SUPPORTING INFORMATION

Visible-Light-Mediated Synthesis of α-Alkoxy/Hydroxy Diarylacetaldehydes from Terminal Alkynes

Jaswant Kumar, ${ }^{\text {a,b }}$ Ajaz Ahmed, ${ }^{\text {a,b }}$ Sourav Kumar, ${ }^{\text {a,b }}$ Shabnam Raheem, ${ }^{\text {c }}$ Masood Ahmad Rizvi*, ${ }^{\text {c }}$ and Bhahwal Ali Shah ${ }^{*, a, b}$

${ }^{a}$ Academy of Scientific and Industrial Research (AcSIR), Ghaziabad-201002, India

${ }^{\mathrm{b}}$ Natural Product \& Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu-180001.

${ }^{\mathrm{c}}$ Department of Chemistry, University of Kashmir, Srinagar, 190006.

Table of contents

1. General Information S1
2. General Synthetic Procedures
Method A: Synthesis of α-methoxy diaryl/alkyl methanols S2
Method B: Substrate scope for α-Hydroxy diaryl/alkyl methanols S2
3. Quenching Experiments and Stern-Volmer Plots S2-S4
4. Characterization data (3-47) S5-S19
5. NMR spectra S20-S81

1. General Information

All reactions were carried out in oven-dried glassware. The solvents used were purified by distillation. The reactions were irradiated using a regular blue light-emitting diode (LED) strip purchased from market (Manufacturer: GM Modular, Model: Zodion 5050SMD; 60 LEDs per meter, 14 Lumens per LED, 12 V strip Light at 460 nm). Irradiation occurred along the sides at a uniform distance of $5 \mathrm{~cm} .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on FT-NMR 500 and 400 MHz instruments. Chemical data for protons are reported in parts per million (ppm) downfield from tetramethylsilane and are referenced to the residual proton in the NMR solvent $\left(\mathrm{CDCl}_{3}, 7.26 \mathrm{ppm}\right)$. Carbon nuclear magnetic resonance spectra (${ }^{13} \mathrm{C}$ NMR) were recorded at 125 MHz or 100 MHz : chemical data for carbons are reported in parts per million (ppm, δ scale) downfield from tetramethylsilane and are referenced to the carbon resonance of the solvent. Coupling constants (J) are quoted in Hz. Mass spectra were obtained using Q-TOF-LC/MS spectrometer using electron spray ionization.

Abbreviations: TEMPO $=$ 2,2,6,6-tetramethylpiperidine-1-oxyl, TLC $=$ thin layer chromatography, DIPEA $=\mathrm{N}, \mathrm{N}$-diisopropylethylamine, $\mathrm{EA}=$ ethyl acetate, $\mathrm{MeOH}=$ methanol.

2. General Synthetic Procedures:

2.1. Method A: Synthesis of $\boldsymbol{\alpha}$-methoxy diaryl acetaldehydes

To the oven dried 15 mL glass vial was added phenylacetylene ($100 \mathrm{mg}, 0.98 \mathrm{mmol}$), benzoquinone ($106 \mathrm{mg}, 0.98 \mathrm{mmol}$), copper cyanide ($21.9 \mathrm{mg}, 25 \mathrm{~mol} \%$) followed by addition of MeOH as a solvent. The reaction mixture was then irradiated under an air atmosphere under blue light sourced from blue LED strips for 8 h . After the completion of reaction, as monitored by TLC, the reaction mixture was dried by rotavapor and the residue left is subjected to extraction with ethyl acetate and water. The aqueous layers were then again extracted with ethyl acetate. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The crude mixture was purified by silica gel column chromatography using (hexane/EA $=95: 5$) as solvent system to obtain pure product $\mathbf{3}$ as yellow oil ($218 \mathrm{mg}, 90 \%$ yield).

