Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supplementary Information

Assembly of unsymmetrical 1,3,5-triarylbenzenes via tandem reaction of β -arylethenesulfonyl fluorides and α -cyano- β -methylenones

Fang Zhang, Yi An, Jichang Liu, Guangfen Du,* Zhihua Cai, Lin He*

Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School

of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous

Region, 832000, China.

Table of Contents

1.	General information.	S2
2.	General procedure for the synthesis of 1,3,5-triarylbenzenes	S2
3.	General procedure for the synthesis of 1,3,5-triarylbenzonitriles	S3
4.	General procedure for control experiments.	S4
5.	Single-crystal X-ray structure analysis	S5
6.	Characterization data of products	S6-S16
7.	Copies of NMR spectra	S17-S50

1. General information.

Unless otherwise indicated, all reactions were conducted under air atmosphere in oven-dried glassware with magnetic stirring bar. All other chemicals were obtained from commercial supplies and used as received without any further purification. 2-Arylethenesulfonyl fluorides, ¹ α -cyano- β -methylenones² were prepared according to literature procedures. Column chromatograph was performed with silica gel (200~300 mesh) and analytical TLC on silica gel 60-F254. ¹H, ¹³C, ¹⁹F NMR spectras were recorded on a Bruker AVANCE III spectrometer (400 MHz, 100 MHz and 376 MHz, respectively), Chemical shifts are reported parts per million (ppm) referenced to CDCl₃ (δ 7.26 ppm), tetramethylsilane (TMS, δ 0.00 ppm) for ¹H, ¹³C and ¹⁹F NMR. Melting points of the products were measured on a micro melting point apparatus (SGW X-4) and uncorrected. High-resolution mass spectra (HRMS) were obtained on a Q Exactive mass spectrometry and a LTQ Orbitrap XL mass spectrometry equipped with an EI or ESI source from Thermo Scientific. X-Ray diffraction study for product 3w' was carried out on Bruker D8 VENTURE photon II diffractometer with Iµs 3.0 microfocus X-ray source using APEX III program.

2. General procedure for the synthesis of 1,3,5-triarylbenzenes

A 25 mL Schlenk tube equipped with a stir bar was charged with β -arylenone **1** (0.30 mmol), 2-arylethenesulfonyl fluoride **2** (0.45 mmol), and Cs₂CO₃ (0.90

mmol), ethyl acetate (3 mL) was added in turn to the Schlenk tube. The reaction mixture was stirred at 78 °C for 2 h until complete consumption of the starting material (monitored by TLC). Then DBU was added to the reaction mixture and stirred for 2 h at room temperature. When the reaction was finished, the reaction mixture was diluted by dichloromethane, and then concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (silica gel, PE/EtOAc (v : v) = 300:1) to afford the desired product **3**.

A 25 mL Schlenk tube equipped with a stir bar was charged with β -arylenones 1 (0.30 mmol), 2-arylethenesulfonyl fluorides 2 (0.45 mmol), DQ (0.60 mmol) and Cs₂CO₃ (0.90 mmol), ethyl acetate (3 mL) was added in turn to the Schlenk tube. The reaction mixture was stirred at 78 °C for 5 h until complete consumption of the starting material (monitored by TLC). When the reaction was finished, the reaction mixture was diluted by dichloromethane, and then concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (silica gel, PE/EtOAc (v : v) = 20:1) to afford the desired product 4.

4. General procedure for control experiments.

A 25 mL Schlenk tube equipped with a stir bar was charged with enone **1a** (0.30 mmol), and Cs₂CO₃ (0.90 mmol), ethyl acetate (3 mL) and vinyl sulfonyl fluoride **2w** (0.45 mmol) were added in turn to the Schlenk tube. The reaction mixture was stirred at 78 °C for 12 h until complete consumption of the starting material (monitored by TLC). When the reaction was finished, the reaction mixture was diluted by dichloromethane, and then concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (silica gel, PE/EtOAc (v : v) = 20:1) to afford the desired product **3w'** (55%, 42.4 mg).

