, ^a Márcio W. Paixão*^c and Alexander F. de la Torre *^a

- [a] Alexander F. de la Torre, Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile.
 Address: Edmundo Larenas 234-interior-Casilla 160-C-Concepción, Chile.
 Fax: (+56)412203317 – 412204258; E-mail: afernandezd@udec.cl
- [b] Universidad de Concepción, Unidad de Desarrollo Tecnológico (UDT), Coronel, Chile
- [c] Center of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos – UFSCar, Rodovia Washington Luís, km 235 - SP-310 - São Carlos - São Paulo - Brazil -13565-905. <u>mwpaixao@ufscar.br</u>

Table of contents

FIGURE 1. ¹ H and ¹³ C NMR spectra in CDCl ₃ of 1a .	6
FIGURE 2- HRMS (ESI-FT-ICR) m/z spectra of 1a .	7
FIGURE 3. ¹ H and ¹³ C NMR spectra in CDCl ₃ of 1b	9
FIGURE 4. 400 MHz nuclear Overhauser effect (NOE) correlation spectrum of <i>cis</i> -	
conformer 1b indicating the NOE interaction between the Me group at 1.48 ppm with Benz	zyl
CH ₂ (4.41 ppm) and with α-H at 6.65ppm	.10
FIGURE 5- HRMS (ESI-FT-ICR) m/z spectra of 1b.	.11
FIGURE 6. ¹ H and ¹³ C NMR spectra in CDCl ₃ of 1c	.13
FIGURE 7- HRMS (ESI-FT-ICR) m/z spectra of 1c	.14
FIGURE 8. ¹ H and ¹³ C NMR spectra in CDCl ₃ of 1d	.16
FIGURE 9- HRMS (ESI-FT-ICR) m/z spectra of 1d.	.17
FIGURE 10. ¹ H and ¹³ C NMR spectra in CDCl ₃ of 1e	.19
FIGURE 11- HRMS (ESI-FT-ICR) m/z spectra of 1e	.20
FIGURE 12. ¹ H and ¹³ C NMR spectra in CDCl ₃ of 1f	.22
FIGURE 13- HRMS (ESI-FT-ICR) m/z spectra of 1f.	.23
FIGURE 14. ¹ H and ¹³ C NMR spectra in CDCl ₃ of 1 g.	.25
FIGURE 15- HRMS (ESI-FT-ICR) m/z spectra of 1g.	.26
FIGURE 16. ¹ H and ¹³ C NMR spectra in CDCl ₃ of <i>2a</i> and <i>3a</i>	.28
FIGURE 17- HRMS (ESI-FT-ICR) m/z spectra of 2a and 3a	.29
FIGURE 18. ¹ H and ¹³ C NMR spectra in CDCl ₃ of <i>2b</i> and <i>3b</i>	.31
FIGURE 19. DEPT 135° and DEPT 90° spectra in CDCl ₃ of <i>2b</i> and <i>3b</i>	.32
FIGURE 20. COSY and HSQC spectra in CDCl ₃ of <i>2b</i> and <i>3b</i>	.33
FIGURE 21. NOESY spectra in CDCl ₃ of <i>2b</i> and <i>3b</i>	.34
FIGURE 22- HRMS (ESI-FT-ICR) m/z spectra of 2b and 3b	.35
FIGURE 23. ¹ H and ¹³ C NMR spectra in CDCl ₃ of <i>2c</i> and <i>3c</i>	.37
FIGURE 24- HRMS (ESI-FT-ICR) m/z spectra of 2c and 3c.	.38
FIGURE 25. ¹ H and ¹³ C NMR spectra in CDCl ₃ of <i>2d</i> and <i>3d</i>	.40
FIGURE 26- HRMS (ESI-FT-ICR) m/z spectra of 2d and 3d.	.41
FIGURE 27. ¹ H and ¹³ C NMR spectra in CDCl ₃ of <i>2e</i> and <i>3e</i>	.43
FIGURE 28- HRMS (ESI-FT-ICR) m/z spectra of 2e and 3e.	.44
FIGURE 29. ¹ H and ¹³ C NMR spectra in CDCl ₃ of <i>2f</i> and <i>3f</i>	.46
FIGURE 30- HRMS (ESI-FT-ICR) m/z spectra of 2f and 3f.	.47
FIGURE 31. ¹ H and ¹³ C NMR spectra in CDCl ₃ of <i>3g</i>	.49
FIGURE 32- HRMS (ESI-FT-ICR) m/z spectra of 3g .	.50
FIGURE 33. ¹ H and ¹³ C NMR spectra in CDCl ₃ of <i>3h</i>	.52
FIGURE 34- HRMS (ESI-FT-ICR) m/z spectra of 3h	.53
FIGURE 35. ¹ H and ¹³ C NMR spectra in CDCl ₃ of <i>3i</i> .	.55
FIGURE 36- HRMS (ESI-FT-ICR) m/z spectra of 3i .	.56
FIGURE 37. ¹ H and ¹³ C NMR spectra in CDCl ₃ of 3 <i>j</i>	.58
FIGURE 38- HRMS (ESI-FT-ICR) m/z spectra of 3j	.59

Experimental Section

General

All solvents were dried and distilled before use by standard procedures and reagents were of the highest commercially available grade purchased from Sigma-Aldrich, Oakwood Chemicals, and Strem Chemicals and used as received or purified according to the procedures outlined in Purification of Common Laboratory Chemicals.¹ Glassware used was dried in oven or flame dried under vacuum and cooled under an inert atmosphere. Flash Column chromatography was performed using silica gel 60 (230-400 mesh), and analytical thin-layer chromatography (TLC) was performed using silica gel aluminum sheets. Compounds were visualized on TLC by UV-light, KMnO₄, I₂, H₃[P(Mo₃O₁₀)₄] x H₂O (PMA) and Vanillin. Yields refer to chromatographically and spectroscopically pure compounds unless otherwise noted. ¹H NMR and ¹³C NMR spectra were recorded at 400 and 100 MHz, respectively. Chemical shifts (δ) are reported in parts per million relative to the residual solvent signals,² and coupling constants (J) are reported in hertz. the following abbreviations indicate the multiplicity of each signal: (s), singlet; (bs), broad singlet; (d), doublet; (t), triplet; (q), quartet; (p), pentet; (m), multiplet; (dd), doublet of doublets; (dt), doublet of triplets; (dq), doublet of quartet; (dp), doublet of pentet; (td), triplet of doublets; (ddt), doublet of doublet of triplets; (dtd), doublet of triplet of doublets; (ddd), doublet of doublet of doublets; (dddd), doublet of doublet of doublets; (heptd), heptet of doublets. High-resolution ESI mass spectra were obtained from a quadrupole-time-of-flight mass spectrometer equipped with an atmospheric pressure electrospray ion source (Compact ESI-QTOF, Bruker Daltonik GmbH, Bremen, Germany).