2.2. Method B: Synthesis of $\boldsymbol{\alpha}$-hydroxy diaryl acetaldehydes

To the oven dried 15 mL glass vial was added phenylacetylene ($100 \mathrm{mg}, 0.98 \mathrm{mmol}$), benzoquinone ($106 \mathrm{mg}, 0.98 \mathrm{mmol}$), copper cyanide (89.5 mg) followed by addition of trifluoroacetic acid ($111 \mathrm{mg}, 0.98 \mathrm{mmol}$) and $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}(1: 1)$ as a solvent. The reaction mixture was then irradiated under an air atmosphere under blue light sourced from blue LED strips for 8 h. After the completion of reaction, as monitored by TLC, the reaction mixture was extracted with ethyl acetate and water. The aqueous layers were then washed with sodium bicarbonate $\left(\mathrm{NaHCO}_{3}\right)$ and again extracted with ethyl acetate. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The crude mixture was purified by silica gel column chromatography using (hexane/EA $=90: 10$) as solvent system to obtain pure product 39 as yellow oil (194 mg , 85\% yield).

3. Luminescence Quenching Experiments and Stern-Volmer Plots

3.1. Absorption Studies:

Identification of the possible $\mathrm{BQ}+\mathrm{PA}$ photo-adduct as the visible light absorbing system in the reaction mixture was obtained from the time dependent absorption changes monitored for a mixture of fixed concentrations of benzoquinone $\left\{\mathrm{BQ}=2.5 \times 10^{-4} \mathrm{M}\right\}$ and $\{$ phenylacetylene (PA) $\left.5 \times 10^{-5} \mathrm{M}\right\}$. The prepared binary mixture was irradiated for 70 minutes under blue LED (15 W). The absorbance was recorded after every 10 minutes over the wavelength range of 300-800 nm. The irradiation time dependent hyperchromic effect at the $\lambda \max$ of 470 nm was corroborated to the excimer formation as blue light responsive absorbing system of the reaction mixture.

3.2. Stoichiometric analysis of the BQ: PA photo-adduct:

The stoichiometry of the proposed complex between BQ and PA was obtained from Job's continuous variation method using absorbance studies. The absorption spectra of equimolar
concentrations $\left(5 \times 10^{-5} \mathrm{M}\right)$ of BQ and PA were recorded at $\lambda \max 470 \mathrm{~nm}$ in quartz cuvette over Shimadzu (UV-1800) spectrophotometer. From the observed jobs plot the absorbance was seen to be maximum at1:1 molar ratio of BQ and PA in methanol solvent, predicting the $1: 1$ stoichiometry of their adduct formed in solution.
The relative propensity of copper (I) salts towards nucleophilic step of the proposed reaction path was also attempted using the absorption studies. Upon incremental addition of copper (I) salts $\{\mathrm{CuCN}, \mathrm{CuCl})$ on $\mathrm{BQ}: \mathrm{PA}$ adduct under blue LED irradiation the changes in the absorption pattern predicted the influence of copper salt Lewis acidity on the reaction propensity, which was explored through binding constant calculations of CuCl and CuCN adducts with the proposed molecule in the reaction mechanism. These binding constant (K) were determined using the relevant BenesiHildebrand equation:

$$
1 /\left(\mathrm{A}-\mathrm{A}_{0}\right)=1 /\left(\mathrm{A}_{\max }-\mathrm{A}\right)+1 / K\left(A_{\max }-A\right)[M]
$$

In this equation, A_{0} and A are the absorbance of BQ : PA adduct before and after the increasing concentrations of copper salts respectively. $\mathrm{A}_{\max }$ is the absorbance obtained at saturated concentration and [M] is the added copper salt concentration. The observed binding constants $\mathrm{K}_{\mathrm{CuCN}}$ and $\mathrm{K}_{\mathrm{CuCl}}$ were obtained from the ratio of the intercept to the slope in the plot of $1 /\left(\mathrm{A}-\mathrm{A}_{0}\right)$ versus 1/[M].

3.3. Fluorescence Studies:

Fluorescence studies were carried out using Shimadzu (RF-5301PC) spectroflourometer Fluorescence quenching of BQ after addition of PA was observed for 70 minutes in methanol around $20^{\circ} \mathrm{C}$ temperature and blue LED irradiation. The hypochromism in fluorescence intensity of $B Q$ was seen at the wavelength of $\lambda 516 \mathrm{~nm}$ corresponding to its emission maximum. To support absorption studies suggesting the role of Lewis acidity of copper(I) cyanide on the reaction propensity, the fluorescence measurements were also carried out. The effect of CuCN addition on the fluorescence profile of equimolar concentrations of BQ:PA adduct at the wavelength of 516 nm indicated a dose dependent hyperchromic effect with a slight blue shift. The changes in the fluorescence intensity of $\mathrm{BQ}: \mathrm{PA}$ adduct upon incremental addition of CuCN were analyzed using Stern Volmer analysis method Fig S1 with the calculated stern volmer constant of 6×10^{4}. From the emission studies the corresponding binding constant of 4×10^{5} for CuCN binding with the proposed molecule in the reaction mechanism was calculated which is in conformity with the absorption studies.

