Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Diastereoselective construction of a library of structural bispiro[butyrolactone/valerolactone-pyrrolidine-indanedione] hybrids via 1,3-dipolar cycloaddition reactions

Lei Zhang^{*a,b*}, Wei Quan^{*a*}, Ren-Ming Liu^{*b*}, You-Ping Tian^{*a**}, Bo-Wen Pan^{*a*}, Xiong-Li Liu^{*a,b**}

^a College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.

^b National & Local Joint Engineering Research Center for the Exploition of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, Guizhou 550025, P. R. China.

*E-mail address: xlliu1@gzu.edu.cn

Table of Contents

Table of contents	S1
1. General experimental information	S2
2. Figure S1: representative biological molecules and our target molecule	S2
3. Table S1: optimization of reaction conditions for synthesis of compound 4aa	S3
4. Synthesis of bispiro[butyrolactone/valerolactone-pyrrolidine-indanedione] hybrids 4	S3
5. Characterization data of hybrids 4	S3
6. Scheme S1: gram scale synthesis of the product 4	S15
7. General experimental procedures for <i>in vitro</i> cytotoxicity assay	S15
8. X-ray crystal data for compounds 4be and 4ea	S16
9. The copies of ¹ H NMR and ¹³ C NMR spectra for compounds 4	S18

1. General information

Reactions were monitored by thin layer chromatography using UV light to visualize the course of reaction. Purification of reaction products was carried out by flash chromatography on silica gel or just by simple filtration and washing. ¹H and ¹³CNMR spectra were obtained using a Bruker DPX-400 spectrometer. ¹H NMR chemical shifts are reported in ppm (δ) relative to tetramethylsilane (TMS) with the solvent resonance employed as the internal standard. Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet), coupling constants (Hz) and integration. ¹³C NMR chemical shifts are reported in ppm (δ) from tetramethylsilane (TMS) with the solvent resonance as the internal standard. Melting points were measured on an electrothermal digital melting point apparatus.

All cell lines were purchased from the Chinese Academy of Sciences, Kunming Cell Bank. All of which were cultured in RPMI-1640 or DMEM medium (Gibco, USA) supplemented with 10% foetal bovine serum, 1% glutamine, 100 U/mL penicillin and 100 μ g/mL streptomycin in a humidified atmosphere with 5% CO₂ at 37 °C. The synthetic compounds were placed at -20°C after dissolved in DMSO. Cisplatin purchased from Aladdin Company and bis-indole methane purchased from Macleans Reagent Company.

2. Figure S1: representative biological molecules and our target molecule

3. Table S1: optimization of reaction conditions for synthesis of compound 4aa

Entry ^a	Solvent	T (°C)	Time (h)	$\operatorname{Yield}^{b}(\%)$	Dr^{c}
1	toluene	65	6	81	>20:1
2	CH ₃ CN	65	6	69	>20:1
3	DCE	65	6	75	16:1
4	EtOAc	65	6	71	>20:1
5	EtOH	65	6	62	>20:1
6	THF	65	6	62	>20:1
7	toluene	80	5	87	>20:1
8	toluene	100	5	82	>20:1

^{*a*} Unless noted, reactions were carried out with 0.2 mmol of compound **1a**, 0.3 mmol of compound **2a**, 0.5 mmol of compound **3a** in 2.5 mL of solvent. ^{*b*} Isolated yield after flash chromatography. ^{*c*} Determined by ¹H-NMR analysis of the crude products.

4. Synthesis of bispiro[butyrolactone/valerolactone-pyrrolidine-indanedione] hybrids 4

In a sealed tube equipped with a magnetic stirring bar, to 2.5 mL of toluene was added 3-benzylidenebutyrolactone **1** (0.2 mmol), ninhydrin **2** (0.3 mmol) and proline **3** (0.5 mmol). The reaction mixture was stirred at 80 °C for 5 h. After completion of the reaction, as indicated by TLC, purification by flash column chromatography (hexane/EtOAc, 5/1, v/v) was carried out to furnish the hybrids **4**.

5. Characterization data of hybrids 4

4aa: Light yellow solid, m.p. 237.9-238.6 °C; yield 87%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ : 1.88-2.04 (m, 3H), 2.16-2.29 (m, 2H), 2.57-2.63 (m, 1H), 2.76-2.80 (m, 1H), 2.83-2.90 (m, 1H), 3.18-3.24 (m, 1H), 3.64-3.70 (m, 1H), 4.25 (d, *J* = 10.0 Hz, 1H), 4.30-4.36 (m, 1H), 7.20-7.25 (m, 5H), 7.75-7.79 (m, 1H), 7.82-7.88 (m, 2H), 7.95 (d, *J* = 7.6 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 23.8, 28.3, 28.9, 45.3, 53.0, 63.6, 64.4, 65.3, 77.5, 121.5, 121.8, 126.4, 127.0, 127.3, 133.3, 134.4, 135.7, 138.4, 139.6, 173.1, 198.4, 198.9; HRMS (ESI-TOF) m/z: Calcd. for C₂₄H₂₁NNaO₄ [M+Na]⁺: 410.1363; Found: 410.1366.

4ab: Light yellow solid, m.p. 240.1-241.0 °C; yield 81%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ: 1.88-2.03 (m, 3H), 2.16-2.23 (m, 2H), 2.57-2.63 (m, 1H), 2.76-2.81 (m, 1H), 2.85-2.92 (m, 1H), 3.31-3.37 (m, 1H), 3.66-3.72 (m, 1H), 4.21-4.29 (m, 2H), 6.93-6.97 (m, 2H), 7.17-7.20 (m, 2H), 7.76-7.80 (m, 1H), 7.83-7.89 (m, 2H), 7.95 (d, J = 7.6 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 25.2, 29.8, 30.5, 46.9, 53.8, 65.1, 66.1, 67.2, 79.0, 115.8 (d, $J_{CF} = 21.3$ Hz), 123.1, 123.5, 130.2 (d, $J_{CF} = 8.1$ Hz), 130.6, 136.2, 137.3, 140.0, 141.1, 162.9 (d, $J_{CF} = 245.2$ Hz), 174.6, 199.8, 200.4; HRMS (ESI-TOF) m/z: Calcd. for C₂₄H₂₀FNNaO₄ [M+Na]⁺: 428.1269; Found: 428.1264.