A 25 mL Schlenk tube equipped with a stir bar was charged with 3w' (31.0 mg, 0.12 mmol), ethyl acetate (1 mL) and DBU (37.0 mg, 0.24 mmol) was added in turn to the Schlenk tube. When the reaction was finished, the reaction mixture was diluted by dichloromethane, and then concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (silica gel, PE/EtOAc (v : v) = 300:1) to afford the desired product 3w.

A 25 mL Schlenk tube equipped with a stir bar was charged with **3w'** (31.0 mg, 0.12 mmol) and DQ (98.0 mg, 0.24 mmol), ethyl acetate (1 mL) was added in turn to the Schlenk tube. When the reaction was finished, the reaction mixture was diluted by dichloromethane, and then concentrated under reduced pressure. The

residue was purified by column chromatography on silica gel (silica gel, PE/EtOAc

(v : v) = 20:1) to afford the desired product 4f.

5. Single-crystal X-ray structure analysis

Figure S1. Crystal structure of 3w'

data-3w'

Table S1. Crystal data and structure refinement for 3w'

Identification code	3w'		
Empirical formula	$C_{19}H_{14}N$		
Formula weight	256.31		
Temperature	173.0 K		
Wavelength	1.54178 Å		
Crystal system	Orthorhombic		
Space group	Pmn2 ₁		
Unit cell dimensions	a = 14.1719(5) Å	a= 90°.	
	b = 8.9226(3) Å	b=90°.	
	c = 5.6638(2) Å	g = 90°.	
Volume	716.19(4) Å ³		
Ζ	2		
Density (calculated)	1.189 Mg/m ³		
Absorption coefficient	0.528 mm ⁻¹		
F(000)	270		
Crystal size	0.16 x 0.13 x 0.12 mm ³		
Theta range for data collection	4.956 to 72.166°.		
Index ranges	-17<=h<=14, -11<=k<=11, -6<=l<=6		
Reflections collected	8521		
Independent reflections	1417 [R(int) = 0.0456]		
Completeness to theta = 67.679°	99.9 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.7536 and 0.6855		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	1417 / 67 / 114		
Goodness-of-fit on F ²	1.083		
Final R indices [I>2sigma(I)]	R1 = 0.0337, wR2 = 0.0925		
R indices (all data)	R1 = 0.0353, wR2 = 0.0936		

Absolute structure parameter	0.5
Extinction coefficient	0.008(3)
Largest diff. peak and hole	0.158 and -0.137 e.Å ⁻³

The CCDC number of product **3w'** is 2118497.

6. Characterization data of products

5'-phenyl-1,1':3',1''-terphenyl (known compound) ³ White solid, 51.4 mg, 56% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.79 (s, 3H), 7.73 – 7.66 (m, 6H), 7.52 – 7.44 (m, 6H), 7.43 – 7.34 (m, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 142.5, 141.3, 129.0, 127.7, 127.5, 125.3.

4-methoxy-5'-phenyl-1,1':3',1''-terphenyl (known compound)³ White solid, 47.4 mg, 47% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.74 (s, 3H), 7.72 – 7.67 (m, 4H), 7.66 – 7.61 (m, 2H), 7.51 – 7.44 (m, 4H), 7.42 – 7.35 (m, 2H), 7.04 – 6.98 (m, 2H), 3.87 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 159.5, 142.5, 142.1., 141.4, 133.8, 129.0, 128.5, 127.6, 127.5, 124.9, 124.8, 114.4, 55.5.

4-chloro-4''-methoxy-5'-phenyl-1,1':3',1''-terphenyl (known compound) ³ White solid, 46.7 mg, 42% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.75 (s, 1H), 7.71 – 7.65 (m, 4H), 7.62 (d, *J* = 8.4 Hz, 4H), 7.52 – 7.38 (m, 5H), 7.04 – 6.98 (m, 2H), 3.87 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 159.6, 142.6, 142.2, 141.2,

139.8, 133.8, 133.6, 129.1, 129.0, 128.7, 128.5, 127.8, 127.5, 125.2, 124.7, 124.5, 114.5, 55.5.