Figure S1: Stern-Volmer analysis of CuCN binding.

4. Characterization Data (3-47):

2-(4-hydroxyphenyl)-2-methoxy-2-phenylacetaldehyde (3).

The title compound was prepared according to the method A by taking phenylacetylene ($100 \mathrm{mg}, 0.98 \mathrm{mmol}$), 1,4-benzoquinone ($106 \mathrm{mg}, 0.98 \mathrm{mmol}$), $\mathrm{CuCN}(21.9 \mathrm{mg}, 0.25 \mathrm{mmol})$, methanol (3 ml) as solvent and purified by column chromatography (hexane: $\mathrm{EA}=95: 5$) as yellow oil ($218 \mathrm{mg}, 90 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta-9.65(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.23(\mathrm{~m}, 5 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 2 \mathrm{H})$, $6.78-6.73(\mathrm{~m}, 2 \mathrm{H}), 3.09(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ MHz): $\delta-198.0,156.0,137.0,130.5,128.8,128.6,128.5,115.5,89.2,52.9$. HRMS (ESI) (m/z): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NaO}_{3}, 265.0835$; found: 265.0848.

2-(4-hydroxyphenyl)-2-methoxy-2-(m-tolyl)acetaldehyde (4).

The title compound was prepared according to the method A by taking 3-methylphenylacetylene ($100 \mathrm{mg}, 0.86 \mathrm{mmol}$), 1,4benzoquinone ($108 \mathrm{mg}, 0.86 \mathrm{mmol}$), $\mathrm{CuCN}(19.2 \mathrm{mg}, 0.22$ mmol), methanol (3 ml) as solvent and purified by column chromatography (hexane:EA= 95:5) as yellow oil ($212 \mathrm{mg}, 83 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-9.64(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-$ $7.11(\mathrm{~m}, 4 \mathrm{H}), 7.10-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.78-6.73(\mathrm{~m}, 2 \mathrm{H}), 5.67(\mathrm{~d}, J$ $=38.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta-$ 198.0, 156.0, 138.4, 136.8, 130.5, 129.3, 129.3, 128.7, 128.4, 125.9, 115.5, 89.2, 52.9, 21.5.HRMS (ESI) $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NaO}_{3}, 279.0992$; found: 279.1003.

2-(4-hydroxyphenyl)-2-methoxy-2-(p-tolyl)acetaldehyde (5).

The title compound was prepared according to the method A by taking 4-methylphenylacetylene ($100 \mathrm{mg}, 0.86 \mathrm{mmol}$), $1,4-$ benzoquinone ($108 \mathrm{mg}, 0.86 \mathrm{mmol}$), $\mathrm{CuCN}(19.2 \mathrm{mg}, 0.22 \mathrm{mmol})$, methanol (3 ml) as solvent and purified by column chromatography (hexane: EA=94:6) as yellow oil ($228 \mathrm{mg}, 89 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-9.63(\mathrm{~s}, 1 \mathrm{H}), 7.19-7.09(\mathrm{~m}, 6 \mathrm{H})$, 6.78 - $6.72(\mathrm{~m}, 2 \mathrm{H}), 5.73(\mathrm{~s}, 1 \mathrm{H}), 3.08(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.27$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta-197.9,156.1,138.5,133.7,130.5,129.3,128.8$, 128.6, 115.5, 89.2, 52.8, 21.1. HRMS (ESI) (m/z): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NaO}_{3}, 279.0992$; found: 279.1000 .

2-(4-ethylphenyl)-2-(4-hydroxyphenyl)-2-methoxyacetaldehyde (6).