4ac: Light yellow solid, m.p. 235.7-236.4 °C; yield 86%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ: 1.87-2.03 (m, 3H), 2.15-2.21 (m, 2H), 2.57-2.63 (m, 1H), 2.76-2.80 (m, 1H), 2.86-2.92 (m, 1H), 3.35-3.41 (m, 1H), 3.66-3.72 (m, 1H), 4.20-4.28 (m, 2H), 7.14 (d, J = 7.6 Hz, 2H), 7.20-7.24 (m, 2H), 7.76-7.80 (m, 1H), 7.83-7.88 (m, 2H), 7.95 (d, J = 7.6 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 25.2, 29.8, 30.5, 46.9, 53.8, 65.0, 66.1, 67.0, 79.0, 123.1, 123.5, 129.1, 130.0, 133.5, 134.0, 136.2, 137.3, 140.0, 141.0, 174.5, 199.8, 200.3; HRMS (ESI-TOF) m/z: Calcd. for $C_{24}H_{20}CINNaO_4 [M+Na]^+$: 444.0973; Found: 444.0976.

4ad: Light yellow solid, m.p. 235.9-236.6 °C; yield 89%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ : 1.87-2.03 (m, 3H), 2.13-2.20 (m, 2H), 2.56-2.63 (m, 1H), 2.75-2.80 (m, 1H), 2.85-2.92 (m, 1H), 3.36-3.42 (m, 1H), 3.66-3.72 (m, 1H), 4.19-4.28 (m, 2H), 7.08 (d, J = 8.4 Hz, 2H), 7.37 (d, J = 8.4Hz, 2H), 7.76-7.80 (m, 1H), 7.83-7.88 (m, 2H), 7.94 (d, J = 7.6 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 24.2, 28.8, 29.5, 45.9, 52.8, 63.9, 65.1, 65.9, 77.9, 121.1, 122.1, 122.5, 129.3, 131.0, 132.9, 135.2, 136.4, 139.0, 140.0, 173.4, 198.8, 199.2; HRMS (ESI-TOF) m/z: Calcd. for C₂₄H₂₀BrNNaO₄ [M+Na]⁺: 488.0468; Found: 488.0471.

4ae: Light yellow solid, m.p. 245.1-245.7 °C; yield 82%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ : 1.88-2.03 (m, 3H), 2.15-2.29 (m, 5H), 2.56-2.62 (m, 1H), 2.75-2.87 (m, 2H), 3.19-3.24 (m, 1H), 3.64-3.70 (m, 1H), 4.20 (d, J = 10.0 Hz, 1H), 4.27-4.33 (m, 1H), 7.04-7.17 (m, 4H), 7.74-7.78 (m, 1H), 7.82-7.87 (m, 2H), 7.95 (d, J = 7.6 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 21.0, 25.4, 29.9, 30.5, 46.9, 54.3, 65.2, 66.1, 66.9, 79.2, 123.1, 123.4, 128.5, 129.6, 131.7, 136.0, 137.2, 137.8, 140.0, 141.3, 174.7, 200.0, 200.5; HRMS (ESI-TOF) m/z: Calcd. for C₂₅H₂₃NNaO₄ [M+Na]⁺: 424.1519; Found: 424.1516.

4ba: Light yellow solid, m.p. 250.7-251.0 °C; yield 83%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ: 2.22-2.30 (m, 1H), 2.83-2.90 (m, 1H), 2.95-2.99 (m, 1H), 3.18-3.28 (m, 2H), 3.54 (d, J = 7.6 Hz, 1H), 3.63-3.69 (m, 1H), 3.92 (d, J = 7.6 Hz, 1H), 4.31 (d, J = 8.8 Hz, 1H), 4.55-4.61 (m, 1H), 7.21-7.27 (m, 5H), 7.77-7.81 (m, 1H), 7.84-7.88 (m, 2H), 7.96 (d, J = 7.2 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 23.7, 34.2, 49.0, 51.8, 63.7, 64.2, 68.9, 77.4, 121.4, 121.8, 126.6, 126.9, 127.3, 132.3, 134.5, 135.7, 138.3, 139.6, 172.3, 196.5, 197.6; HRMS (ESI-TOF) m/z: Calcd. for C₂₃H₁₉NNaO₄S [M+Na]⁺: 428.0927; Found: 428.0923.

4bb: Light yellow solid, m.p. 242.4-244.4 °C; yield 82%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ: 2.17-2.25 (m, 1H), 2.85-2.98 (m, 2H), 3.22-3.26 (m, 1H), 3.32-3.38 (m, 1H), 3.54 (d, J = 7.6 Hz, 1H), 3.65-3.71 (m, 1H), 3.92 (d, J = 7.6 Hz, 1H), 4.30 (d, J = 8.8 Hz, 1H), 4.48-4.54 (m, 1H), 6.95-6.70 (m, 2H), 7.19-7.22 (m, 2H), 7.78-7.82 (m, 1H), 7.83-7.89 (m, 2H), 7.95-7.97 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 23.9, 34.5, 49.3, 51.4, 63.9, 64.6, 69.5, 77.6, 114.6 (d, $J_{CF} = 21.2$ Hz), 121.8, 122.2, 128.3, 128.4, 128.9 (d, $J_{CF} = 8.0$ Hz), 134.9, 136.1, 138.6, 139.8, 161.2 (d, $J_{CF} = 247.2$ Hz), 172.5, 196.7, 197.8; HRMS (ESI-TOF) m/z: Calcd. for C₂₃H₁₈FNNaO₄S [M+Na]⁺: 446.0833; Found: 446.0835.

4bc: Light yellow solid, m.p. 236.2-237.0 °C; yield 88%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ: 2.15-2.22 (m, 1H), 2.86-2.98 (m, 2H), 3.22-3.26 (m, 1H), 3.37-3.42 (m, 1H), 3.54 (d, J = 7.6 Hz, 1H), 3.65-3.72 (m, 1H), 3.92 (d, J = 7.6 Hz, 1H), 4.29 (d, J = 8.8 Hz, 1H), 4.48-4.54 (m, 1H), 7.16 (d, J = 8.4 Hz, 2H), 7.26 (d, J = 8.4 Hz, 2H), 7.79-7.82 (m, 1H), 7.86-7.89 (m, 2H), 7.96 (d, J = 7.2 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 24.3, 34.9, 49.7, 51.8, 64.3, 65.1, 69.8, 78.0, 122.2, 122.6, 128.3, 129.0, 131.6, 133.4, 135.4, 136.6, 139.0, 140.2, 172.8, 197.1, 198.2; HRMS (ESI-TOF) m/z: Calcd. for C₂₃H₁₈ClNNaO₄S [M+Na]⁺: 462.0537; Found: 462.0537.

