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Details on computational methodology

It is generally known that the stability of the relevant radical with C-

center has a generally bearing on the C-H BDE,1-2 and a smaller BDE 

signifies better thermodynamic stability of the corresponding radical. 

Commonly speaking, BDE can be described and calculated by eqn (1.1) 

and eqn (1.2).

(1.1)R H R H   

(1.2)       BDE R H R H R H      H H H

where R•, H• and R−H denote the TTM-Based radical, hydrogen radical, 

and precursor of the relevant radical, respectively.

The stability of carbon-centered radicals can expediently be indicated 

by the transfer reaction as shown in eqn (1.3), whose energy of the reaction 

is normally known as the radical stabilization enthalpy (RSE)2 of the 

freshly shaped TTM-Based radical relative to the TTM, can be calculated 

using eqn (1.4).

(1.3)R TTM H R H TTM    

(1.4) 
         
   

RSE R R H TTM R TTM H

BDE TTM H BDE R H

       

   

H H H H

In general, the more positive the RSE, the better the thermodynamic 

stability of the corresponding radical. When RSE is positive, the radical is 

steadier than TTM.

The reorganization energy (λ) related to non-radiative transitions was 
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obtained from the adiabatic potential energy surfaces of the D0 and D1 

states,3 which can be proximately predicted by:

(1.5)       E G
0 0 1 1= +λ E D E D E D E D       

where E(D0) and E(D0)E are the energy of the D0-state calculated at the 

minimal ground-state structure and minimal excited state structure, 

respectively. E(D1)G and E(D1) are the energy of the D1-state calculated at 

the minimal ground-state structure and minimal excited state structure, 

respectively. 

The electronic coupling (V) between the CT state and ground state can 

be evaluated immediately from the 2-state Generalized Mulliken–Hush 

(GMH)4-7 approximation: 

(1.6)
 

12 12 12 12
1/22 2

12 12 124
D

E EV  
  

 
 

  

where μ12, ∆μ12, ∆E12 and  denote the transition dipole moment ∆𝜇𝐷12

between the two adiabatic states, the difference between the dipole 

moments of the adiabatic states, the energy difference between the 

adiabatic states, and the difference between the dipole moments of the 

diabatic states, respectively. 
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Figure S1. Absorption energies (eV) of TTM computed with various methods using the 6-

311G(d,p) basis set with PCM solvent models (solvent=cyclohexane).

Figure S2. D1 state excitation energies (eV) of TTM computed with various methods using the 

6-311G(d,p) basis set with PCM solvent models (solvent=cyclohexane).
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Figure S3. Spin density of D-A radical molecules at PBE0-D3(BJ)/6-311G (d, p) level with 

Becke theory. Yellow and white surfaces represent α and β spin density distributions with 

0.0001 a.u. isosurfaces, respectively.

Figure S4. Molecule structure of D-A monoradical molecules. Dihedral C1-C2-C3-C4 is 

marked in orange.
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Figure S5. Energies and FMOs of monoradical molecules 1-8.
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Table S1. Excitation wavelengths (nm) of TTM computed with various methods using the 

6-311G(d,p) basis set with PCM solvent models (solvent=cyclohexane).

Method HF%a λabs(nm) λemi(nm)

Expt. / 371 565

BP86-D3(BJ) 0% 428.50

B3LYP-D3(BJ) 20% 376.63 564.59

PBE0-D3(BJ) 25% 365.84 553.05

M06-2X-D3 54% 331.38 /

M06-HF-D3 100% 316.79 /

CAM-B3LYP-D3(BJ) 19%/65%, ω = 0.33 339.16 501.60

ωB97X-D 22.2%/100%, ω = 0.2 334.85 /

a 
HF% is percentage of Hartree-Fock (HF) exchange energy. For the range-separated methods, ω 

is the partitioning of the interelectronic distance.

Table S2. Spin population of the central carbon atom of TTM-TPA in the D0-state with selected 

dihedral angles.

Dihedral 
angles

0° 15° 30° 32.5° 45° 60° 75° 90°

Spin 
population

0.5380 0.5387 0.5413 0.5434 0.5451 0.5489 0.5518 0.5530
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Table S3. Electron coupling values (V/eV) of radical molecules 1-8 between Ground and 

Excited States.

GMH Couplings (V/eV)
States 1 2 3 4 5 6 7 8

0-1 0.23 0.25 0.32 0.23 0.22 0.26 0.22 0.24
0-2 0.49 0.05 0.05 0.46 0.46 0.24 0.46 0.51
0-3 0.98 0.51 0.87 0.93 1.00 0.84 0.96 0.89
0-4 0.95 0.88 0.69 1.07 0.82 0.41 0.93 1.00
0-5 0.19 1.23 0.72 0.20 0.18 1.34 0.20 0.20

Table S4. The bond distance (Å) and dihedral angles (°) between donor and acceptor at 

optimized D0-and D1- states, respectively, together with their difference (∆) at the PBE0-

D3(BJ)/6-311G(d,p) level. 

C1-C2-C3-C4 (°) C2-C3 (Å)
D0 D1 Δ(D1-D0) D0 D1 Δ(D1-D0)

1 -32.500 -29.620 2.881 1.468 1.462 -0.006

2 -34.839 -20.927 13.913 1.471 1.442 -0.029

3 -35.610 -16.452 19.158 1.472 1.433 -0.039

4 -34.016 -27.038 6.978 1.469 1.457 -0.012

5 -31.949 -32.004 -0.055 1.467 1.467 0.000

6 -34.532 -17.607 16.925 1.471 1.437 -0.034

7 -32.920 -30.505 2.414 1.468 1.463 -0.006

8 -34.367 -22.318 12.049 1.470 1.447 -0.024
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