General organocatalytic procedure to the synthesis of 2-(phenylselanyl)aldehyde ³:

In a standard vial equipped with a Teflon-coated magnetic stir bar, piperidine (2 mmol, 20 mol%) and acetic acid (2 mmol, 20 mol%) were dissolved in 20 mL of CHCl₃ (0.5 M). After adding aldehyde (10 mmol, 1 equiv.), the solution was stirred for 10 minutes at 25°C. Then *N*-(Phenylseleno)-phthalimide (10 mmol, 1 equiv.) was added in one portion, the vial was capped with a rubber stopper and stirring was continued for the specific time (generally 3h). After completion (monitored by TLC) the mixture was filtered, and the volatiles were concentrated under reduced pressure, and the resulting crude product was purified by flash column chromatography.

General Ugi-4CR/oxidative-elimination procedure (A):

The 2-(phenylselanyl)aldehyde (0.2 mmol, 1.0 equiv.), the amine (0.2 mmol, 1.0 equiv.), the carboxylic acid (0.2 mmol, 1.0 equiv.) and the isocyanide (0.2 mmol, 1.0 equiv.) were dissolved in 2-MeTHF (5 mL) and stirred at 25 °C for 24 h. TLC monitored the reaction progress until the consumption of the starting material. After completion, aqueous NaIO₄(171 mg, 4 equiv., 0.2 M) was added dropwise to the reaction, and the mixture was stirred at rt until the reaction was finished as determined by the disappearance of starting material on TLC (45 min to 12 h). The reaction mixture was then diluted with CH_2Cl_2 and washed with water, saturated NaHCO₃, water and brine. The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo. The volatiles were concentrated under reduced pressure, and the resulting crude product was purified by flash column chromatography.

General P-3CR/oxidative elimination procedure (B):

The 2-(phenylselanyl)aldehyde (0.2 mmol, 1.0 equiv.), the carboxylic acid (0.2 mmol, 1.0 equiv.) and the isocyanide (0.2 mmol, 1.0 equiv.) were dissolved in 2-MeTHF (5 mL) and stirred at 25 °C for 24 h. TLC monitored the reaction progress until the consumption of the starting material. After completion, aqueous NaIO₄ (171 mg, 4 equiv., 0.2 M) was added dropwise to the reaction, and the mixture was stirred at rt until the reaction was finished as determined by the disappearance of starting material on TLC (45 min to 12 h). The reaction mixture was then diluted with CH_2Cl_2 and washed with water, saturated NaHCO₃, water and brine. The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo. The volatiles were concentrated under reduced pressure, and the resulting crude product was purified by flash column chromatography.

2-(phenylselanyl)propanal (43 mg, 0.2 mmol, 1 equiv.), benzylamine (22 μ L, 0.2 mmol), acetic acid (11 μ L, 0.2 mmol), and terbutyl isocyanide (23 μ L, 0.2 mmol) were dissolved in 1mL of THF and reacted according to the general Ugi-4CR/oxidative-elimination procedure (A). Flash column chromatography purification (Hex/EtOAc from 4:1 to 1:1 v/v) afforded compound *1a* (42 mg, 73%) as a yellow sticky oil. $R_{\rm f}$ = 0.55 (Hex/EtOAc 1:1 v/v). A mixture of rotamers in a 3:2 ratio was observed by NMR analysis.

¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.28 (m, 5H), 7.00, 5.93 (2xq, *J* = 7.4 Hz, 1H), 5.26, 4.02 (2xd, *J* = 13.7 Hz, 2H), 4.71 (s, 1H, NH), 2.13,1.64 (2xd, *J* = 7.5 Hz, 3H), 2.04,1.94 (2xs, 3H), 1.13,1.06 (2xs, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 171.3, 171.2, 163.6, 162.6, 137.8, 137.3, 137.2, 136.0, 134.5, 130.0, 129.6, 129.1, 129.0, 128.4, 128.1, 52.5, 51.5, 51.1, 51.0, 28.4, 28.2, 22.3, 21.9, 14.6, 13.4.

HRMS (ESI-FT-ICR) *m/z*: 311.1735 [M+Na]⁺; calcd. for C₁₇H₂₄N₂NaO₂: 311.1735.

m/z

0.25

(Z)-N-benzyl-N-(1-(tert-butylamino)-1-oxobut-2-en-2-yl)benzamide (1b)

2-(phenylselanyl)propanal (43 mg, 0.2 mmol, 1 equiv.), benzylamine (22 μ L, 0.2 mmol), benzoic acid (24 mg, 0.2 mmol), and terbutyl isocyanide (23 μ L, 0.2 mmol) were dissolved in 1mL of 2-MeTHF and reacted according to the general Ugi-4CR/oxidative-elimination procedure (A). Flash column chromatography purification (Hex/EtOAc from 4:1 to 1:1 v/v) afforded compound *1b* (56 mg, 80%) as a yellow sticky oil. R_f = 0.55 (Hex/EtOAc 1:1 v/v). A mixture of rotamers in a 9:1 ratio was observed by NMR analysis.

¹H NMR (400 MHz, CDCl₃) δ 7.47 (m, 5H), 7.39 – 7.30 (m, 5H), 6.64 (q, J = 7.2 Hz, 1H), 5.41 (bs, 1H, NH), 5.21 (d, J = 13.7 Hz, 1H), 4.43 (d, J = 12.7 Hz, 1H), 1.47 (d, J = 5.5 Hz, 3H), 1.06 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 171.5, 162.8, 137.5, 136.9, 135.5, 133.3, 131.6, 130.6, 130.0, 129.0, 128.8, 128.6, 128.4, 128.0, 127.7, 127.4, 127.0, 52.2, 51.1, 44.2, 28.2, 13.8.

HRMS (ESI-FT-ICR) m/z: 351.2073 [M+H]⁺; calcd. for C₂₂H₂₇N₂O₂: 351.2073.

FIGURE 3. 1 H and 13 C NMR spectra in CDCl₃ of **1b**.

FIGURE 4. 400 MHz nuclear Overhauser effect (NOE) correlation spectrum of *cis*-conformer 1b indicating the NOE interaction between the Me group at 1.48 ppm with Benzyl CH₂ (4.41 ppm) and with α -H at 6.65ppm.

Analysis Info

Acquisition Date 22-11-2021 16:40:47

Analysis Name	E:\3. Servicios_tecnicos\2021.11.16_Alexander			
	Fernandez\2021.11.19_AFernandez_servicio\DirectInfusion_F	21_41.d		
Method	MS_method_DirectInfusion_pos_AP.m	Operator	Demo User	
Sample Name	DirectInfusion_PI_41	Instrument	compact	8255754.20175
Comment				

Acquisition Parameter

+MS, 0.9min #55

+MS2(351.2073), 10.0-25.0eV, 0.9min #56

FIGURE 5- HRMS (ESI-FT-ICR) m/z spectra of 1b.