4bd: Light yellow solid, m.p. 237.4-238.1 °C; yield 76%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ: 2.45-2.51 (m, 1H), 2.79-2.87 (m, 1H), 2.90-2.94 (m, 1H), 2.98-3.04 (m, 1H), 3.33-3.37 (m, 1H), 3.57 (d, J = 8.0 Hz, 1H), 3.68-3.73 (m, 1H), 3.94 (d, J = 7.6 Hz, 1H), 4.51-4.56 (m, 1H), 5.05 (d, J = 8.4 Hz, 1H), 7.18-7.26 (m, 2H), 7.35-7.38 (m, 1H), 7.54-7.57 (m, 1H), 7.76-7.80 (m, 1H), 7.84-7.89 (m, 2H), 8.01 (d, J = 7.6 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 26.0, 35.2, 48.8, 50.0, 62.8, 65.0, 71.9, 78.1, 122.4, 122.5, 125.9, 128.5, 128.6, 129.8, 131.2, 135.0, 136.4, 139.2, 141.2, 172.6, 197.5, 198.5; HRMS (ESI-TOF) m/z: Calcd. for C₂₃H₁₈ClNNaO₄S [M+Na]⁺: 462.0537; Found: 462.0539.

4be: Light yellow solid, m.p. 230.2-231.0 °C; yield 83%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ: 2.14-2.22 (m, 1H), 2.86-2.98 (m, 2H), 3.21-3.26 (m, 1H), 3.38-3.43 (m, 1H), 3.54 (d, J = 7.6 Hz, 1H), 3.65-3.72 (m, 1H), 3.92 (d, J = 7.6 Hz, 1H), 4.27 (d, J = 8.2 Hz, 1H), 4.47-4.53 (m, 1H), 7.10 (d, J = 8.4 Hz, 2H), 7.41 (d, J = 8.4 Hz, 2H), 7.79-7.82 (m, 1H), 7.86-7.89 (m, 2H), 7.95-7.97 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 25.3, 35.9, 50.8, 52.9, 65.3, 66.1, 70.7, 79.1, 122.6, 123.3, 123.7, 130.4, 132.3, 133.2, 136.5, 137.6, 140.0, 141.2, 173.9, 198.1, 199.2; HRMS (ESI-TOF) m/z: Calcd. for C₂₃H₁₈BrNNaO₄S [M+Na]⁺: 506.0032; Found: 506.0028.

4bf: Light yellow solid, m.p. 240.7-241.5 °C; yield 82%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ: 2.17-2.25 (m, 1H), 2.89-2.99 (m, 2H), 3.22-3.27 (m, 1H), 3.42-3.47 (m, 1H), 3.53 (d, J = 7.6 Hz, 1H), 3.66-3.72 (m, 1H), 3.92 (d, J = 7.6 Hz, 1H), 4.28 (d, J = 9.2 Hz, 1H), 4.47-4.53 (m, 1H), 7.14-7.20 (m, 2H), 7.38-7.40 (m, 2H), 7.79-7.83 (m, 1H), 7.86-7.89 (m, 2H), 7.96 (d, J = 8.8 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 24.4, 34.9, 49.7, 51.9, 64.3, 65.1, 69.8, 78.0, 122.2, 122.6, 126.7, 129.6, 130.6, 135.4, 135.5, 136.5, 139.0, 140.2, 172.7, 197.0, 198.1; HRMS (ESI-TOF) m/z: Calcd. for C₂₃H₁₈BrNNaO₄S [M+Na]⁺: 506.0032; Found: 506.0032.

4bg: Light yellow solid, m.p. 235.8-236.2 °C; yield 79%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ: 2.47-2.53 (m, 1H), 2.77-2.84 (m, 1H), 2.90-2.94 (m, 1H), 3.02-3.08 (m, 1H), 3.34-3.39 (m, 1H), 3.58 (d, J = 7.6 Hz, 1H), 3.67-3.72 (m, 1H), 3.93 (d, J = 7.6 Hz, 1H), 4.45-4.51 (m, 1H), 5.09 (d, J = 7.6 Hz, 1H), 7.10-7.14 (m, 1H), 7.27-7.31 (m, 1H), 7.55-7.58 (m, 2H), 7.77-7.80 (m, 1H), 7.84-7.89 (m, 2H), 8.01 (d, J = 7.6 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 26.1, 35.1, 50.0, 51.1, 62.8, 64.9, 72.7, 78.1, 122.4, 122.6, 125.7, 126.5, 128.7, 128.8, 133.1, 133.3, 135.0, 136.4, 139.2, 141.2, 172.6, 197.5, 198.3; HRMS (ESI-TOF) m/z: Calcd. for C₂₃H₁₈BrNNaO₄S [M+Na]⁺: 506.0032; Found: 506.0027.

4bh: Light yellow solid, m.p. 238.5-239.3 °C; yield 81%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ: 2.23 (s, 3H), 2.26-2.30 (m, 1H), 2.80-2.87 (m, 1H), 2.94-2.98 (m, 1H), 3.19-3.27 (m, 2H), 3.52-3.55 (m, 1H), 3.63-3.69 (m, 1H), 3.91-3.93 (m, 1H), 4.27 (d, J = 8.8 Hz, 1H), 4.52-4.57 (m, 1H), 7.06-7.12 (m, 4H), 7.77-7.80 (m, 1H), 7.84-7.87 (m, 2H), 7.95-7.97 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 20.0, 24.5, 35.0, 49.8, 52.4, 64.5, 65.1, 69.8, 78.2, 122.2, 122.5, 127.5, 128.8, 129.9, 135.2, 136.5, 137.2, 139.0, 140.4, 173.1, 197.3, 198.4; HRMS (ESI-TOF) m/z: Calcd. for C₂₄H₂₁NNaO₄S [M+Na]⁺: 442.1083; Found: 442.1085.