4-methyl-5'-phenyl-1,1':3',1''-terphenyl (known compound) ³ White solid, 50.9 mg, 53% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.79 – 7.74 (m, 3H), 7.72 – 7.66 (m, 4H), 7.60 (d, *J* = 8.0 Hz, 2H), 7.51 – 7.44 (m, 4H), 7.41 – 7.35 (m, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 2.42 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 142.5, 142.4, 141.4, 138.4, 137.5, 129.7, 129.0, 127.7, 127.5, 127.3, 125.1, 125.0, 21.3.

4-chloro-4''-methyl-5'-phenyl-1,1':3',1''-terphenyl White solid, 65.9 mg, 62% yield. m.p. 160.3-161.0 °C; IR (cm⁻¹): 3030, 2922, 2854, 1595, 1549, 1492, 1091, 813, 761, 698; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.78 (s, 1H), 7.74 – 7.65 (m, 4H), 7.65 – 7.55 (m, 4H), 7.51 – 7.37 (m, 5H), 7.29 (d, *J* = 7.6 Hz, 2H), 2.42 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 142.6, 142.5, 141.2, 139.8, 138.2, 137.6, 133.8, 129.7, 129.1, 129.0, 128.7, 127.8, 127.5, 127.3, 125.4, 124.9, 124.8, 21.3; HRMS (EI) m/z calcd for C₂₅H₁₉Cl [M]⁺ 354.1175, found 354.1168.

4-fluoro-4''-methyl-5'-phenyl-1,1':3',1''-terphenyl White solid, 49.7 mg, 49% yield. m.p. 127.3-128.4 °C; IR (cm⁻¹): 3049, 2954, 2854, 1603, 1511, 1230, 1158, 913, 743, 692; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.81 (s, 1H), 7.77 – 7.71 (m, 4H), 7.70 – 7.65 (m, 2H), 7.63 (d, J = 8.0 Hz, 2H), 7.52 (t, J = 7.6 Hz, 2H), 7.46 – 7.39 (m, 1H), 7.33 (d, J = 7.8 Hz, 2H), 7.24 – 7.15 (m, 2H), 2.46 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 162.7 (d, J = 245.0 Hz), 142.5, 142.4, 141.4, 141.2, 138.2, 137.6, 137.4 (d, J = 3.0 Hz), 129.7, 129.1, 129.0, 127.7, 127.5, 127.3, 125.1,

124.9 (d, J = 5.0 Hz), 115.8 (d, J = 22.0 Hz), 21.3; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -112.9; HRMS (EI) m/z calcd for C₂₅H₁₉F [M]⁺ 338.1471, found 338.1462.

4-fluoro-5'-phenyl-1,1':3',1''-terphenyl (known compound) ³ White solid, 48.7 mg, 50% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.80 – 7.74 (m, 1H), 7.74 – 7.70 (m, 2H), 7.70 – 7.66 (m, 4H), 7.66 – 7.59 (m, 2H), 7.51 – 7.42 (m, 4H), 7.42 – 7.34 (m, 2H), 7.20 – 7.09 (m, 2H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 162.8 (d, J = 245.0 Hz), 142.6, 141.5, 141.2, 137.4 (d, J = 3.0 Hz), 129.1, 129.0, 127.8, 127.5, 125.3, 125.2, 115.9 (d, J = 21.0 Hz); ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -115.3.

4,4''-dichloro-5'-(p-tolyl)-1,1':3',1''-terphenyl White solid, 53.7 mg, 46% yield. m.p. 239.5-240.2 °C; IR (cm⁻¹): 3535, 2392, 2280, 1598, 1513, 1492, 1441, 1092, 1012, 811; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.74 – 7.67 (m, 2H), 7.64 (s, 1H), 7.62 – 7.52 (m, 6H), 7.43 (d, *J* = 8.2 Hz, 4H), 7.28 (d, *J* = 8.0 Hz, 2H), 2.41 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 142.8, 141.4, 139.6, 138.0, 137.8, 133.9, 129.8, 129.2, 128.7, 127.3, 125.2, 124.6, 21.3; HRMS (EI) m/z calcd for C₂₅H₁₈Cl₂ [M]⁺ 388.0786, found 388.0779.