(Z)-N-benzyl-N-(1-(tert-butylamino)-1-oxobut-2-en-2-yl)hex-5-ynamide (1c)

2-(phenylselanyl)propanal (43 mg, 0.2 mmol, 1 equiv.), benzylamine (22 μ L, 0.2 mmol), hex-5-ynoic acid (22 μ L, 0.2 mmol), and terbutyl isocyanide (23 μ L, 0.2 mmol) were dissolved in 1mL of 2-MeTHF and reacted according to the general Ugi-4CR/oxidative elimination procedure (A). Flash column chromatography purification (Hex/EtOAc from 4:1 to 1:1 v/v) afforded compound *Ic* (58 mg, 85%) as a light-yellow sticky oil. $R_f = 0.50$ (Hex/EtOAc 1:1 v/v). A mixture of rotamers in a 3:2 ratio was observed by NMR analysis.

¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.28 (m, 5H), 7.03, 5.92 (2xq, J = 7.3 Hz, 1H), 5.29 (d, J = 13.6 Hz, 1H), 5.26, 470 (2xbs, 1H, NH), 3.99 (d, J = 13.6 Hz, 1H), 2.39 (t, J = 7.2 Hz, 1H), 2.30 – 2.20 (m, 3H), 2.15, 1.65 (2xd, J = 7.4 Hz, 3H), 1.93 – 1.82 (m, 3H), 1.13, 1.05 (2xs, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 173.1, 172.9, 163.6, 162.6, 138.5, 137.3, 137.3, 136.6, 135.2, 134.7, 130.0, 129.6, 129.1, 129.0, 128.4, 128.1, 83.7, 83.6, 69.2, 69.1, 52.7, 51.7, 51.1, 51.0, 32.5, 32.1, 28.4, 28.1, 24.0, 23.7, 17.9, 14.7, 13.5.

HRMS (ESI-FT-ICR) m/z: 341.2220 [M+H]⁺; calcd. for C₂₁H₂₉N₂O₂: 341.2229.

FIGURE 6. ¹H and ¹³C NMR spectra in CDCl₃ of **1c**.

Analysis Info				Acquisition Date 2	2-11-2021 16:	46:12	
Analysis Name	E:\3. Servicios_tecnicos\2021.11.16_Alexander Fernandez\2021.11.19_AFernandez_servicio\DirectInfusion_PI_43.d						
Method Sample Name Comment	MS_method_DirectInfusion_PI_	tInfusion_pos_AP.m 43		Operator Demo Instrument compa	Jser ct 8255	5754.20175	
Acquisition Par	ameter						
Source Type Focus Scan Begin Scan End	ESI Active 50 m/z 1000 m/z	lon Polarity Set Capillary Set End Plate Offset Set Charging Voltage Set Corona	Positive 4500 V -500 V 2000 V 0 nA	Set Nebuliz Set Dry He Set Dry Ga Set Divert \ Set APCI H	er 0.0 ater 20 s 6.0 /alve W leater 0	∂ Bar I0 °C D I/min aste °C	
Intens. x10 ⁶ 1.5 1.0	~~~~	~~~~~~		~			
0.5	0.2	0.4	0.6	0.8	1.0	Time [min]	

FIGURE 7- HRMS (ESI-FT-ICR) m/z spectra of 1c.

Ethyl (Z)-3-(benzyl(1-(tert-butylamino)-1-oxobut-2-en-2-yl)amino)-3-oxopropanoate (1d)

2-(phenylselanyl)propanal (43 mg, 0.2 mmol, 1 equiv.), benzylamine (22 μ L, 0.2 mmol), 3ethoxy-3-oxopropanoic acid (24 μ L, 0.2 mmol), and terbutyl isocyanide (23 μ L, 0.2 mmol) were dissolved in 1mL of 2-MeTHF and reacted according to the general Ugi-4CR/oxidative elimination procedure (A). Flash column chromatography purification (Hex/EtOAc from 4:1 to 1:1 v/v) afforded compound *1d* (55 mg, 76%) as a colorless sticky oil. R_f = 0.35 (Hex/EtOAc 1:1 v/v). A mixture of rotamers in a 1:1 ratio was observed by NMR analysis.

¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.38 (m, 1H), 7.32 (m, 4H), 7.01, 5.79 (2xq, J = 7.3 Hz, 1H), 5.84, 5.73 (2xbs, 1H, NH), 5.02 (d, J = 13.7 Hz, 1H), 4.69, 3.45 (2xs, 2H), 4.31 (d, J = 13.6 Hz, 1H), 4.22 – 4.14 (m, 2H), 3.35 (d, J = 15.9 Hz, 1H), 3.22 (d, J = 15.8 Hz, 1H), 2.07, 1.54 (2xd, J = 7.2 Hz, 3H), 1.33 (d, J = 4.8 Hz, 2H), 1.27 (2^xt, J = 7.1 Hz, 3H), 1.21, 1.12 (2xs, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 168.3, 167.9, 167.0, 166.9, 163.1, 162.2, 138.8, 136.6, 136.5, 135.6, 130.0, 129.5, 129.0, 128.8, 128.7, 128.4, 128.1, 127.6, 61.7, 51.9, 51.5, 51.4, 51.3, 41.1, 40.5, 29.6, 28.4, 28.1, 14.6, 14.2, 13.4.

HRMS (ESI-FT-ICR) m/z: 361.2125 [M+H]+; calcd. for C₂₀H₂₉N₂O₄: 361.2127.

FIGURE 8. 1 H and 13 C NMR spectra in CDCl₃ of 1d.

Analysis Info

Acquisition Date 22-11-2021 17:00:16

Analysis Name	E:\3. Servicios_teo Fernandez\2021.1	cnicos\2021.11.16_Alexande 1.19_AFernandez_servicio\[r DirectInfusion	_PI_45.d		
Method Sample Name Comment	MS_method_DirectInfusion_PI_	ctInfusion_pos_AP.m 45		Operator Instrument	Demo User compact	8255754.20175
Acquisition Par	ameter					
Source Type	ESI	Ion Polarity	Positive	S	et Nebulizer	0.6 Bar
Focus	Active	Set Capillary	4500 V	S	et Dry Heater	200 °C
Scan Begin	50 m/z	Set End Plate Offset	-500 V	S	et Dry Gas	6.0 l/min
Scan End	1000 m/z	Set Charging Voltage	2000 V	S	et Divert Valve	Waste
		Set Corona	0 nA	S	et APCI Heater	0°C

FIGURE 9- HRMS (ESI-FT-ICR) m/z spectra of 1d.

tert-butyl (Z)-(11-(benzyl(1-(tert-butylamino)-1-oxobut-2-en-2-yl)amino)-11oxoundecyl)carbamate (1e)

2-(phenylselanyl)propanal (43 mg, 0.2 mmol, 1 equiv.), benzylamine (22 µL, 0.2 mmol), 11-((tert-butoxycarbonyl)amino)undecanoic acid (60 mg, 0.2 mmol), and terbutyl isocyanide (23 µL, 0.2 mmol) were dissolved in 1mL of 2-MeTHF and reacted according to the general Ugi-4CR/oxidative elimination procedure (A). Flash column chromatography purification (Hex/EtOAc from 4:1 to 1:1 v/v) afforded compound *Ie* (69 mg, 65%) as a colorless sticky oil. $R_{\rm f}$ = 0.55 (Hex/EtOAc 1:1 v/v). A mixture of rotamers in a 1:0.5 ratio was observed by NMR analysis.