4bi: Light yellow solid, m.p. 237.8-237.9 °C; yield 80%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ: 2.45 (s, 3H), 2.26-2.32 (m, 1H), 2.82-2.89 (m, 1H), 2.95-2.98 (m, 1H), 3.22-3.27 (m, 2H), 3.53 (d, J = 7.6 Hz, 1H), 3.63-3.70 (m, 1H), 3.92 (d, J = 7.6 Hz, 1H), 4.26 (d, J = 8.8 Hz, 1H), 4.53-4.59 (m, 1H), 7.02-7.06 (m, 3H), 7.14 (d, J = 7.6 Hz, 1H), 7.77-7.81 (m, 1H), 7.84-7.88 (m, 2H), 7.96 (d, J = 7.6 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 20.5, 24.6, 35.0, 49.8, 52.6, 64.5, 65.1, 69.8, 78.2, 122.2, 122.5, 124.6, 127.9, 128.1, 128.6, 133.0, 135.2, 136.4, 137.8, 139.0, 140.4, 173.1, 197.3, 198.4; HRMS (ESI-TOF) m/z: Calcd. for C₂₄H₂₁NNaO₄S [M+Na]⁺: 442.1083; Found: 442.1087.

4bj: Light yellow solid, m.p. 245.7-246.5 °C; yield 79%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ : 2.30 (s, 3H), 2.58-2.65 (m, 1H), 2.82-2.88 (m, 1H), 2.90-2.94 (m, 1H), 3.11-3.17 (m, 1H), 3.26-3.31 (m, 1H), 3.55 (d, J = 7.6 Hz, 1H), 3.66-3.72 (m, 1H), 3.95 (d, J = 7.6 Hz, 1H), 4.45-4.51 (m, 1H), 4.77 (d, J = 8.8 Hz, 1H), 7.12-7.15 (m, 3H), 7.41-7.43 (m, 1H), 7.77-7.80 (m, 1H), 7.84-7.89 (m, 2H), 7.98 (d, J = 7.6 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 18.9, 25.5, 35.4, 48.3, 50.1, 63.4, 65.3, 72.7, 78.6, 122.3, 122.5, 124.9, 127.0, 127.2, 130.7, 131.2, 135.1, 136.4, 137.8, 139.2, 140.8, 173.5, 197.5, 198.7; HRMS (ESI-TOF) m/z: Calcd. for C₂₄H₂₁NNaO₄S [M+Na]⁺: 442.1083; Found: 442.1089.

4bk: Light yellow solid, m.p. 234.3-234.6 °C; yield 81%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ : 2.22 (s, 3H), 2.25 (s, 3H), 2.57-2.64 (m, 1H), 2.80-2.85 (m, 1H), 2.89-2.93 (m, 1H), 3.12-3.18 (m, 1H), 3.24-3.29 (m, 1H), 3.54 (d, J = 8.0 Hz, 1H), 3.66-3.72 (m, 1H), 3.95 (d, J = 8.0 Hz, 1H), 4.43-4.49 (m, 1H), 4.72 (d, J = 8.4 Hz, 1H), 6.95 (d, J = 8.0 Hz, 2H), 7.30 (d, J = 8.0 Hz, 1H), 7.76-7.79 (m, 1H), 7.83-7.88 (m, 2H), 7.97 (d, J = 7.6 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 19.8, 21.0, 26.5, 36.4, 49.2, 51.2, 64.5, 66.3, 73.6, 79.7, 123.3, 123.5, 126.7, 128.1, 129.1, 132.4, 136.1, 137.3, 137.8, 138.6, 140.2, 141.9, 174.6, 198.6, 199.7; HRMS (ESI-TOF) m/z: Calcd. for C₂₅H₂₃NNaO₄S [M+Na]⁺: 456.1240; Found: 456.1245.

4bl: Light yellow solid, m.p. 237.6-238.9 °C; yield 78%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ : 2.23-2.31 (m, 1H), 2.80-2.87 (m, 1H), 2.94-2.98 (m, 1H), 3.22-3.27 (m, 2H), 3.54 (d, *J* = 7.6 Hz, 1H), 3.65-3.69 (m, 1H), 3.71 (s, 3H), 3.92 (d, *J* = 7.6 Hz, 1H), 4.25 (d, *J* = 8.2 Hz, 1H), 4.49-4.54 (m, 1H), 6.80 (d, *J* = 8.8 Hz, 2H), 7.14 (d, *J* = 8.8 Hz, 2H), 7.77-7.81 (m, 1H), 7.84-7.88 (m, 2H), 7.95-7.97 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 24.5, 35.0, 49.8, 52.1, 54.3, 64.5, 65.1, 70.0, 78.2, 113.4, 122.2, 122.5, 124.7, 128.7, 135.2, 136.4, 139.0, 140.4, 158.6, 173.2, 197.3, 198.4; HRMS (ESI-TOF) m/z: Calcd. for C₂₄H₂₁NNaO₅S [M+Na]⁺: 458.1033; Found: 458.1029.

4bm: Light yellow solid, m.p. 232.7-232.9 °C; yield 81%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ : 2.29-2.33 (m, 1H), 2.74-2.80 (m, 2H), 2.95-2.98 (m, 1H), 3.28-3.33 (m, 1H), 3.53 (d, J = 7.6 Hz, 1H), 3.63 (s, 3H), 3.68-3.71 (m, 1H), 3.95 (d, J = 7.6 Hz, 1H), 4.70-4.75 (m, 2H), 6.78 (d, J = 8.0 Hz, 1H), 6.88-6.92 (m, 1H), 7.22-7.26 (m, 1H), 7.39 (d, J = 7.2 Hz, 1H), 7.74-7.77 (m, 1H), 7.83-7.87 (m, 1H), 8.00 (d, J = 7.6 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 25.1, 34.3, 46.3, 49.0, 52.8, 62.2, 64.2, 68.6, 77.1, 108.6, 118.6, 120.9, 121.2, 121.4, 126.4, 127.5, 133.7, 135.2, 138.2, 140.7, 156.4, 169.2, 172.1, 197.1, 198.3; HRMS (ESI-TOF) m/z: Calcd. for C₂₄H₂₁NNaO₅S [M+Na]⁺: 458.1033; Found: 458.1036.

4ca: Light yellow solid, m.p. 248.6-248.9 °C; yield 80%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ : 1.20-1.22 (m, 1H), 1.28-1.35 (m, 1H), 1.87-1.95 (m, 1H), 2.84-2.91 (m, 1H), 2.92-2.96 (m, 1H), 3.26-3.31 (m, 1H), 3.32-3.38 (m, 1H), 3.53 (d, J = 7.2 Hz, 1H), 3.77-3.82 (m, 1H), 3.91 (d, J = 6.8 Hz, 1H), 4.43 (d, J = 9.2 Hz, 1H), 4.53-4.59 (m, 1H), 7.20-7.30 (m, 5H), 7.73-7.77 (m, 1H), 7.83-7.88 (m, 2H), 7.95 (d, J = 7.6 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 21.8, 23.2, 35.7, 50.2,

56.4, 67.0, 69.3, 69.9, 81.3, 123.0, 123.6, 128.2, 128.6, 129.0, 134.7, 135.6, 137.3, 140.2, 142.6, 169.4, 198.1, 199.1; HRMS (ESI-TOF) m/z: Calcd. for C₂₄H₂₁NNaO₄S [M+Na]⁺: 442.1083; Found: 442.1086.