3-fluoro-4''-methyl-5'-phenyl-1,1':3',1''-terphenyl White solid, 50.7 mg, 50% yield. m.p. 135.0-136.4 °C; IR (cm⁻¹): 3056, 3035, 2923, 2851, 2367, 1584, 1514, 1179, 756, 697; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.81 – 7.77 (m, 1H), 7.76 –

7.71 (m, 2H), 7.71 – 7.64 (m, 2H), 7.63 – 7.55 (m, 2H), 7.52 – 7.45 (m, 3H), 7.44 – 7.35 (m, 3H), 7.29 (d, J = 8.0 Hz, 2H), 7.13 – 7.01 (m, 1H), 2.42 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 163.4 (d, J = 244.0 Hz), 143.6 (d, J = 8.0 Hz), 142.6, 142.5, 141.1, 138.1, 137.7, 130.4 (d, J = 8.0 Hz), 129.8, 129.0, 127.8, 127.5, 127.3, 125.7, 125.0, 124.9, 123.1 (d, J = 2.0 Hz), 114.44 (d, J = 21.0 Hz), 114.38 (d, J = 22.0 Hz), 21.3; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -113.0; HRMS (EI) m/z calcd for C₂₅H₁₉F [M]⁺ 338.1471, found 338.1462.

3-methyl-5'-phenyl-1,1':3',1''-terphenyl (known compound) ⁴ White solid, 49.0 mg, 51% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.79 – 7.74 (m, 3H), 7.72 – 7.66 (m, 4H), 7.52 – 7.43 (m, 6H), 7.41 – 7.32 (m, 3H), 7.21 – 7.17 (m, 1H), 2.44 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 142.6, 142.4, 141.3, 141.2, 138.6, 129.0, 128.9, 128.4, 128.3, 127.7, 127.5, 125.3, 125.2, 124.6, 21.7.

4''-chloro-3-methyl-5'-phenyl-1,1':3',1''-terphenyl White solid, 55.3 mg, 52% yield. m.p. 156.0-157.1 °C; IR (cm⁻¹): 3034, 2924, 2854, 1596, 1494, 1092, 878, 826, 760, 699; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.72 – 7.68 (m, 1H), 7.64 (s, 2H), 7.60 (d, *J* = 8.0 Hz, 2H), 7.54 (d, *J* = 8.4 Hz, 2H), 7.43 – 7.36 (m, 5H), 7.36 – 7.26 (m, 3H), 7.15 – 7.10 (m, 1H), 2.36 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 142.8, 142.6, 141.2, 141.1, 139.8, 138.6, 133.8, 129.1, 129.0, 128.9, 128.7, 128.5, 128.3, 127.8, 127.5, 125.6, 125.1, 125.0, 124.6, 21.7; HRMS (EI) m/z calcd for C₂₅H₁₉Cl [M]⁺ 354.1175, found 354.1168.

3-fluoro-3''-methyl-5'-phenyl-1,1':3',1''-terphenyl White solid, 51.7 mg, 51% yield. m.p. 138.5-139.1 °C; IR (cm⁻¹): 3056, 2922, 1610, 1582, 1408, 1265, 1178,

866, 752, 696; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.82 (s, 1H), 7.77 (s, 2H), 7.71 (d, J = 7.5 Hz, 2H), 7.54 – 7.47 (m, 5H), 7.47 – 7.36 (m, 4H), 7.23 (d, J = 7.4 Hz, 1H), 7.10 (t, J = 7.6 Hz, 1H), 2.47 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 163.4 (d, J = 244.0 Hz), 143.6(d, J = 8.0 Hz), 142.8, 142.6, 141.2, 141.1, 141.0, 138.7, 130.4 (d, J = 8.0 Hz), 129.0, 128.9, 128.6, 128.3, 127.8, 127.5, 125.9, 125.2, 125.1, 124.6, 123.1 (d, J = 3.0 Hz), 114.5 (d, J = 21.0 Hz), 114.4 (d, J = 22.0 Hz), 21.7; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -113.0; HRMS (EI) m/z calcd for C₂₅H₁₉F [M]⁺ 338.1471, found 338.1462.