The title compound was prepared according to the method A by taking 4-ethylphenylacetylene ($100 \mathrm{mg}, 0.77 \mathrm{mmol}$), 1,4-benzoquinone ($83.2 \mathrm{mg}, 0.77 \mathrm{mmol}$), $\mathrm{CuCN}(17.2 \mathrm{mg}, 0.19 \mathrm{mmol}$),

methanol (3 ml) as solvent and purified by column chromatography (hexane: $\mathrm{EA}=94: 6$) as yellow oil (221 mg , 82%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-9.63(\mathrm{~s}, 1 \mathrm{H}), 7.22-7.11$ $(\mathrm{m}, 6 \mathrm{H}), 6.78-6.73(\mathrm{~m}, 2 \mathrm{H}), 5.82(\mathrm{~s}, 1 \mathrm{H}), 3.08(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{q}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.15(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}): \delta-197.9,156.1,144.7,133.7,130.5,128.9,128.5$, 128.1, 115.6, 89.3, 52.8, 28.5, 15.4. HRMS (ESI) (m/z): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NaO}_{3}$, 293.1148; found: 293.1161.

2-(4-hydroxyphenyl)-2-methoxy-2-(4-propylphenyl)acetaldehyde (7).

The title compound was prepared according to the method A by taking 4-propylphenylacetylene ($100 \mathrm{mg}, 0.69 \mathrm{mmol}$), 1,4benzoquinone ($74.6 \mathrm{mg}, 0.69 \mathrm{mmol}$), $\mathrm{CuCN}(15.4 \mathrm{mg}, 0.17$ mmol), methanol (3 ml) as solvent and purified by column chromatography (hexane: $\mathrm{EA}=93: 7$) as yellow oil (222 mg , 78%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.75(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.21(\mathrm{~m}, 6 \mathrm{H}), 6.89-6.85(\mathrm{~m}, 2 \mathrm{H})$, $5.55(\mathrm{~s}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 2.64-2.59(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.62(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta-197.9,156.1,143.3,133.8,130.5,128.8,128.7,128.5$, $115.6,89.3,52.8,37.7,24.4,13.9$. HRMS (ESI) $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NaO}_{3}$, 307.1305; found: 307.1318.

2-(4-hydroxyphenyl)-2-methoxy-2-(4-pentylphenyl)acetaldehyde (8).

The title compound was prepared according to the method A by taking 4-pentylphenylacetylene ($100 \mathrm{mg}, 0.58 \mathrm{mmol}$), 1,4benzoquinone ($62.7 \mathrm{mg}, 0.58 \mathrm{mmol}$), $\mathrm{CuCN}(12.9 \mathrm{mg}, 0.14$ mmol), methanol (3 ml) as solvent and purified by column chromatography (hexane: $\mathrm{EA}=93: 7$) as yellow oil (265 mg , 85%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-9.62$ (s, 1H), $7.19-7.14$ (m, 4H), 7.09 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.76-6.71$ (m, 2H), 4.97 (s, $1 \mathrm{H}), 3.08(\mathrm{~s}, 3 \mathrm{H}), 2.55-2.45(\mathrm{~m}, 2 \mathrm{H}), 1.51(\mathrm{~s}, 2 \mathrm{H}), 1.22(\mathrm{dt}, J=8.9,4.3 \mathrm{~Hz}, 4 \mathrm{H}), 0.79(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta-197.8,155.9,143.5,133.9,130.5,128.9,128.7$, $128.6,115.5,89.2,52.9,35.6,31.6,31.0,22.5,14.1$. HRMS (ESI) $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NaO}_{3}, 335.1618$; found: 335.1630 .

2-(4-(tert-butyl)phenyl)-2-(4-hydroxyphenyl)-2-methoxyacetaldehyde (9).