4cb: Light yellow solid, m.p. 249.6-250.5 °C; yield 82%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ: 1.22-1.26 (m, 1H), 1.33-1.39 (m, 1H), 1.83-1.90 (m, 1H), 2.85-2.96 (m, 2H), 3.25-3.30 (m, 1H), 3.42-3.47 (m, 1H), 3.52 (d, J = 6.8 Hz, 1H), 3.81-3.84 (m, 1H), 3.90 (d, J = 6.8 Hz, 1H), 4.42-4.50 (m, 2H), 6.93-7.00 (m, 3H), 7.22-7.28 (m, 1H), 7.74-7.78 (m, 1H), 7.83-7.88 (m, 2H), 7.95 (d, J =7.6 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 20.7, 22.3, 34.5, 49.1, 54.7, 65.7, 68.3, 69.0, 80.1, 114.1 (d, $J_{CF} = 21.3$ Hz), 114.6 (d, $J_{CF} = 22.3$ Hz), 122.0, 122.6, 123.4, 123.5, 129.5 (d, $J_{CF} = 8.3$ Hz), 134.7, 136.3, 139.2, 141.4, 161.9 (d, $J_{CF} = 246.4$ Hz), 168.1, 196.8, 198.0; HRMS (ESI-TOF) m/z: Calcd. for C₂₄H₂₀FNNaO₄S [M+Na]⁺: 460.0989; Found: 460.0989.

4cc: Light yellow solid, m.p. 242.5-243.8 °C; yield 82%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ: 1.22-1.24 (m, 1H), 1.31-1.38 (m, 1H), 1.82-1.90 (m, 1H), 2.84-2.94 (m, 2H), 3.24-3.29 (m, 1H), 3.38-3.44 (m, 1H), 3.52 (d, J = 7.2 Hz, 1H), 3.79-3.84 (m, 1H), 3.90 (d, J = 7.2 Hz, 1H), 4.41 (d, J = 9.2 Hz, 1H), 4.46-4.52 (m, 1H), 6.96-7.00 (m, 2H), 7.18-7.22 (m, 2H), 7.74-7.78 (m, 1H), 7.83-7.88 (m, 2H), 7.95 (d, J = 7.6 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 19.7, 21.1, 33.5, 48.1, 53.6, 64.8, 67.5, 67.9, 79.1, 113.8 (d, $J_{CF} = 21.2$ Hz), 121.0, 121.5, 128.2 (d, $J_{CF} = 7.3$ Hz), 133.6, 135.3, 138.2, 140.4, 160.4 (d, $J_{CF} = 246.2$ Hz), 167.2, 195.9, 197.0; HRMS (ESI-TOF) m/z: Calcd. for C₂₄H₂₀FNNaO₄S [M+Na]⁺: 460.0989; Found: 460.0995.

4cd: Light yellow solid, m.p. 237.9-238.1 °C; yield 75%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ : 1.22-1.24 (m, 1H), 1.30-1.35 (m, 1H), 1.88-1.92 (m, 1H), 2.26 (s, 3H), 2.82-2.88 (m, 1H), 2.91-2.95 (m, 1H), 3.24-3.29 (m, 1H), 3.34-3.40 (m, 1H), 3.52 (d, J = 7.2 Hz, 1H), 3.77-3.81 (m,

1H), 3.90 (d, J = 7.2 Hz, 1H), 4.40 (d, J = 9.2 Hz, 1H), 4.50-4.55 (m, 1H), 7.06-7.11 (m, 4H), 7.73-7.76 (m, 1H), 7.82-7.87 (m, 2H), 7.95 (d, J = 7.6 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 21.8, 23.2, 35.7, 50.2, 56.2, 67.0, 69.4, 69.9, 81.3, 123.0, 123.5, 128.5, 129.7, 131.5, 135.5, 137.2, 138.0, 140.2, 142.6, 169.5, 198.1, 199.1; HRMS (ESI-TOF) m/z: Calcd. for C₂₅H₂₃NNaO₄S [M+Na]⁺: 456.1240; Found: 456.1241.

4ce: Light yellow solid, m.p. 248.1-249.2 °C; yield 80%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ: 1.21-1.26 (m, 1H), 1.31-1.35 (m, 1H), 1.89-1.96 (m, 1H), 2.26 (s, 3H), 2.83-2.89 (m, 1H), 2.92-2.96 (m, 1H), 3.25-3.30 (m, 1H), 3.34-3.39 (m, 1H), 3.52 (d, J = 7.2 Hz, 1H), 3.79-3.81 (m, 1H), 3.91 (d, J = 7.2 Hz, 1H), 4.39 (d, J = 9.2 Hz, 1H), 4.51-4.57 (m, 1H), 7.01-7.05 (m, 3H), 7.14-7.19 (m, 1H), 7.73-7.77 (m, 1H), 7.82-7.87 (m, 2H), 7.95 (d, J = 7.6 Hz, 1H); ¹³C NMR $(CDCl_3, 100 \text{ MHz}) \delta$: 20.5, 20.8, 22.2, 34.7, 49.2, 55.4, 66.0, 68.4, 68.9, 80.3, 122.0, 122.5, 124.6, 127.8, 127.9, 128.4, 133.5, 134.5, 136.2, 137.7, 139.2, 141.6, 168.4, 197.1, 198.1; HRMS (ESI-TOF) m/z: Calcd. for C₂₅H₂₃NNaO₄S [M+Na]⁺: 456.1240; Found: 456.1243.

