Hexagonal NiMoO$_4$-MoS$_2$ Nanosheets heterostructure as a Bifunctional Electrocatalyst for urea oxidation assisted Overall Water Electrolysis

Jianmin Zhu a, Wenyue Lv a, Ying Yang a, Licheng Huang b, Wensheng Yu a, Xinlu Wang a, Qi Hana and Xiangting Dong a

aKey Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Department of Chemistry & Environmental Engineering, Changchun University of Science and Technology, Changchun, Jilin 130022, P. R. China.

bKey Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun 130022, China.

Email: yangying0807@126.com; xtdong@cust.edu.cn.

1. Experimental Section

1.1 Chemicals

The reagents required for the experiment were: absolute ethanol(C$_2$H$_6$O), nickel nitrate hexahydrate((Ni(NO$_3$)$_2$·6H$_2$O), urea (CO(NH$_2$)$_2$), potassium hydroxide (KOH) Sodium molybdate dihydrate (Na$_2$MoO$_4$·2H$_2$O), Pt/C/NF, IrO$_2$/NF and Hex ammonium molybdate ((NH$_4$)$_6$Mo$_7$O$_{24}$·4H$_2$O) were commercially available from Aladdin Chemistry, Thioacetamide (CH$_3$CSNH$_2$) purchased from Tianjin Guangfu, nickel foam (1 × 2 cm2), ultrapure water (18.25 MΩ·cm) was prepared using a purified system UPC-1-10 T purification system.

1.2 Preparation of MoS$_2$/NF

Disperse 0.6 mmol (NH$_4$)$_6$Mo$_7$O$_{24}$·4H$_2$O and 9.0 mmol thioacetamide (CH$_3$CSNH$_2$) in 60 mL deionized water, and stir magnetically for 60 min at room temperature. Subsequently, the obtained transparent solution was transferred to the PTFE lining of a 100 mL stainless steel autoclave, which contained pre-treated nickel foam (1×2 cm2). The nickel foam was respectively used with 5 % hydrochloric acid solution, ethanol, alternate ultrasonic cleaning with deionized water for 30 min to obtain pretreated nickel foam. Keep it in a blast drying oven at 200 °C for 20 h. After it is naturally cooled to room temperature, it is washed several times with deionized water and absolute ethanol, and finally dried in an oven at 60 °C for 12 h. Obtained MoS$_2$/NF nanosheets.

1.3 Preparation of NiMoO$_4$/NF

The NiMoO$_4$/NF is prepared by the following steps. Usually 3 mmol Ni(NO$_3$)$_2$·6H$_2$O and 3 mmol Na$_2$MoO$_4$·2H$_2$O are dissolved in 30 mL ultra-pure water and 30 mL absolute ethanol to form a uniform German solution. Ultrasonic treatment for 20 min. Then, a piece of pretreated NF is immersed in the above solution and transferred to the lining. In a 100 mL stainless steel autoclave with Teflon, heated at 150 °C for 6 h. After cooling to room temperature, the obtained NiMoO precursor (NiMoO/NF) grown on NF was cooled to room temperature. Wash with water and ethanol several times, and then dry in a vacuum drying oven at 60 °C for 6 h. Annealed at 350 °C for 2 h in Ar atmosphere to prepare NiMoO$_4$/NF electrodes.

1.4 Preparation of NiMoO$_4$-MoS$_2$/NF

Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022
Dissolve 3 mmol Ni(NO$_3$)$_2$·6H$_2$O and 3 mmol Na$_2$MoO$_4$·2H$_2$O in 30 mL ultrapure water and 30 mL absolute ethanol to form a homogeneous mixed solution. Ultrasonic treatment for 20 min. Then, Dip MoS$_2$/NF into the above solution, transfer it to a 100 mL stainless steel autoclave lined with Teflon, and heat it at 150 °C for 6 h. Wash with water and ethanol several times, and then dry in a vacuum drying oven at 60 °C for 6 h. Finally, the NiMoO$_4$-MoS$_2$/NF heterostructure was obtained by annealing at 350 °C for 2 h in Ar atmosphere.

1.5 Preparation of Pt/C/NF and IrO$_2$/NF

The electrodes were prepared by the drop casting method. Initially, 5 mg of Pt/C/NF was dispersed in 1 mL of ethanol-water mixture at a volume ratio of 1: 4 and with 20 μL of Nafion to obtain a homogeneous dispersion solution of the catalyst. This solution was then uniformly applied to a 1 x 1 cm2 piece of NF and dried at room temperature for 1 h, Loaded at 5mg/cm2. The preparation method of IrO$_2$/NF is the same as above.