The title compound was prepared according to the method A by taking 4-tert-butylphenylacetylene ($100 \mathrm{mg}, 0.63 \mathrm{mmol}$), 1,4benzoquinone ($68 \mathrm{mg}, 0.63 \mathrm{mmol}$), $\mathrm{CuCN}(14 \mathrm{mg}, 0.16 \mathrm{mmol})$, methanol (3 ml) as solvent and purified by column chromatography (hexane: $\mathrm{EA}=93: 7$) as yellow oil (274 mg , $92 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-9.63(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.32-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 4 \mathrm{H}), 6.78-6.71(\mathrm{~m}, 2 \mathrm{H})$,
$5.14(\mathrm{~s}, 1 \mathrm{H}), 3.08(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta-197.8,155.9,151.5$, $133.5,130.6,128.6,128.5,125.5,115.5,89.2,52.9,34.6,31.3$. HRMS (ESI) $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$ calculated for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NaO}_{3}, 321.1461$; found: 321.1473 .

2-(2-fluorophenyl)-2-(4-hydroxyphenyl)-2-methoxyacetaldehyde (10).

The title compound was prepared according to the method A by taking 2-fluorophenylacetylene ($100 \mathrm{mg}, 0.83 \mathrm{mmol}$), 1,4benzoquinone ($89.7 \mathrm{mg}, 0.83 \mathrm{mmol}$), $\mathrm{CuCN}(18.6 \mathrm{mg}, 0.20 \mathrm{mmol})$, methanol (3 ml) as solvent and purified by column chromatography (hexane: $\mathrm{EA}=94: 6$) as yellow oil ($135 \mathrm{mg}, 52 \%$). ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-9.77(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{tdd}, J=6.8,4.3$, $2.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-$ $7.17(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.87-6.83(\mathrm{~m}, 2 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}): \delta-{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-195.6,155.9,131.2(\mathrm{~d}, J=3.9 \mathrm{~Hz}), 131.0(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}), 129.6,127.7,124.5(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 116.3,116.1,115.6,87.2(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 52.9 .{ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-108.4$. HRMS (ESI) $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{FNaO}_{3}$, 283.0741; found: 283.0752.

2-(3-fluorophenyl)-2-(4-hydroxyphenyl)-2-methoxyacetaldehyde (11).

The title compound was prepared according to the method A by taking 3-fluorophenylacetylene ($100 \mathrm{mg}, 0.83 \mathrm{mmol}$), 1,4benzoquinone ($89.7 \mathrm{mg}, 0.83 \mathrm{mmol}$), $\mathrm{CuCN}(18.6 \mathrm{mg}, 0.20$ mmol), methanol (3 ml) as solvent and purified by column chromatography (hexane: $\mathrm{EA}=94: 6$) as yellow oil (182 mg , 70%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-9.66(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.25$ (m, 1H), $7.18-7.09(\mathrm{~m}, 4 \mathrm{H}), 6.98$ (tdd, $J=8.4,2.2,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.82-6.76(\mathrm{~m}, 2 \mathrm{H}), 5.48(\mathrm{~s}, 1 \mathrm{H}), 3.14(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta-197.8,164.1$, $161.6,156.1,139.9(\mathrm{~d}, J=9.6 \mathrm{~Hz}), 130.4,130.1(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 128.5(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 124.3$ (d, J $=2.9 \mathrm{~Hz}), 115.7(\mathrm{~d}, J=19.3 \mathrm{~Hz}), 115.5(\mathrm{~d}, J=22.0 \mathrm{~Hz}), 88.5,53.1 .{ }^{19}$ F NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ-111.9. HRMS (ESI) (m/z): [M-H] calculated for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{FO}_{3}$, 259.0765; found: 259.0768 .

2-(4-fluorophenyl)-2-(4-hydroxyphenyl)-2-methoxyacetaldehyde (12).

The title compound was prepared according to the method A by taking 4-fluorophenylacetylene ($100 \mathrm{mg}, 0.83 \mathrm{mmol}$), 1,4benzoquinone ($89.7 \mathrm{mg}, 0.83 \mathrm{mmol}$), $\mathrm{CuCN}(18.6 \mathrm{mg}, 0.20$ mmol), methanol (3 ml) as solvent and purified by column chromatography (hexane: $\mathrm{EA}=94: 6$) as yellow oil (179 mg , 69%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.65(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, 2H), $7.04-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.82-6.75(\mathrm{~m}, 2 \mathrm{H}), 3.11(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta$ - 198.0, 162.7 (d, $J=248.2 \mathrm{~Hz}$), $156.0(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 132.9(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 130.6(\mathrm{~d}, J=8.3 \mathrm{~Hz})$,
$130.4,128.7(\mathrm{~d}, J=4.9 \mathrm{~Hz}), 115.6(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 115.4,88.6,53.0 .{ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-113.2$. HRMS (ESI) (m/z): [M-H] calculated for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{FO}_{3}, 259.0765$; found: 259.0773.