4cf: Light yellow solid, m.p. 234.4-235.9 °C; yield 81%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ: 1.24-1.28 (m, 1H), 1.31-1.36 (m, 1H), 1.90-1.97 (m, 1H), 2.16 (s, 6H), 2.82-2.88 (m, 1H), 2.91-2.95 (m, 1H), 3.24-3.29 (m, 1H), 3.35-3.41 (m, 1H), 3.52 (d, J = 6.8 Hz, 1H), 3.77-3.82 (m, 1H), 3.90 (d, J = 6.8 Hz, 1H), 4.36 (d, J = 9.2 Hz, 1H), 4.49-4.55 (m, 1H), 6.94 (d, J = 8.4 Hz, 2H), 7.02 (d, J = 7.6 Hz, 1H), 7.72-7.76 (m, 1H), 7.82-7.87 (m, 2H), 7.95 (d, J = 8.0 Hz, 1H); ¹³C NMR $(CDCl_3, 100 \text{ MHz}) \delta$: 18.4, 18.9, 20.8, 22.2, 34.7, 49.2, 55.2, 66.0, 68.4, 68.9, 80.3, 122.0, 122.5, 124.9, 128.9, 129.1, 130.9, 134.5, 135.6, 136.2, 139.2, 141.6, 168.5, 197.2, 198.1; HRMS (ESI-TOF) m/z: Calcd. for $C_{26}H_{25}NNaO_4S [M+Na]^+$: 470.1397; Found: 470.1395.

4cg: Light yellow solid, m.p. 236.1-236.7 °C; yield 75%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz)

δ: 1.13-1.19 (m, 3H), 1.20-1.24 (m, 1H), 1.28-1.34 (m, 1H), 1.89-1.93 (m, 1H), 2.53-2.59 (m, 2H), 2.82-2.88 (m, 1H), 2.92-2.96 (m, 1H), 3.24-3.29 (m, 1H), 3.32-3.38 (m, 1H), 3.52 (d, J = 7.2 Hz, 1H), 3.78-3.80 (m, 1H), 3.90 (d, J = 7.2 Hz, 1H), 4.40 (d, J = 9.2 Hz, 1H), 4.51-4.57 (m, 1H), 7.09-7.14 (m, 4H), 7.72-7.76 (m, 1H), 7.82-7.87 (m, 2H), 7.95 (d, J = 7.6 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 14.4, 20.8, 22.2, 27.4, 34.7, 49.2, 55.2, 66.0, 68.4, 68.9, 80.3, 122.0, 122.5, 127.1, 127.4, 127.5, 129.4, 130.7, 134.5, 136.2, 139.2, 141.6, 143.2, 168.5, 197.1, 198.1; HRMS (ESI-TOF) m/z: Calcd. for C₂₆H₂₅NNaO₄S [M+Na]⁺: 470.1397; Found: 470.1395.

4ch: Light yellow solid, m.p. 240.8-241.5 °C; yield 81%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ: 1.15 (s, 3H), 1.17 (s, 3H), 1.22-1.24 (m, 1H), 1.30-1.34 (m, 1H), 1.88-1.95 (m, 1H), 2.80-2.87 (m, 2H), 2.92-2.96 (m, 1H), 3.25-3.30 (m, 1H), 3.32-3.37 (m, 1H), 3.52 (d, J = 6.8 Hz, 1H), 3.78-3.81 (m, 1H), 3.91 (d, J = 7.2 Hz, 1H), 4.40 (d, J = 9.2 Hz, 1H), 4.51-4.57 (m, 1H), 7.13 (s, 4H), 7.72-7.76 (m, 1H), 7.82-7.87 (m, 2H), 7.95 (d, J = 7.6 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 20.8, 22.2, 22.9, 32.7, 34.7, 49.2, 55.2, 66.0, 68.4, 68.9, 80.3, 122.0, 122.5, 126.0, 127.5, 130.8, 134.5, 136.2, 139.2, 141.6, 147.9, 168.5, 197.1, 198.1; HRMS (ESI-TOF) m/z: Calcd. for C₂₇H₂₇NNaO₄S [M+Na]⁺: 484.1553; Found: 484.1549.

4ci: Light yellow solid, m.p. 246.2-246.7 °C; yield 75%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ: 1.18-1.23 (m, 10H), 1.30-1.38 (m, 1H), 1.88-1.97 (m, 1H), 2.84-2.87 (m, 1H), 2.92-2.96 (m, 1H), 3.24-3.26 (m, 2H), 3.52 (d, J = 6.8 Hz, 1H), 3.78-3.81 (m, 1H), 3.90 (d, J = 6.8 Hz, 1H), 4.40 (d, J = 9.2 Hz, 1H), 4.51-4.57 (m, 1H), 7.13 (d, J = 8.4 Hz, 2H), 7.28 (d, J = 8.4 Hz, 2H), 7.73-7.76 (m, 1H), 7.82-7.87 (m, 2H), 7.95 (d, J = 7.6 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 20.8, 22.2, 30.2, 33.5, 34.7, 49.2, 55.1, 66.0, 68.4, 68.9, 80.3, 122.0, 122.5, 124.8, 127.2, 130.4, 134.5, 136.2, 139.2, 141.6, 150.2, 168.5, 197.1, 198.1; HRMS (ESI-TOF) m/z: Calcd. for C₂₈H₂₉NNaO₄S [M+Na]⁺: 498.1710; Found: 498.1714.

4da: Light yellow solid, m.p. 243.7-244.5 °C; yield 81%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ : 1.02-1.10 (m, 1H), 1.22 (s, 3H), 1.59-1.64 (m, 4H), 1.87-2.13 (m, 6H), 2.25-2.47 (m, 6H), 2.55 (d, *J* = 8.8 Hz, 1H), 2.71-2.76 (m, 1H), 3.06-3.11 (m, 1H), 3.73-3.77 (m, 1H), 3.82-3.85 (m, 1H), 5.13 (d, *J* = 10.0 Hz, 1H), 7.73-7.77 (m, 1H), 7.80-7.84 (m, 1H), 7.88 (d, *J* = 8.0 Hz, 1H), 7.94 (d, *J* = 7.2 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 12.1, 15.0, 19.0, 22.3, 28.1, 30.8, 33.8, 34.8, 44.3, 49.6, 58.3, 59.9, 63.8, 64.1, 64.7, 77.1, 78.2, 121.1, 123.2, 133.0, 133.3, 135.0, 138.5, 140.5, 169.1, 171.8, 198.8, 198.9; HRMS (ESI-TOF) m/z: Calcd. for C₂₈H₃₁NNaO₅ [M+Na]⁺: 484.2089; Found: 484.2084.