¹H NMR (400 MHz, CDCl₃) δ 7.40 (m, 2H), 7.33 (m, 3H), 7.01, 5.91 (2xq, J = 7.4 Hz, 1H), 5.33 (d, J = 13.6 Hz, 1H), 5.25 (s, 1H), 4.71 (s, 1H), 3.95 (d, J = 13.6 Hz, 1H), 3.09 (m, 2H), 2.22 (t, J = 7.4 Hz, 1H), 2.15, 1.65 (2xd, J = 7.2 Hz, 3H), 1.65 – 1.55 (m, 1H), 1.42, 1.27 (2xm, 22H), 1.11, 1.03 (2xs, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 174.0, 173.9, 163.8, 162.8, 156.1, 138.4, 137.5, 137.5, 136.9, 135.4, 134.4, 130.0, 129.6, 129.2, 129.0, 128.3, 128.1, 79.1, 52.8, 51.7, 51.1, 51.0, 40.7, 34.2, 33.7, 30.1, 29.5, 29.5, 29.3, 28.5, 28.4, 28.1, 26.9, 25.4, 25.2, 14.7, 13.6.

HRMS (ESI-FT-ICR) m/z: 530.3953 [M+H]⁺; calcd. for C₃₁H₅₂N₃O₄: 530.3958.

FIGURE 10. ¹H and ¹³C NMR spectra in CDCl₃ of 1e.

FIGURE 11- HRMS (ESI-FT-ICR) m/z spectra of 1e.

(Z)-N-benzyl-N-(1-(tert-butylamino)-1-oxobut-2-en-2-yl)isoquinoline-1-carboxamide (1f)

2-(phenylselanyl)propanal (43 mg, 0.2 mmol, 1 equiv.), benzylamine (22 μ L, 0.2 mmol), isoquinoline-1-carboxylic acid (35 mg, 0.2 mmol), and terbutyl isocyanide (23 μ L, 0.2 mmol) were dissolved in 1mL of 2-MeTHF and reacted according to the general Ugi-4CR/oxidative elimination procedure (A). Flash column chromatography purification (Hex/EtOAc from 4:1 to 1:1 v/v) afforded compound *If* (57 mg, 71%) as a colorless sticky oil. R_f = 0.30 (Hex/EtOAc 1:1 v/v). A mixture of rotamers in a 1:1 ratio was observed by NMR analysis.

¹H NMR (400 MHz, CDCl₃) δ 8.31 (dd, J = 14.4, 5.7 Hz, 2H), 8.20 (d, J = 7.9 Hz, 1H), 7.83 (dd, J = 11.7, 8.3 Hz, 2H), 7.75 – 7.64 (m, 5H), 7.60 – 7.53 (m, 5H), 7.39 – 7.29 (m, 7H), 6.26 (q, J = 7.2 Hz, 1H), 5.12 (d, J = 13.7 Hz, 1H), 4.89 (q, J = 7.2 Hz, 1H), 4.62 (d, J = 13.7 Hz, 1H), 1.42 (s, 9H), 1.34 (s, 9H), 1.27 (d, J = 5.6 Hz, 3H), 0.94 (d, J = 5.9 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.7, 167.8, 164.3, 164.3, 155.3, 154.0, 140.2, 140.0, 137.2, 137.2, 136.7, 136.6, 136.5, 136.4, 136.1, 133.7, 131.5, 131.1, 130.7, 130.3, 129.6, 129.0, 128.7, 128.6, 128.5, 128.5, 128.4, 128.1, 128.0, 127.7, 127.2, 127.1, 126.5, 126.3, 125.5, 122.8, 122.5, 122.3, 51.2, 51.1, 51.0, 50.0, 28.8, 28.6, 13.5, 13.3.

HRMS (ESI-FT-ICR) *m/z*: 402.2169 [M+H]⁺; calcd. for C₂₅H₂₈N₃O₂: 402.2182.

Analysis Info

Acquisition Date 22-11-2021 17:03:40

Analysis Name	E:\3. Servicios_tecnicos\2021.11.16_Alexander Fernandez\2021.11.19_AFernandez_servicio\DirectInfusion_F	PI_46.d		
Method Sample Name Comment	MS_method_DirectInfusion_pos_AP.m DirectInfusion_PI_46	Operator Instrument	Demo User compact	8255754.20175

Acquisition Parameter

+MS, 0.6min #36

FIGURE 13- HRMS (ESI-FT-ICR) m/z spectra of 1f.

(Z)-2-(N-benzylacetamido)-N-(tert-butyl)-4-phenylbut-2-enamide (1g)

3-phenyl-2-(phenylselanyl)propanal (58 mg, 0.2 mmol, 1 equiv.), benzylamine (22 μ L, 0.2 mmol), acetic acid (11 μ L, 0.2 mmol), and terbutyl isocyanide (23 μ L, 0.2 mmol) were dissolved in 1mL of 2-MeTHF and reacted according to the general Ugi-4CR/oxidative-elimination procedure (A). Flash column chromatography purification (Hex/EtOAc from 4:1 to 1:1 v/v) afforded compound *1*g (57 mg, 71%) as a colorless sticky oil. *R*_f= 0.30 (Hex/EtOAc 1:1 v/v). A mixture of rotamers in a 1:1 ratio was observed by NMR analysis.

¹H NMR (400 MHz, CDCl₃) δ 7.42 (m, 2H), 7.36 – 7.25 (m, 13H), 7.20 – 7.06 (m, 5H), 5.97 (t, J = 7.9 Hz, 1H), 5.41 (d, J = 13.8 Hz, 1H), 5.29 (bs, 2H, NH), 4.04 (d, J = 13.7 Hz, 1H), 4.00 (d, J = 7.8 Hz, 2H), 3.38 (d, J = 7.8 Hz, 2H), 2.07 (s, 3H), 1.97 (s, 3H), 1.16 (s, 9H), 1.06 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 168.7, 167.8, 164.3, 164.3, 155.3, 154.0, 140.2, 140.0, 137.2, 137.2, 136.7, 136.6, 136.5, 136.4, 136.1, 133.7, 131.5, 131.1, 130.7, 130.3, 129.6, 129.0, 128.7, 128.6, 128.5, 128.5, 128.4, 128.1, 128.0, 127.7, 127.2, 127.1, 126.5, 126.3, 125.5, 122.8, 122.5, 122.3, 51.2, 51.1, 51.0, 50.0, 28.8, 28.6, 13.5, 13.3.

HRMS (ESI-FT-ICR) m/z: 365.2237 [M+H]⁺; calcd. for C₂₃H₂₉N₂O₂: 365.2229.