2-(3-chlorophenyl)-2-(4-hydroxyphenyl)-2-methoxyacetaldehyde (13).

The title compound was prepared according to the method A by taking 3 -chlorophenylacetylene ($100 \mathrm{mg}, 0.73 \mathrm{mmol}$), 1,4benzoquinone ($78.9 \mathrm{mg}, 0.73 \mathrm{mmol}$), $\mathrm{CuCN}(16.3 \mathrm{mg}, 0.18$ mmol), methanol (3 ml) as solvent and purified by column chromatography (hexane: $\mathrm{EA}=94: 6$) as yellow oil (204 mg , 74%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-9.73$ (s, 1H), 7.46 (dd, J $=2.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 2 \mathrm{H})$, $7.24-7.19(\mathrm{~m}, 2 \mathrm{H}), 6.88-6.83(\mathrm{~m}, 2 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta-$ 197.8, 156.1, 139.4, 134.6, 130.4, 129.8, 128.7, 128.6, 128.4, 126.8, 115.7, 88.5, 53.1. HRMS (ESI) $(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}-\mathrm{H}]^{-}$calculated for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{ClO}_{3}, 275.0469$; found: 275.0476.

2-(4-chlorophenyl)-2-(4-hydroxyphenyl)-2-methoxyacetaldehyde (14).

The title compound was prepared according to the method A by taking 4 -chlorophenylacetylene ($100 \mathrm{mg}, 0.73 \mathrm{mmol}$), 1,4benzoquinone ($78.9 \mathrm{mg}, 0.73 \mathrm{mmol}$), $\mathrm{CuCN}(16.3 \mathrm{mg}, 0.18$ mmol), methanol (3 ml) as solvent and purified by column chromatography (hexane: $\mathrm{EA}=94: 6$) as yellow oil (209 mg , 76%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-9.71(\mathrm{~s}, 1 \mathrm{H}), 7.36$ (s, $4 \mathrm{H}), 7.25-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.90-6.77(\mathrm{~m}, 2 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta-198.0,156.2,135.7,134.6,130.4,130.1,128.8,128.4$, 115.6, 88.6, 53.0. HRMS (ESI) (m/z): [M-H] calculated for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{ClO}_{3}, 275.0469$; found: 275.0466 .

2-(4-bromophenyl)-2-(4-hydroxyphenyl)-2-methoxyacetaldehyde (15).

The title compound was prepared according to the method A by taking 4-bromophenylacetylene ($100 \mathrm{mg}, 0.55 \mathrm{mmol}$), 1,4benzoquinone ($59.4 \mathrm{mg}, 0.55 \mathrm{mmol}$), $\mathrm{CuCN}(12.5 \mathrm{mg}, 0.14$ mmol), methanol (3 ml) as solvent and purified by column chromatography (hexane:EA= 93:7) as yellow oil (272 mg , 85%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.71$ (s, 1H), $7.54-7.49$ $(\mathrm{m}, 2 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 2 \mathrm{H}), 6.88-6.82$ $(\mathrm{m}, 2 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta-197.9,156.1,136.3,131.7,130.4$, 128.5, 122.8, 115.6, 88.6, 53.0. HRMS (ESI) (m/z): [M-H] calculated for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{BrO}_{3}, 318.9964$; found: 318.9965 .

2-(3,5-difluorophenyl)-2-(4-hydroxyphenyl)-2-methoxyacetaldehyde (16).