4ea: Light yellow solid, m.p. 240.3-241.1 °C; yield 79%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ : 1.42-1.46 (m, 1H), 1.69-1.75 (m, 1H), 1.83-1.92 (m, 4H), 2.05-2.13 (m, 2H), 2.27-2.51 (m, 7H), 2.58-2.62 (m, 1H), 2.69-2.73 (m, 1H), 2.78-2.86 (m, 2H), 3.77-3.82 (m, 2H), 4.71 (s, 1H), 4.83 (s, 1H), 4.91 (d, J = 12.8 Hz, 1H), 7.71-7.75 (m, 1H), 7.79-7.83 (m, 1H), 7.87 (d, J = 7.6 Hz, 1H), 7.94 (d, J = 7.6 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 11.8, 18.6, 26.4, 27.8, 29.8, 30.1, 34.6, 44.0, 44.5, 48.0, 49.0, 57.9, 63.4, 76.6, 79.9, 107.6, 109.0, 120.6, 120.8, 132.9, 134.5, 138.1, 140.1, 148.3, 148.6, 168.7, 172.1, 198.7, 198.8; HRMS (ESI-TOF) m/z: Calcd. for C₂₈H₃₀NO₄ [M+H]⁺: 444.2169; Found: 444.2175.

4eb: Light yellow solid, m.p. 241.1-241.9 °C; yield 78%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ: 1.34-1.44 (m, 1H), 1.68-1.75 (m, 1H), 1.84-1.93 (m, 1H), 2.02-2.09 (m, 1H), 2.27-2.51 (m, 6H), 2.59-2.63 (m, 1H), 2.79-2.88 (m, 2H), 2.95-2.98 (m, 1H), 3.27-3.32 (m, 1H), 3.41-3.43 (m, 1H), 3.77-3.82 (m, 1H), 3.91-3.94 (m, 1H), 4.01-4.09 (m, 1H), 4.73 (s, 1H), 4.85 (s, 1H), 4.91 (d, J =5.6 Hz, 2H), 7.73-7.77 (m, 1H), 7.81-7.89 (m, 2H), 7.95-7.97 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 27.6, 28.7, 31.2, 33.3, 35.7, 37.1, 46.0, 49.4, 49.9, 50.3, 64.3, 67.7, 77.9, 81.3, 109.2, 110.7, 122.3, 122.4, 134.5, 136.1, 139.5, 141.9, 149.5, 149.8, 173.0, 197.7, 199.1; HRMS (ESI-TOF) m/z: Calcd. for $C_{27}H_{27}NNaO_4S [M+Na]^+$: 484.1548; Found: 484.1542.

4fa: Light yellow solid, m.p. 248.3-249.1 °C; yield 73%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ: 1.33 (s, 3H), 1.59 (s, 3H), 1.63-1.66 (m, 1H), 1.84-1.88 (m, 1H), 2.09-2.23 (m, 5H), 2.28-2.33 (m, 1H), 2.44-2.49 (m, 1H), 2.52-2.57 (m, 1H), 2.95-3.03 (m, 2H), 3.30-3.35 (m, 1H), 3.43 (d, J = 8.0 Hz, 1H), 3.96 (d, J = 8.0 Hz, 1H), 4.10-4.14 (m, 1H), 4.40 (d, J = 10.0 Hz, 1H), 4.51-4.56 (m, 1H), 4.77 (d, J = 10.4 Hz, 1H), 7.73-7.77 (m, 1H), 7.81-7.84 (m, 1H), 7.89 (d, J = 7.6 Hz, 1H), 7.96 (d, J = 7.6 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 16.3, 17.3, 23.4, 26.2, 34.4, 38.4, 39.6, 40.3, 50.9, 53.9, 66.3, 68.9, 79.3, 123.4, 126.6, 126.8, 135.5, 137.1, 137.8, 140.5, 140.7, 143.1, 174.4, 198.7, 199.8; HRMS (ESI-TOF) m/z: Calcd. for C₂₇H₂₉NNaO₄S [M+Na]⁺: 486.1710; Found: 486.1713.

4ga: Light yellow solid, m.p. 249.6-250.1 °C; yield 80%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ: 1.93-2.06 (m, 4H), 2.11-2.22 (m, 2H), 2.48-2.57 (m, 2H), 2.69-2.73 (m, 1H), 2.93-3.00 (m, 1H), 3.90-4.01 (m, 2H), 4.10-4.16 (m, 1H), 7.74-7.78 (m, 1H), 7.80-7.91 (m, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ: 30.2, 31.3, 31.6, 40.1, 46.6, 60.7, 64.9, 66.0, 77.7, 123.1, 123.2, 135.9, 137.1, 140.2, 141.3, 174.9, 200.3, 200.5; HRMS (ESI-TOF) m/z: Calcd. for C₁₈H₁₇NNaO₄ [M+Na]⁺: 334.1050; Found: 334.1048.

4gb: Light yellow solid, m.p. 252.7-253.3 °C; yield 81%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ: 1.87-2.06 (m, 4H), 2.11-2.22 (m, 2H), 2.48-2.57 (m, 2H), 2.69-2.73 (m, 1H), 2.93-3.00 (m, 1H), 3.90-4.01 (m, 2H), 4.10-4.16 (m, 1H), 7.74-7.78 (m, 1H), 7.80-7.91 (m, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ: 31.8, 37.1, 39.1, 50.7, 60.8, 65.9, 68.2, 77.8, 123.2, 123.4, 136.1, 137.3, 140.2, 141.7, 174.3, 198.4, 199.8; HRMS (ESI-TOF) m/z: Calcd. for $C_{17}H_{15}NNaO_4S$ [M+Na]⁺: 352.0614; Found: 352.0611.

6. Scheme S1: gram scale synthesis of the products 4aa

In a sealed tube equipped with a magnetic stirring bar, to 20 mL of toluene was added 3-benzylidenebutyrolactone **1a** (0.35 g, 2.0 mmol), ninhydrin **2a** (0.53 g, 3.0 mmol) and proline **3a** (0.58 g, 5.0 mmol). The reaction mixture was stirred at 80 °C for 5 h. After completion of the reaction, as indicated by TLC, purification by flash column chromatography (hexane/EtOAc, 5/1, v/v) was carried out to furnish the hybrid **4aa** (0.63 g, 81%, >20:1 dr).