Analysis Info				Acquisition Date 22-11-2	2021 16:20:30
Analysis Name	cnicos\2021.11.16_Alexande 11.19 AFernandez servicio\[11.16_Alexander andez servicio\DirectInfusion PI 25	PI 25.d		
Method MS_method_DirectInfusion_pos_AP.m Sample Name DirectInfusion_PI_25 Comment			Operator Demo User Instrument compact	8255754.20175	
Acquisition Par	ameter				
Source Type Focus Scan Begin Scan End	ESI Active 50 m/z 1000 m/z	lon Polarity Set Capillary Set End Plate Offset Set Charging Voltage Set Corona	Positive 4500 V -500 V 2000 V 0 nA	Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve Set APCI Heater	0.6 Bar 200 °C 6.0 l/min Waste 0 °C
Intens. x10 ⁶ 2.0					
1.5					
0.5	~~~~				
1	0.2	0.4 0.6	0.8	1.0 1.2	Time [min]

+MS2(365.2237), 10.0-25.0eV, 0.5min #26

FIGURE 15- HRMS (ESI-FT-ICR) m/z spectra of 1g.

(Z)-1-(tert-butylamino)-1-oxobut-2-en-2-yl acetate (2a) 1-(tert-butylamino)-1-oxobut-3-en-2-yl acetate (3a)

2-(phenylselanyl)propanal (43 mg, 0.2 mmol, 1 equiv.), acetic acid (11 μ L, 0.2 mmol), and terbutyl isocyanide (23 μ L, 0.2 mmol) were dissolved in 1mL of THF and reacted according to the general P-3CR/oxidative-elimination procedure (B). Flash column chromatography purification (Hex/EtOAc from 4:1 to 1:1 v/v) afforded compounds 2a and 3a (17 mg, 43%) as a yellow sticky oil. $R_f = 0.55$ (Hex/EtOAc 1:1 v/v). A mixture of compounds 2a and 3a in a 1:0.7 ratio was observed by NMR analysis.

¹H NMR (400 MHz, CDCl₃) δ 6.41 (q, J = 7.2 Hz, 1H), 5.95 (ddd, J = 16.9, 10.5, 6.0 Hz, 1H), 5.81 (bs, 1H, NH), 5.70 (bs, 1H), 5.47 (d, J = 6.0 Hz, 1H), 5.39 (d, J = 17.3 Hz, 1H), 5.32 (d, J = 10.5 Hz, 1H), 2.27 (s, 3H), 2.18 (s, 3H), 1.64 (d, J = 7.2 Hz, 3H), 1.37 (s, 9H), 1.36 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 169.1, 167.8, 167.0, 161.2, 142.3, 132.1, 121.2, 118.9, 74.8, 51.5, 51.4, 28.7, 21.0, 20.6, 11.6.

HRMS (ESI-FT-ICR) m/z: 200.1288 [M+H]⁺; calcd. for C₁₀H₁₈NO₃: 200.1287.

FIGURE 16. ¹H and ¹³C NMR spectra in CDCl₃ of *2a* and *3a*.

Analysis Info

Acquisition Date 22-11-2021 17:09:39

Analysis Name	E:\3. Servicios_tecnicos\2021.11.16_Alexander Fernandez\2021.11.19_AFernandez_servicio\DirectInfusion_F	PI_31.d		
Method Sample Name Comment	MS_method_DirectInfusion_pos_AP.m DirectInfusion_PI_31	Operator Instrument	Demo User compact	8255754.20175

FIGURE 17- HRMS (ESI-FT-ICR) m/z spectra of 2a and 3a.

(Z)-1-(tert-butylamino)-1-oxobut-2-en-2-yl benzoate (2b) 1-(tert-butylamino)-1-oxobut-3-en-2-yl benzoate (3b)

2-(phenylselanyl)propanal (43 mg, 0.2 mmol, 1 equiv.), benzoic acid (24 mg, 0.2 mmol), and terbutyl isocyanide (23 μ L, 0.2 mmol) were dissolved in 1mL of THF and reacted according to the general P-3CR/oxidative-elimination procedure (B). Flash column chromatography purification (Hex/EtOAc from 4:1 to 1:1 v/v) afforded compounds 2*b* and 3*b* (28 mg, 54%) as a colorless sticky oil. R_f = 0.50 (Hex/EtOAc 1:1 v/v).

¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, J = 7.2 Hz, 2H), 8.10 (d, J = 7.2 Hz, 2H), 7.69 – 7.60 (m, 2H), 7.55 – 7.47 (m, 4H), 6.59 (q, J = 7.2 Hz, 1H), 6.10 (ddd, J = 16.9, 10.6, 5.7 Hz, 1H), 5.91 (bs, 1H, NH), 5.77 (bs, 1H, NH), 5.75 (d, J = 6.0 Hz, 1H), 5.48 (d, J = 17.3 Hz, 1H), 5.37 (d, J = 10.5 Hz, 1H), 1.68 (d, J = 7.2 Hz, 3H), 1.37 (s, 9H), 1.36 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 167.1, 164.8, 163.6, 161.2, 142.2, 134.1, 133.7, 132.1, 130.3, 129.8, 129.4, 128.9, 128.9, 128.8, 128.8, 128.6, 121.8, 118.7, 76.8, 75.1, 51.5, 51.4, 28.8, 28.7, 11.8.

HRMS (ESI-FT-ICR) m/z: 284.1254 [M+Na]⁺; calcd. for C₁₅H₁₉NNaO₃: 284.1263.

FIGURE 18. ¹H and ¹³C NMR spectra in CDCl₃ of *2b* and *3b*.

FIGURE 19. DEPT 135° and DEPT 90° spectra in CDCl₃ of 2b and 3b.

FIGURE 20. COSY and HSQC spectra in CDCl₃ of 2b and 3b.

FIGURE 21. NOESY spectra in CDCl₃ of *2b* and *3b*.

FIGURE 22- HRMS (ESI-FT-ICR) m/z spectra of 2b and 3b.

(Z)-1-(tert-butylamino)-1-oxobut-2-en-2-yl hex-5-ynoate (2c) 1-(tert-butylamino)-1-oxobut-3-en-2-yl hex-5-ynoate (3c)

2-(phenylselanyl)propanal (43 mg, 0.2 mmol, 1 equiv.), , hex-5-ynoic acid (22 μ L, 0.2 mmol) and terbutyl isocyanide (23 μ L, 0.2 mmol) were dissolved in 1mL of THF and reacted according to the general P-3CR/oxidative-elimination procedure (B). Flash column chromatography purification (Hex/EtOAc from 4:1 to 1:1 v/v) afforded compounds 2*c* and 3c (19 mg, 38%) as a yellow sticky oil. R_f = 0.55 (Hex/EtOAc 1:1 v/v). A mixture of compounds 2*c* and 3*c* in a 0.4:1.0 ratio was observed by NMR analysis.