3,5-difluoro-5'-phenyl-1,1':3',1''-terphenyl (known compound) ⁵ White solid, 45.1 mg, 44% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.82 (s, 1H), 7.75 – 7.70 (m, 2H), 7.70 – 7.65 (m, 4H), 7.49 (t, *J* = 7.6 Hz, 4H), 7.44 – 7.36 (m, 2H), 7.24 – 7.16 (m, 2H), 6.90 – 6.74 (m, 1H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 163.5 (dd, *J* = 246.0 Hz), 144.6 (t, *J* = 9.0 Hz), 142.8, 140.8, 140.2, 129.1, 127.9, 127.5, 126.4, 125.0, 110.3 (dd, *J* = 18.0 Hz), 102.9 (t, *J* = 25.0 Hz); ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -109.5.

2-([1,1':3',1''-terphenyl]-5'-yl)naphthalene (known compound) ⁶ White solid, 67.3 mg, 63% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.14 (s, 1H), 7.96 – 7.89 (m, 4H), 7.89 – 7.79 (m, 3H),7.75 – 7.68 (m, 4H), 7.54 – 7.45 (m, 6H), 7.43 – 7.34 (m, 2H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 142.6, 142.4, 141.3, 138.6, 133.8, 132.9, 129.0, 128.7, 128.4, 127.8, 127.7, 127.5, 126.5, 126.2, 125.8, 125.6, 125.4.

2-(4-chloro-[1,1':3',1''-terphenyl]-5'-yl)naphthalene White solid, 60.9 mg, 52% yield. m.p. 188.2-189.0 °C; IR (cm⁻¹): 3053, 2956, 2853, 1594, 1492, 1092, 885, 816, 760, 701; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.14 (s, 1H), 7.99 – 7.91 (m, 3H), 7.91 – 7.81 (m, 3H), 7.77 (s, 1H), 7.74 – 7.68 (m, 2H), 7.68 – 7.62 (m, 2H), 7.57 – 7.50 (m, 3H), 7.50 – 7.43 (m, 3H), 7.43 – 7.38 (m, 1H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 142.8, 142.6, 141.4, 141.1, 139.7, 138.4, 133.9, 133.8, 132.9, 129.2, 129.1, 128.8, 128.4, 127.8, 127.5, 126.6, 126.3, 126.2, 125.9, 125.7, 125.3, 125.2; HRMS (EI) m/z calcd for C₂₈H₁₉Cl [M]⁺ 390.1175, found 390.1170.

2-(4-fluoro-[1,1':3',1''-terphenyl]-5'-yl)naphthalene White solid, 50.5 mg, 45% yield. m.p. 193.4-194.2 °C; IR (cm⁻¹): 3057, 2926, 2392, 1600, 1518, 1446, 1229, 1159, 834, 753; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.14 (s, 1H), 7.97 – 7.86 (m, 4H), 7.86 – 7.79 (m, 2H), 7.79 – 7.63 (m, 5H), 7.56 – 7.44 (m, 4H), 7.44 – 7.35 (m, 1H), 7.21 – 7.12 (m, 2H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 162.8 (d, *J* = 245.0 Hz), 142.7, 142.5, 141.6, 141.2, 138.5, 137.4 (d, *J* = 3.0 Hz), 133.8, 132.9, 129.1, 129.0, 128.7, 128.4, 127.84, 127.81, 127.5, 126.6, 126.3, 126.2, 125.8, 125.6, 125.4, 125.3, 115.9 (d, *J* = 21.0 Hz); ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -115.2; HRMS (EI) m/z calcd for C₂₈H₁₉F [M]⁺ 374.1471, found 374.1463.

4-chloro-5'-phenyl-1,1':3',1''-terphenyl (known compound) ³ White solid, 58.2 mg, 57% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.81 – 7.77 (m, 1H), 7.73 (d, J = 1.6 Hz, 2H), 7.71 – 7.66 (m, 4H), 7.65 – 7.59 (m, 2H), 7.53 – 7.47 (m, 3H),

7.47 – 7.42 (m, 3H), 7.42 – 7.35 (m, 2H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 142.7, 141.2, 141.1, 139.7, 133.8, 129.2, 129.0, 128.7, 127.8, 127.5, 125.6, 125.1.