7. General experimental procedures for in vitro cytotoxicity assay

Two human cancer cell lines, K562 and A549 were purchased from Chinese Academy of Sciences. All the cells were cultured in RPMI-1640 medium (GIBICO, USA), supplemented with 10% fetal bovine serum (Hyclone, USA) and Penicillin-Streptomycin (respectively 100 U/mL) in 5% CO₂ at 37 °C. The cytotoxicity assay was performed according to the MTT (3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide) method in 96-well microplates. Briefly, 5000 cells were seeded into each well of 96-well cell culture plates and allowed to grow for 24 h before drug addition. The K562 tumor cell line was exposed to test compounds **4** at the concentrations of 10, 20, 40, 80, and 100 μ mol·L⁻¹ in triplicates for 48 h, comparable to cisplatin (Aladdin, China). Then the MTT reagent was added to reaction with the cancer cells for 4 hours. At least, measure the OD value at 490 wavelengths. IC₅₀ of all the compounds were calculated by IBM SPSS Statistics (version 19).

A549 IC₅₀ 41.23 μM, K562 IC₅₀ 18.81 μM

A549 IC₅₀ 38.71 μM, K562 IC₅₀ 27.17 μM

A549 IC₅₀ >100.0 μM, K562 IC₅₀ >100.0 μM

8. X-ray crystal data for compounds 4be and 4ea

Table 52 Crystal data and str	ucture remement for 4be
Identification code	4be
Empirical formula	$C_{24}H_{19}BrCl_3NO_4S$
Formula weight	603.72
Temperature/K	199.99(10)
Crystal system	triclinic
Space group	P-1
a/Å, b/Å, c/Å	10.2738(9), 11.6678(9), 12.4456(9)
$\alpha/^{\circ}, \beta/^{\circ}, \gamma/^{\circ},$	99.949(6), 109.200(7), 108.757(7).
Volume/Å ³	1267.71(19)
Z	2
$\rho_{calc}g/cm^3$	1.582
μ/mm^{-1}	2.051
F(000)	608.0
Radiation	MoKα (λ = 0.71073)
Crystal size/mm ³	0.14 imes 0.13 imes 0.12
2Θ range for data collection/°	4.42 to 49.986
Index ranges	$-12 \le h \le 10, -12 \le k \le 13, -14 \le l \le 14$
Reflections collected	8237
Independent reflections	4445 [$R_{int} = 0.0301$, $R_{sigma} = 0.0545$]
Data/restraints/parameters	4445/0/271
Goodness-of-fit on F ²	1.054
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0451, wR_2 = 0.1218$
Final R indexes [all data]	$R_1 = 0.0589, wR_2 = 0.1288$
Largest diff. peak/hole / e \AA^{-3}	0.54/-0.47

Table S2 Crystal data and structure refinement for 4be

Crystal Data for C₂₄H₁₉BrCl₃NO₄S (M =603.72 g/mol): triclinic, space group P-1 (no. 2), a = 10.2738(9) Å, b = 11.6678(9) Å, c = 12.4456(9) Å, a = 99.949(6)°, $\beta = 109.200(7)$ °, $\gamma = 108.757(7)$ °, V = 1267.71(19) Å³, Z = 2, T = 199.99(10) K, μ (MoK α) = 2.051 mm⁻¹, *Dcalc* = 1.582 g/cm³, 8237 reflections measured (4.42° $\leq 2\Theta \leq 49.986$ °), 4445 unique ($R_{int} = 0.0301$, $R_{sigma} = 0.0545$) which were used in all calculations. The final R_1 was 0.0451 (I > 2 σ (I)) and wR_2 was 0.1288 (all data).

Table S3 Crystal data and structure refinement for 4ea				
Identification code	4ea			
Empirical formula	$C_{28}H_{29}NO_4$			
Formula weight	443.52			
Temperature/K	169.99(10)			
Crystal system	tetragonal			
Space group	P4 ₁ 2 ₁ 2			
a/Å, b/Å, c/Å	8.1259(2), 8.1259(2), 67.712(2)			
$\alpha/^{\circ}, \beta/^{\circ}, \gamma/^{\circ},$	90, 90, 90.			
Volume/Å ³	4471.0(3)			
Z	8			
$\rho_{calc}g/cm^3$	1.318			
μ/mm^{-1}	0.702			
F(000)	1888.0			
Radiation	Cu Ka ($\lambda = 1.54184$)			
Crystal size/mm ³	$0.15 \times 0.13 \times 0.102$			
2Θ range for data collection/°	5.22 to 150.586			
Index ranges	$-6 \le h \le 9, -9 \le k \le 9, -84 \le l \le 78$			
Reflections collected	30219			
Independent reflections	4505 [$R_{int} = 0.0628$, $R_{sigma} = 0.0316$]			
Data/restraints/parameters	4505/0/315			
Goodness-of-fit on F ²	1.241			
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0614, wR_2 = 0.1119$			
Final R indexes [all data]	$R_1 = 0.0638, wR_2 = 0.1129$			
Largest diff. peak/hole / e Å $^{-3}$	0.26/-0.24			
Flack/Hooft parameter	-0.05(11)/-0.04(10)			

Crystal Data for C₂₈H₂₉NO₄ (*M* =443.52 g/mol): tetragonal, space group P4₁2₁2 (no. 92), *a* = 8.1259(2) Å, *c* = 67.712(2) Å, *V* = 4471.0(3) Å³, *Z* = 8, *T* = 169.99(10) K, μ (CuK α) = 0.702 mm⁻¹, *Dcalc* = 1.318 g/cm³, 30219 reflections measured (5.22° ≤ 2 Θ ≤ 150.586°), 4505 unique (R_{int} = 0.0628, R_{sigma} = 0.0316) which were used in all calculations. The final R_1 was 0.0614 (I > 2 σ (I)) and wR_2 was 0.1129 (all data).

9. The copies of 1H NMR and 13C NMR spectra for compounds 4

¹H and ¹³C NMR of 4ab

¹H and ¹³C NMR of 4ad

¹H and ¹³C NMR of 4ba

S24

¹H and ¹³C NMR of 4bd

¹H and ¹³C NMR of 4be

¹H and ¹³C NMR of 4bf

¹H and ¹³C NMR of 4bj

S33

¹H and ¹³C NMR of 4bl

¹H and ¹³C NMR of 4bm

¹H and ¹³C NMR of 4ca

¹H and ¹³C NMR of 4cb

S38

¹H and ¹³C NMR of 4ce

S41

¹H and ¹³C NMR of 4cg

¹H and ¹³C NMR of 4ch

¹H and ¹³C NMR of 4ea

¹H and ¹³C NMR of 4eb

¹H and ¹³C NMR of 4fa

¹H and ¹³C NMR of 4ga

¹H and ¹³C NMR of 4gb

S50