¹H NMR (400 MHz, CDCl₃) δ 6.41 (q, J = 7.2 Hz, 1H), 5.96 (ddd, J = 16.8, 10.5, 6.0 Hz, 1H), 5.82 (bs, 1H, NH), 5.71 (bs, 1H, NH), 5.49 (d, J = 6.0 Hz, 1H), 5.43 – 5.36 (m, 1H), 5.33 (d, J = 10.5 Hz, 1H), 2.70 (t, J = 7.3 Hz, 2H), 2.60 (td, J = 7.2, 1.4 Hz, 2H), 2.37 – 2.28 (m, 3H), 2.04 – 1.84 (m, 5H), 1.63 (d, J = 7.2 Hz, 3H), 1.37 (s, 9H), 1.36 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 171.2, 170.0, 167.0, 161.2, 142.1, 132.1, 121.2, 118.9, 83.0, 82.8, 74.7, 69.8, 69.6, 51.5, 51.4, 32.8, 32.3, 28.7, 28.7, 23.5, 23.4, 17.8, 17.7, 11.6. HRMS (ESI-FT-ICR) m/z: 274.1410 [M+Na]⁺; calcd. for: C₁₄H₂₁NNaO₃: 274.1419.

FIGURE 23. ¹H and ¹³C NMR spectra in CDCl₃ of *2c* and *3c*.

1.0

Time [min]

Compound Spectrum SmartFormula Report

Analysis Info	D:\Data\AP data\'	2021 11 10 A Fornandoz, co	nuicio\DiroctInt	Acquisition Date 11/	22/2021 5:59:28 PM
Method Sample Name Comment	MS_method_DirectInfusion_PI_	ctInfusion_pos_AP.m 37b	VICIO	Operator Demo Us Instrument compact	ser 8255754.20175
Acquisition Par	ameter				
Source Type Focus Scan Begin Scan End	ESI Active 50 m/z 1000 m/z	lon Polarity Set Capillary Set End Plate Offset Set Charging Voltage Set Corona	Positive 4500 V -500 V 2000 V 0 nA	Set Nebulizer Set Dry Heat Set Dry Gas Set Divert Va Set APCI He:	er 0.6 Bar er 200 °C 6.0 l/min lve Waste ater 0 °C
Intens. x10 ⁶ 6 4 2- 0	~~~~	~~~~~		~	

0.6

0.8

0.2

0.4

(Z)-1-(tert-butylamino)-1-oxobut-2-en-2-yl ethyl malonate (2d) 1-(tert-butylamino)-1-oxobut-3-en-2-yl ethyl malonate (3d)

2-(phenylselanyl)propanal (43 mg, 0.2 mmol, 1 equiv.), 3-ethoxy-3-oxopropanoic acid (24 μ L, 0.2 mmol), and terbutyl isocyanide (23 μ L, 0.2 mmol) were dissolved in 1mL of THF and reacted according to the general P-3CR/oxidative-elimination procedure (B). Flash column chromatography purification (Hex/EtOAc from 4:1 to 1:1 v/v) afforded compounds 2*d* and 3*d* (26 mg, 48%) as a colorless sticky oil. $R_{\rm f}$ = 0.25 (Hex/EtOAc 1:1 v/v). A mixture of compounds 2*d* and 3*d* in a 0.4:1.0 ratio was observed by NMR analysis.

¹H NMR (400 MHz, CDCl₃) δ 6.65 (q, J = 7.1 Hz, 1H), 5.95 (ddd, J = 16.6, 10.5, 5.9 Hz, 1H), 5.60 (d, J = 5.8 Hz, 1H), 5.39 (d, J = 17.2 Hz, 1H), 5.32 (d, J = 10.5 Hz, 1H), 4.27 – 4.21 (m, 2H), 3.56 (d, J = 16.4 Hz, 2H), 3.45 (d, J = 16.3 Hz, 1H), 1.71 (s, 1H), 1.63 (d, J = 7.3 Hz, 1H), 1.37 (s, 18H), 1.33 (dd, J = 8.2, 3.9 Hz, 4H), 1.31 (t, J = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.7, 167.3, 166.8, 164.6, 163.1, 160.4, 141.7, 135.8, 131.7, 129.5, 122.7, 118.7, 77.4, 77.3, 77.1, 76.8, 75.2, 62.4, 62.1, 51.6, 51.5, 41.3, 41.0, 28.6, 28.6, 14.2, 11.7.

HRMS (ESI-FT-ICR) m/z: 272.1501 [M+H]⁺; calcd. for C₁₃H₂₂NO₅: 272.1498.

2d

Compound Spectrum SmartFormula Report

Analysis Info				Acquisition Date 22-1	1-2021 18:04:10
Analysis Name	E:\3. Servicios_teci Fernandez\2021.11	nicos\2021.11.16_Alexande 1.19_AFernandez_servicio\E	r DirectInfusion_PI	_39.d	
Method Sample Name Comment	MS_method_Direc DirectInfusion_PI_;	tInfusion_pos_AP.m 39		Operator Demo User Instrument compact	8255754.20175
Acquisition Par	ameter				
Source Type Focus Scan Begin Scan End	ESI Active 50 m/z 1000 m/z	lon Polarity Set Capillary Set End Plate Offset Set Charging Voltage Set Corona	Positive 4500 V -500 V 2000 V 0 nA	Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve Set APCI Heate	0.6 Bar 200 °C 6.0 l/min e Waste er 0 °C
Intens. x10 ⁶ 1.5 1.0 0.5 0.0		0.3 0.4	0.5	0.6 0.7	

FIGURE 26- HRMS (ESI-FT-ICR) m/z spectra of 2d and 3d.

(Z)-1-(tert-butylamino)-1-oxobut-2-en-2-yl 11-((tert-butoxycarbonyl)amino)undecanoate (2e) 1-(tert-butylamino)-1-oxobut-3-en-2-yl 11-((tert-butoxycarbonyl)amino)undecanoate (3e)

2-(phenylselanyl)propanal (43 mg, 0.2 mmol, 1 equiv.), 11-((tertbutoxycarbonyl)amino)undecanoic acid (60 mg, 0.2 mmol), and terbutyl isocyanide (23 μ L, 0.2 mmol) were dissolved in 1mL of THF and reacted according to the general P-3CR/oxidative-elimination procedure (B). Flash column chromatography purification (Hex/EtOAc from 9:1 to 1:1 v/v) afforded compounds *2e* and *3e* (31 mg, 35%) as a yellow sticky oil. $R_f = 0.65$ (Hex/EtOAc 1:1 v/v). A mixture of compounds *2e* and *3e* in a 0.44:1.0 (2e:2e') ratio was observed by NMR analysis.

¹H NMR (400 MHz, CDCl₃) δ 6.43 (q, *J* = 7.1 Hz, 1H), 5.95 (ddd, *J* = 16.6, 10.5, 5.9 Hz, 1H), 5.81 (s, 1H), 5.68 (s, 1H), 5.49 (d, *J* = 5.8 Hz, 1H), 5.37 (d, *J* = 17.2 Hz, 1H), 5.30 (d, *J* = 10.5 Hz, 1H), 4.49 (s, 1H), 3.09 (bs, 3H), 2.51 (t, *J* = 7.5 Hz, 1H), 2.42 (t, *J* = 7.5 Hz, 2H), 1.69 (m, 3H), 1.62 (d, *J* = 7.2 Hz, 2H), 1.44 (s, 18H), 1.35 (s, 18H), 1.27 (s, 18H). ¹³C NMR (100 MHz, CDCl₃) δ 171.9, 170.6, 167.2, 161.3, 156.1, 142.1, 132.2, 121.3, 118.7, 74.5, 51.4, 51.4, 40.8, 34.4, 34.1, 30.2, 29.5, 29.4, 29.3, 29.3, 29.2, 28.7, 28.5, 26.9, 25.1, 25.0,

HRMS (ESI-FT-ICR) *m/z*: 441.3333 [M+H]⁺; calcd. for C₂₄H₄₅N₂O₅: 441.3328.