4-bromo-5'-phenyl-1,1':3',1''-terphenyl (known compound) ⁶ White solid, 46.2 mg, 40% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.82 – 7.77 (m, 1H), 7.73 (d, J = 1.6 Hz, 2H), 7.71 – 7.64 (m, 4H), 7.63 – 7.53 (m, 4H), 7.52 – 7.44 (m, 4H), 7.43 – 7.34 (m, 2H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 142.7, 141.3, 141.1, 140.2, 132.1, 129.1, 129.0, 127.8, 127.5, 125.7, 125.0, 122.0.

3-fluoro-5'-phenyl-1,1':3',1''-terphenyl (known compound) ⁶ White solid, 55.4 mg, 57% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.83 – 7.78 (m, 1H), 7.78 – 7.73 (m, 2H), 7.72 – 7.66 (m, 4H), 7.52 – 7.46 (m, 5H), 7.45 – 7.36 (m, 4H), 7.15 – 7.02 (m, 1H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 163.4 (d, J = 245.0 Hz), 143.6 (d, J = 8.0 Hz), 142.7, 141.2, 141.1, 141.1, 130.5 (d, J = 9.0 Hz), 129.0, 127.8, 127.5, 125.9, 125.2, 123.1 (d, J = 2.0 Hz), 114.5 (d, J = 21.0 Hz), 114.4 (d, J = 21.0 Hz); ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -112.9.

5'-phenyl-3-(trifluoromethyl)-1,1':3',1''-terphenyl White solid, 44.9 mg, 40% yield. m.p. 199.3-200.6 °C; IR (cm⁻¹): 3035, 2924, 2853, 2377, 1596, 1497, 1321, 1126, 756, 698; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.93 (s, 1H), 7.87 (d, *J* = 7.6 Hz, 1H), 7.84 – 7.80 (m, 1H), 7.77 (d, *J* = 1.6 Hz, 2H), 7.72 – 7.67 (m, 4H), 7.67 – 7.56 (m, 2H), 7.52 – 7.46 (m, 4H), 7.44 – 7.36 (m, 2H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 142.8, 142.1, 141.1, 141.0, 131.4 (q, *J* = 32.0 Hz), 130.8, 129.5, 129.1, 127.9, 127.5, 126.1, 125.3, 124.3 (d, *J* = 271.0 Hz), 124.5 – 124.2 (m), 122.8;

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -62.5; HRMS (EI) m/z calcd for C₂₅H₁₇F₃ [M]⁺ 374.1282, found 374.1273.

2-([1,1':3',1''-terphenyl]-5'-yl)thiophene White solid, 40.0 mg, 43% yield; m.p. 180.2-181.0 °C; IR (cm⁻¹): 3057, 2924, 1595, 1489, 1313, 819, 759, 698. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.86 – 7.79 (m, 2H), 7.76 – 7.67 (m, 5H), .7.55 – 7.47 (m, 4H), 7.47 – 7.39 (m, 3H), 7.34 (d, *J* = 5.04 Hz, 1H), 7.18 – 7.10 (m, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 144.4, 142.7, 141.0, 135.5, 129.0, 128.2, 127.8, 127.5, 125.6, 125.3, 124.0, 123.7. HRMS (EI) m/z calcd for C₂₂H₁₆S [M]⁺ 312.0973, found 312.0966.

1,1':3',1''-terphenyl (known compound) ⁷ White solid, 34.5 mg, 50% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.81 (s, 1H), 7.66 (s, 2H), 7.64 (s, 2H), 7.60 – 7.55 (m, 2H), 7.54 – 7.50 (m, 1H), 7.49 – 7.43 (m, 4H), 7.40 – 7.34 (m, 2H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 141.9, 141.3, 129.3, 128.9, 127.6, 127.4, 126.3, 126.2.