The title compound was prepared according to the method A by taking 3,5difluorophenylacetylene ($100 \mathrm{mg}, 0.72 \mathrm{mmol}$), 1,4-benzoquinone ($77.8 \mathrm{mg}, 0.72 \mathrm{mmol}$), CuCN $(16 \mathrm{mg}, 0.18 \mathrm{mmol})$, methanol (3 ml) as solvent and purified by
 column chromatography (hexane: $\mathrm{EA}=94: 6$) as yellow oil (189 $\mathrm{mg}, 68 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-9.71(\mathrm{~s}, 1 \mathrm{H}), 7.24-$ $7.20(\mathrm{~m}, 2 \mathrm{H}), 7.04-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.88-6.84(\mathrm{~m}, 2 \mathrm{H}), 6.78$ (ddd, $J=8.7,5.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta-197.6,156.1,130.2,128.4,115.7,111.6$ (d, $J=7.6 \mathrm{~Hz}), 111.4,103.9(\mathrm{t}, J=25.1 \mathrm{~Hz}), 87.9(\mathrm{~d}, J=2.1 \mathrm{~Hz})$, 53.3. ${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-108.5,-108.6$. HRMS (ESI) $(\mathrm{m} / \mathrm{z}):[\mathrm{M}-\mathrm{H}]^{-}$calculated for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~F}_{2} \mathrm{O}_{3}, 277.0671$; found: 277.0676.

2-(4-hydroxyphenyl)-2-methoxy-2-(2-(trifluoromethyl)phenyl)acetaldehyde (17).

The title compound was prepared according to the method A by taking 2-trifluorophenylacetylene ($100 \mathrm{mg}, 0.58 \mathrm{mmol}$), 1,4benzoquinone ($62.7 \mathrm{mg}, 0.58 \mathrm{mmol}$), $\mathrm{CuCN}(13 \mathrm{mg}, 0.14 \mathrm{mmol})$, methanol (3 ml) as solvent and purified by column chromatography (hexane: $\mathrm{EA}=94: 6$) as yellow oil ($161 \mathrm{mg}, 52 \%$). ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-9.78(\mathrm{q}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.78(\mathrm{~m}, 1 \mathrm{H})$, $7.61(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{dt}, J=9.3,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.21$ $(\mathrm{m}, 2 \mathrm{H}), 6.86-6.82(\mathrm{~m}, 2 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta-194.6,154.4$, $135.6,130.1,130.1,128.7,127.6,127.3\left(\mathrm{dd}, J=6.3,3.8 \mathrm{~Hz}\right.$), 127.2, 114.1, 86.9, 51.7. ${ }^{19}$ F NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-56.2$. HRMS (ESI) (m/z): $[\mathrm{M}-\mathrm{H}]^{-}$calculated for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{O}_{3}, 309.0733$; found: 309.0735.

2-(4-hydroxyphenyl)-2-methoxy-2-(4-(trifluoromethyl)phenyl)acetaldehyde (18).

The title compound was prepared according to the method A by taking 4-trifluorophenylacetylene ($100 \mathrm{mg}, 0.58 \mathrm{mmol}$), 1,4-benzoquinone ($62.7 \mathrm{mg}, 0.58 \mathrm{mmol}$), $\mathrm{CuCN}(13 \mathrm{mg}, 0.14$ mmol), methanol (3 ml) as solvent and purified by column chromatography (hexane: $\mathrm{EA}=94: 6$) as yellow oil (192 mg , $62 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-9.76(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta-198.0,156.1$, $130.4,129.8(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 129.5(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 128.9,128.7,125.4$ (dd, $J=9.7,6.2 \mathrm{~Hz}), 115.7$, 88.5, 53.2. ${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-62.7$. HRMS (ESI) $(\mathrm{m} / \mathrm{z}):[\mathrm{M}-\mathrm{H}]{ }^{-}$calculated for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{O}_{3}, 309.0733$; found: 309.0747.

2-(4-hydroxyphenyl)-2-methoxy-2-(3-methoxyphenyl)acetaldehyde (19).

The title compound was prepared according to the method A by taking 3-methoxyphenylacetylene ($100 \mathrm{mg}, 0.75 \mathrm{mmol}$), 1,4-benzoquinone ($81 \mathrm{mg}, 0.75 \mathrm{mmol}$), $\mathrm{CuCN}(16.8 \mathrm{mg}, 0.18$ mmol), methanol (3 ml) as solvent and purified by column chromatography (hexane: EA= 90:10) as yellow oil (204 mg , 75%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-9.74$ (s, 1H), $7.33-$ $7.27(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.00-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.89$ (ddd, $J=8.2,2.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.82(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): $\delta-197.7,159.7,155.8,138.7,130.5,129.5,129.0,121.1,115.5,114.2,114.0$, 89.0, 55.3, 53.0. HRMS (ESI) (m/z): [M-H] calculated for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}_{4}, 271.0965$; found: 271.0955.