1.6 Characterization

Micrographs were taken using a Titan ETEM (U.S.A., FEI Co., G280-300) equipment, and the accelerating voltage was 300 kV. Energy-dispersive spectroscopy (EDS) mapping and scanning electron microscopy (SEM) micrographs were obtained by a SU8220 (Hitachi Corp., Japan) with the voltage of 5 kV. X-ray diffraction (XRD) patterns were acquired by an X-ray facility (Cu Kα radiation, λ = 0.154056 nm, Smart Lab, Rigaku Corp.D8 Advance, Japan). X-ray photoelectron spectroscopy (XPS) patterns were taken by an X-ray photoelectron spectroscopy instrument equipped with Al Kα source (ESCALAB 250Xi, Thermo Fisher Scientific, USA). JC2000DM precision type contact angle measuring instrument.

1.7 Electrochemical measurements

A standard three-electrode system was used to evaluate the electrochemical impedance spectroscopy (EIS) and the linear sweep voltammetry (LSV) experiments of the catalyst. It consists of a reference electrode (reversible hydrogen electrode - RHE), a counter electrode (graphite rod), and a working electrode (the as-prepared catalysts) (the area of each catalyst immersed in the electrolyte was 0.5 cm2). Furthermore, the above system was tested in 1.0 M KOH with 0.5 M urea and 1.0 M KOH solution, with a scan speed of 5 mV·s$^{-1}$. Then, prepared electrodes of noble metal Pt/C/NF and IrO$_2$/NF were tested with an area of 0.5 cm2. The tests potentials of both HER and UOR were corrected by the equation:

$$E_{\text{RHE}} = E_{\text{Hg/HgO}} + 0.059 \text{pH} + 0.098 \text{V}$$

0.5 M urea +1.0 M KOH solution, with a scan speed of 5 mV·s$^{-1}$. The EIS was applied in a frequency domain between 10^5 to 10^{-1} Hz, with 5 mV of amplitude. Potentials were IR compensated by the following equation: (1) $E_{\text{corr}} = E_{\text{mea}} - \text{IRs}$, The Tafel slope was converted from the LSV curve according to the following equation:

$$\eta = a + b \log (j)$$

Water splitting test was carried out in a two-electrode system. NiMoO$_4$-MoS$_2$/NF (1 cm *0.5 cm) are used both as cathode and anode in a single liquid cell. LSV curves were obtained with the scan rate of 5 mV s$^{-1}$, and the stability was performed by chronoamperometry at 1.445 V corresponding to the current density of 10 mA·cm$^{-2}$ for 24 h.
Fig. S 1 The NiMoO₄/NF (a-c) SEM images and (e, f) EDS energy spectra at different magnifications.

Fig. S 2 The MoS₂/NF (a-c) SEM images and (e, f) EDS at different magnifications.

Fig. S 3 (a) Polarization curves before and after 1000 cycles of CV scanning in 1 M KOH with 0.5 M Urea; (b-d) Cyclic voltammetry curves of NiMoO₄-MoS₂/NF, MoS₂/NF and NiMoO₄/NF at different scanning rates (20-100 mV·s⁻¹).
Fig. S4 (a) Polarization curves before and after 1000 cycles of CV scanning in 1 M KOH with 0.5 M Urea; (b-d) Cyclic voltammetry curves of NiMoO$_4$/NF, MoS$_2$/NF, NiMoO$_4$-MoS$_2$/NF at different scanning rates (20-100 mV·s$^{-1}$).

Fig. S5 After tested for 24 h of NiMoO$_4$-MoS$_2$/NF (a-c) SEM; (d) EDS images; (e) XRD patterns of the NiMoO$_4$-MoS$_2$/NF after the 24 UOR test.

Table S1 Performance comparison of some bifunctional materials.

<table>
<thead>
<tr>
<th>Materials</th>
<th>Current density (mA·cm$^{-2}$)</th>
<th>UOR Potential (V)</th>
<th>HER Potential (mV)</th>
<th>Urea–water electrolysis (V)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co$_3$P/N-C/NF</td>
<td>10</td>
<td>1.351</td>
<td>65</td>
<td>1.35</td>
<td>1</td>
</tr>
<tr>
<td>Ni@NCNT</td>
<td>10</td>
<td>1.56</td>
<td>76.3</td>
<td>1.5</td>
<td>2</td>
</tr>
<tr>
<td>NiMoO</td>
<td>10</td>
<td>1.35</td>
<td>90</td>
<td>1.41</td>
<td>3</td>
</tr>
<tr>
<td>MoS$_2$/Ni$_3$S$_2$</td>
<td>10</td>
<td>1.45</td>
<td>99</td>
<td>1.45</td>
<td>4</td>
</tr>
</tbody>
</table>

References
1890-1897.