4',5'-dihydro-[1,1':3',1''-terphenyl]-2'-carbonitrile White solid, 42.4 mg, 55% yield. m.p. 74.5-75.3 °C; IR (cm⁻¹): 3057, 2919, 2850, 2397, 1598, 1552, 1492, 1443, 761, 698; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.61 – 7.56 (m, 2H), 7.48 – 7.41 (m, 3H), 7.43 – 7.33 (m, 5H), 6.12 (t, *J* = 4.8 Hz, 1H), 2.81 – 2.73 (m, 2H), 2.52 – 2.44 (m, 2H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 155.8, 139.1, 138.5, 136.0, 129.6,

128.7, 128.4, 128.1, 127.92, 127.90, 126.0, 118.0, 108.8, 29.7, 22.5; HRMS (ESI) m/z calcd for C₁₉H₁₅NNa⁺ [M+Na]⁺ 280.1097, found 280.1097.

5'-phenyl-[1,1':3',1''-terphenyl]-2'-carbonitrile (known compound) ⁸ White solid, 49.7 mg, 50% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.72 – 7.67 (m, 3H), 7.67 – 7.60 (m, 5H), 7.56 – 7.52 (m, 1H), 7.52 – 7.48 (m, 5H), 7.48 – 7.45 (m, 2H), 7.45 – 7.40 (m, 1H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 147.5, 145.3, 139.2, 138.9, 129.3, 129.2, 128.9, 128.8, 127.7, 127.5, 118.2, 109.2.

5'-(4-chlorophenyl)-[1,1':3',1''-terphenyl]-2'-carbonitrile (known compound) ⁹ White solid, 62.5 mg, 57% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.64 (s, 4H), 7.63 – 7.60 (m, 3H), 7.60 – 7.57 (m, 1H), 7.55 – 7.50 (m, 3H), 7.50 – 7.48 (m, 2H), 7.48 – 7.42 (m, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 147.7, 144.0, 138.7, 137.6, 135.2, 129.5, 129.2, 129.0, 128.9, 128.7, 127.4, 118.0, 109.5.

5'-(3-fluorophenyl)-[1,1':3',1''-terphenyl]-2'-carbonitrile (known compound) ¹⁰ White solid, 52.4 mg, 50% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.69 – 7.60 (m, 6H), 7.56 – 7.47 (m, 6H), 7.47 – 7.42 (m, 2H), 7.37 (d, *J* = 9.2 Hz, 1H), 7.18 – 7.07 (m, 1H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 163.4 (d, *J* = 246.0 Hz), 147.7, 143.9, 141.4 (d, *J* = 8.0 Hz), 138.6, 130.8 (d, *J* = 8.0 Hz), 129.2, 129.0, 128.9, 127.6, 123.2 (d, *J* = 3.0 Hz), 118.0, 115.8 (d, *J* = 21.0 Hz), 114.5 (d, *J* = 22.0 Hz), 109.8.; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -112.1.

5'-(naphthalen-2-yl)-[1,1':3',1''-terphenyl]-4'-carbonitrile (known compound) ⁸ White solid, 56.1 mg, 49% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.12 (s, 1H), 7.99 (d, J = 8.8 Hz, 1H), 7.96 – 7.88 (m, 2H), 7.81 – 7.74 (m, 2H), 7.73 – 7.63 (m, 5H), 7.58 – 7.51 (m, 4H), 7.51 – 7.39 (m, 4H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 147.6, 145.3, 139.2, 133.3, 129.3, 129.2, 128.9, 128.8, 128.7, 128.6, 127.9, 127.7, 127.5, 126.9, 118.3, 109.4.