11.7.

42

+MS, 1.0min #60

FIGURE 28- HRMS (ESI-FT-ICR) m/z spectra of 2e and 3e.

1-(tert-butylamino)-3-methyl-1-oxobut-2-en-2-yl acetate (2f) 1-(tert-butylamino)-3-methyl-1-oxobut-3-en-2-yl acetate (3f)

2-methyl-2-(phenylselanyl)propanal (45 mg, 0.2 mmol, 1 equiv.), acetic acid (11 μ L, 0.2 mmol), and terbutyl isocyanide (23 μ L, 0.2 mmol) were dissolved in 1mL of THF and reacted according to the general P-3CR/oxidative-elimination procedure (B). Flash column chromatography purification (Hex/EtOAc from 4:1 to 1:1 v/v) afforded compounds 2f and 3f (11 mg, 26%) as a yellow sticky oil. $R_{\rm f}$ = 0.55 (Hex/EtOAc 1:1 v/v). A mixture of compounds 2f and 3f in 0.6:1 was observed by NMR analysis.

¹H NMR (400 MHz, CDCl₃) δ 6.59 (s, 1H, NH), 5.78 (s, 1H, NH), 5.38 (d, J = 18.2 Hz, 1H), 5.13 (d, J = 13.7 Hz, 1H), 2.15 (s, 3H), 1.76 (s, 3H), 1.35 (s, 18H). ¹³C NMR (100 MHz, CDCl₃) δ 166.8, 163.9, 139.9, 116.7, 72.8, 52.0, 28.8, 20.9, 18.3. HRMS (ESI-FT-ICR) m/z: 214.1441 [M+H]⁺; calcd. for C₁₁H₂₀NO₃: 214.1443.

Analysis Info				Acquisition Date 23-1	11-2021 11:47:53
Analysis Name E:\3. Servicios_tecnicos\2021.11.16_Alexander Fernandez\2021.11.19_AFernandez_servicio\DirectInfusi			r DirectInfusion	PI_78.d	
Method Sample Name	MS_method_DirectIn	fusion_pos_AP.m		Operator Demo Use	er 0255754 20175
Comment	mple Name DirectInfusion_PI_78 mment			insuument compact	0200104.20110
Acquisition Par	ameter				
Source Type Focus Scan Begin Scan End	ESI Active 50 m/z 1000 m/z	lon Polarity Set Capillary Set End Plate Offset Set Charging Voltage Set Corona	Positive 4500 V -500 V 2000 V 0 nA	Set Nebulizer Set Dry Heate Set Dry Gas Set Divert Valv Set APCI Heat	0.6 Bar r 200 °C 6.0 l/min ve Waste ter 0 °C
Intens. x10 ⁶ 3 2 1 1	0.2 0.4			0 12	1.4 Time [min]

1-(tert-butylamino)-1-oxobut-3-en-2-yl isoquinoline-1-carboxylate (3g)

2-(phenylselanyl)propanal (43 mg, 0.2 mmol, 1 equiv.), isoquinoline-1-carboxylic acid (35 mg, 0.2 mmol), and terbutyl isocyanide (23 μ L, 0.2 mmol) were dissolved in 1mL of THF and reacted according to the general P-3CR/oxidative-elimination procedure (B). Flash column chromatography purification (Hex/EtOAc from 9:1 to 1:1 v/v) afforded compound 3f (27.5 mg, 44%) as a yellow sticky oil. $R_{\rm f}$ = 0.25 (Hex/EtOAc 1:1 v/v).

¹H NMR (400 MHz, CDCl₃) δ 8.77 (d, J = 8.4 Hz, 1H), 8.62 (d, J = 5.5 Hz, 1H), 7.92 (dd, J = 14.4, 6.8 Hz, 2H), 7.77 (dt, J = 16.1, 7.3 Hz, 2H), 7.30 (b.s, 1H, NH), 6.25 – 6.14 (m, 1H), 5.95 (d, J = 5.6 Hz, 1H), 5.58 (d, J = 17.2 Hz, 1H), 5.41 (d, J = 10.6 Hz, 1H), 1.44 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 167.4, 164.2, 148.1, 141.5, 137.0, 131.7, 131.0, 129.2, 127.2, 126.9, 126.1, 124.8, 118.9, 76.8, 75.4, 51.5, 28.7.

HRMS (ESI-FT-ICR) m/z: 313.1546 [M+H]⁺; calcd. for: C₁₈H₂₁N₂O₃: 313.1552.

FIGURE 31. ¹H and ¹³C NMR spectra in CDCl₃ of *3g*.

Compound Spectrum SmartFormula Report Analysis Info Acquisition Date 23-11-2021 10:53:55 E:\3. Servicios_tecnicos\2021.11.16_Alexander Fernandez\2021.11.19_AFernandez_servicio\DirectInfusion_PI_40.d Analysis Name Method MS_method_DirectInfusion_pos_AP.m Operator Demo User DirectInfusion_PI_40 8255754.20175 Sample Name Instrument compact Comment Acquisition Parameter ESI Ion Polarity 0.6 Bar Source Type Positive Set Nebulizer 4500 V -500 V 2000 V 200 °C 6.0 I/min Focus Active Set Capillary Set Dry Heater Set End Plate Offset Scan Begin 50 m/z 1000 m/z Set Dry Gas Set Divert Valve Set Charging Voltage Waste Scan End Set Corona 0 nA Set APCI Heater 0°C Intens. x10⁶ 2.0 1.5 1.0 0.5 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 Time [min]

FIGURE 32- HRMS (ESI-FT-ICR) m/z spectra of 3g.

(E)-1-(tert-butylamino)-1-oxo-4-phenylbut-3-en-2-yl acetate (3h)

3-phenyl-2-(phenylselanyl)propanal (58 mg, 0.2 mmol, 1 equiv.), acetic acid (11 μ L, 0.2 mmol), and terbutyl isocyanide (23 μ L, 0.2 mmol) were dissolved in 1mL of THF and reacted according to the general P-3CR/oxidative-elimination procedure (B).

Flash column chromatography purification (Hex/EtOAc from 4:1 to 1:1 v/v) afforded compound 3h (30 mg, 55%) as a yellow sticky oil. $R_f = 0.60$ (Hex/EtOAc 1:1 v/v).

¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, J = 7.3 Hz, 2H), 7.35 – 7.25 (m, 3H), 6.72 (d, J = 16.0 Hz, 1H), 6.26 (dd, J = 16.0, 6.9 Hz, 1H), 5.85 (s, 1H), 5.62 (dd, J = 7.0, 0.6 Hz, 1H), 2.20 (s, 3H), 1.37 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 169.3, 167.2, 135.8, 134.7, 128.7, 128.4, 126.9, 122.9, 77.4, 77.1, 76.8, 74.8, 51.6, 28.7, 21.1.

HRMS (ESI-FT-ICR) m/z: 298.1397 [M+Na]⁺; calcd. for C₁₆H₂₁NNaO₃: 298.1419.

Compound Spectrum SmartFormula Report Analysis Info Acquisition Date 11/23/2021 11:41:09 AM D:\Data\AP_data\2021.11.19_AFernandez_servicio\DirectInfusion_PI_71.d Analysis Name Operator Method MS_method_DirectInfusion_pos_AP.m Demo User DirectInfusion_PI_71 8255754.20175 Sample Name Instrument compact Comment Acquisition Parameter 0.6 Bar 200 °C 6.0 I/min Source Type ESI Ion Polarity Set Nebulizer Positive Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve Set APCI Heater Focus Scan Begin Active 50 m/z Set Capillary Set End Plate Offset 4500 V -500 V Waste 0 °C Scan End 1000 m/z Set Charging Voltage 2000 V 0 nA Set Corona Intens. x10⁶ 0.8 0.6-0.4 0.2

+MS, 1.1min #67

0.0

0.6

0.8

1.0

Time [min]

0.4

0.2

(E)-1-(cyclohexylamino)-1-oxo-4-phenylbut-3-en-2-yl acetate (3i)

3-phenyl-2-(phenylselanyl)propanal (58 mg, 0.2 mmol, 1 equiv.), acetic acid (11 µL, 0.2 mmol), and cyclohexyl isocyanide (25 µL, 0.2 mmol) were dissolved in 1mL of THF and reacted according to the general P-3CR/oxidative-elimination procedure (B). Flash column chromatography purification (Hex/EtOAc from 4:1 to 1:1 v/v) afforded compound 3i (31 mg, 52%) as a yellow sticky oil. $R_{\rm f}$ = 0.60 (Hex/EtOAc 1:1 v/v).

¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J* = 7.3 Hz, 2H), 7.32 (m, 3H), 6.75 (d, *J* = 16.0 Hz, 1H), 6.29 (dd, *J* = 15.9, 6.8 Hz, 1H), 5.93 (d, *J* = 7.4 Hz, 1H), 5.73 (d, *J* = 6.9 Hz, 1H), 3.90 – 3.75 (m, 1H), 2.26 (d, *J* = 27.4 Hz, 3H), 1.96 (d, *J* = 11.4 Hz, 2H), 1.69 (dd, *J* = 34.5, 12.7 Hz, 4H), 1.47 – 1.15 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 169.3, 167.1, 135.8, 134.8, 128.7, 128.5, 126.9, 122.8, 74.6, 48.3, 33.1, 25.5, 24.9, 21.2.

HRMS (ESI-FT-ICR) m/z: 324.1549 [M+Na]+; calcd. for C₁₈H₂₃NNaO₃: 324.1576

FIGURE 35. ¹H and ¹³C NMR spectra in CDCl₃ of *3i*.

Mass Spectrum SmartFormula Report

Analysis Info

Analysis Name Method Sample Name

D:\Data\AP_data\2022.04.15_AFernandez\FC_07_pos.d MS_method_DirectInfusion_pos_AP.m FC_07_pos

Acquisition Date 4/15/2022 12:26:35 PM

Operator Demo User Instrument compact

8255754.20175

Comment

m/z |err| [mDa] err [ppm] mSigma #mSigma Score rdb e Conf N-Rule Adduct Meas. m/z # Ion Formula 324.1549 1 C18H23NNaO3 324.1570 2.1 6.5 4.1 1 46.39 8.0 even ok M+Na

FC_07_pos.d Bruker Compass DataAnalysis 4.4 printed: 5/6/2022 10:02:18 AM by: demo Page 1 of 1

FIGURE 36- HRMS (ESI-FT-ICR) m/z spectra of 3i.

(E)-1-(cyclohexylamino)-1-oxo-4-phenylbut-3-en-2-yl hex-5-ynoate (3j)

3-phenyl-2-(phenylselanyl)propanal (58 mg, 0.2 mmol, 1 equiv.), hex-5-ynoic acid (22 μ L, 0.2 mmol), and cyclohexyl isocyanide (25 μ L, 0.2 mmol) were dissolved in 1mL of 2-MeTHF and reacted according to the general P-3CR/oxidative-elimination procedure (B). Flash column chromatography purification (Hex/EtOAc from 4:1 to 1:1 v/v) afforded compound 3j (43mg, 61%) as a yellow sticky oil. $R_{\rm f}$ = 0.60 (Hex/EtOAc 1:1 v/v).

¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, J = 7.6 Hz, 2H), 7.39 – 7.23 (m, 3H), 6.75 (d, J = 16.0 Hz, 1H), 6.30 (dd, J = 15.9, 6.8 Hz, 1H), 5.95 (d, J = 7.7 Hz, 1H), 5.76 (d, J = 6.8 Hz, 1H), 3.83 (dd, J = 11.6, 7.2 Hz, 1H), 2.69 – 2.59 (m, 2H), 2.35 (dd, J = 15.0, 8.8 Hz, 2H), 2.01 – 1.84 (m, 4H), 1.81 – 1.59 (m, 4H), 1.44 – 1.12 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 171.5, 167.1, 135.8, 134.8, 128.7, 128.5, 126.9, 122.7, 83.1, 74.5, 69.7, 48.3, 33.1, 32.8, 25.5, 24.9, 23.5, 17.8.

HRMS (ESI-FT-ICR) m/z: 376.1866 [M+Na]⁺; calcd. for C₂₂H₂₇NNaO₃: 376.1889

Mass Spectrum SmartFormula Report

Analysis Info

Analysis Name Method Sample Name Comment

D:\Data\AP_data\2022.04.15_AFernandez\FC_05_pos.d MS_method_DirectInfusion_pos_AP.m FC_05_pos

Acquisition Date 4/15/2022 12:08:36 PM

Operator Demo User Instrument compact

8255754.20175

FC_05_pos.d Bruker Compass DataAnalysis 4.4 printed: 5/6/2022 10:07:59 AM by: demo Page 1 of 1

FIGURE 38- HRMS (ESI-FT-ICR) m/z spectra of 3j.

References

- 1. W. L. E. Armarego and L. Li, Christina Chai, *Purification of laboratory chemicals* (*Fifth Edition*), 2003.
- G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw and K. I. Goldberg, *Organometallics*, 2010, 29, 2176–2179.
- 3. M. Tiecco, A. Carlone, S. Sternativo, F. Marini, G. Bartoli and P. Melchiorre, *Angew Chem Int Ed.*, 2007, **46**, 6882.