3-fluoro-5'-(naphthalen-2-yl)-[1,1':3',1''-terphenyl]-4'-carbonitrile White solid, 57.5 mg, 48% yield. m.p. 255.2-256.7 °C; IR (cm⁻¹): 3058, 2852, 1592, 1493, 1266, 1157, 1125, 853, 748, 699; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.11 (s, 1H), 7.99 (d, *J* = 8.8 Hz, 1H), 7.96 – 7.88 (m, 2H), 7.79 – 7.72 (m, 2H), 7.71 – 7.61 (m, 3H), 7.59 – 7.51 (m, 4H), 7.51 – 7.43 (m, 3H), 7.43 – 7.36 (m, 1H), 7.19 – 7.07 (m, 1H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 163.4 (d, *J* = 245.0 Hz), 147.8, 147.7, 143.9, 141.4 (d, *J* = 7.0 Hz), 138.6, 136.0, 133.34, 133.30, 130.9 (d, *J* = 8.0 Hz), 129.2, 129.0, 128.9, 128.7, 128.6, 128.5, 127.9, 127.8, 127.7, 127.0, 126.8, 126.7, 123.2 (d, *J* = 3.03 Hz), 118.1, 115.8 (d, *J* = 21.0 Hz), 114.5 (d, *J* = 23.0 Hz), 110.0; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -112.0; HRMS (ESI) m/z calcd for C₂₉H₁₈FNNa⁺ [M+Na]⁺ 422.1315, found 422.1314.

[1,1':3',1''-terphenyl]-2'-carbonitrile (known compound) ⁸ White solid, 34.4 mg, 45% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.69 – 7.64 (m, 1H), 7.62 – 7.55

(m, 4H), 7.54 – 7.51 (m, 1H), 7.51 – 7.49 (m, 2H), 7.49 – 7.4511 (m, 4H), 7.45 – 7.42 (m, 1H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 147.1, 138.8, 132.4, 129.2, 129.0, 128.8, 128.7.

References.

1. G.-F. Zha, Q. Zheng, J. Leng, P. Wu, H.-L. Qin, K. B. Sharpless, Palladium-Catalyzed Fluorosulfonylvinylation of Organic Iodides. *Angew Chem Int Ed Engl.*, 2017, **56**, 4849-4852.

2. Y.-T. Gu, P.-F. Hu, C.-J. Ni, X.-F. Tong, Phosphine-Catalyzed Addition/Cycloaddition Domino Reactions of beta'-Acetoxy Allenoate: Highly Stereoselective Access to 2-Oxabicyclo[3.3.1]nonane and Cyclopenta[a]pyrrolizine. *J Am Chem Soc.*, 2015, **137**, 6400-6406.

3. C.-L. Zhang, S. Ye, N-Heterocyclic Carbene-Catalyzed Construction of 1,3,5-Trisubstituted Benzenes from Bromoenals and α -Cyano- β -methylenones, *Org. Lett.*, 2016, **18**, 6408 - 6411.

4. C.-L. Zhang, Z.-F. Zhang, Z.-H. Xia, Y.-F. Han, S. Ye, DBU-Mediated Construction of 1,3,5-Trisubstituted Benzenes via Annulation of α , β -Unsaturated Carboxylic Acids and α -Cyano- β -methylenones, *J. Org. Chem.*, 2018, **83**, 12507 - 12513.

5. J.-Y. Pan, R.-F. He, J.-H. Tan, Y.-N. Li, PCT Int. Appl. 2018095391, 31 May 2018.

6. F.-Y. Wang, J.-H. Shen, G.-L. Cheng, X.-L. Cui, Practical access to 1,3,5-triarylbenzenes from chalcones and DMSO, *RSC Advances.*, 2015, **5**, 73180 - 73183.

7. L.-F. Liu, Y.-H. Zhang, B.-W. Xin, Synthesis of Biaryls and Polyaryls by Ligand-Free Suzuki Reaction in Aqueous Phase, *J. Org. Chem.*, 2006, **71**, 3994 - 3997.

8. Q.-F. Jia, J. Wang, Synthesis of Biaryls and Polyaryls by Ligand-Free Suzuki Reaction in Aqueous Phase, *Org. Lett.*, 2016, **18**, 2212 - 2215.

9. C.-L. Zhang, Z.-H. Gao, Z.-Q. Liang, S. Ye, N-Heterocyclic Carbene-Catalyzed Synthesis of Multi- Substituted Benzenes from Enals and α -Cyano- β -methylenones, *Adv. Synth. Catal.*, 2016, **358**, 2862 - 2866.

10. M. K. R. Singam, A. Nagireddy and S. R. Maddi, Base-mediated benzannulation of α -cyanocrotonates with ynones: facile synthesis of benzonitriles and fluorenes, *Green Chem.*, 2020, **22**, 2370 - 2374.

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

4a

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