2-(4-hydroxyphenyl)-2-methoxy-2-(4-phenoxyphenyl)acetaldehyde (20).

The title compound was prepared according to the method A by taking 4-phenoxyphenylacetylene ($100 \mathrm{mg}, 0.51 \mathrm{mmol}$), 1,4-benzoquinone ($55 \mathrm{mg}, 0.51 \mathrm{mmol}$), $\mathrm{CuCN}(11.4 \mathrm{mg}, 0.12$ mmol), methanol (3 ml) as solvent and purified by column chromatography (hexane: $\mathrm{EA}=92: 8$) as yellow oil (261 mg , $78 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-9.62(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{tt}$, $J=7.7,2.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.17-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.05-7.01(\mathrm{~m}$, $1 \mathrm{H}), 6.95-6.87(\mathrm{~m}, 4 \mathrm{H}), 6.77-6.73(\mathrm{~m}, 2 \mathrm{H}), 5.23(\mathrm{~d}, J=30.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): $\delta-197.9,157.7,156.4,156.0,131.2,130.5,130.4,129.9,128.6,123.9$, $119.5,118.3,115.6,88.9,52.9$. HRMS (ESI) $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NaO}_{4}$, 357.1097; found: 357.1110.

2-cyclopropyl-2-(4-hydroxyphenyl)-2-methoxyacetaldehyde (21).

The title compound was prepared according to the method A by taking cyclopropylacetylene ($100 \mathrm{mg}, 1.51 \mathrm{mmol}$), 1,4-benzoquinone (163.2 $\mathrm{mg}, 1.51 \mathrm{mmol}$), $\mathrm{CuCN}(33.7 \mathrm{mg}, 0.37 \mathrm{mmol})$, methanol (3 ml) as solvent and purified by column chromatography (hexane: $\mathrm{EA}=95: 5$) as colourless oil ($119 \mathrm{mg}, 58 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-9.57$ $(\mathrm{s}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.09-6.00$ $(\mathrm{m}, 1 \mathrm{H}), 5.03(\mathrm{~s}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.61-$ $1.58(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta-198.7,155.4,133.8,130.5,129.3,115.4,89.6$, 52.7, 25.6, 24.5, 22.5. HRMS (ESI) (m/z): [M-H] calculated for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{3}, 205.0859$; found: 205.0852.

2-cyclohexyl-2-(4-hydroxyphenyl)-2-methoxyacetaldehyde (22).

The title compound was prepared according to the method A by taking ethynylcyclohexane ($100 \mathrm{mg}, 0.92 \mathrm{mmol}$), 1,4-benzoquinone ($100 \mathrm{mg}, 0.92 \mathrm{mmol}$), $\mathrm{CuCN}(20.6 \mathrm{mg}, 0.23 \mathrm{mmol})$, methanol (3 ml) as solvent and purified by column chromatography (hexane: EA= 94:6) as colourless oil ($210 \mathrm{mg}, 85 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-9.56(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.33(\mathrm{~m}, 2 \mathrm{H}), 6.88-6.86(\mathrm{~m}, 2 \mathrm{H}), 6.06(\mathrm{~s}$, $1 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 1 \mathrm{H}), 1.34(\mathrm{tt}, J=8.4,5.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.72-0.56(\mathrm{~m}, 6 \mathrm{H}), 0.48(\mathrm{dtd}, J=$ $8.9,5.3,3.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta-200.4,155.9,129.2,127.8,115.4$, 84.9, 52.3, 14.4, 1.8, 0.9. HRMS (ESI) (m/z): [M-H] calculated for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{3}, 247.1329$; found: 247.1320.

2-(4-hydroxyphenyl)-2-methoxypentanal (23).

The title compound was prepared according to the method A by taking 1-pentyne ($100 \mathrm{mg}, 1.47 \mathrm{mmol}$), 1,4-benzoquinone (158.9 mg , $1.47 \mathrm{mmol}), \mathrm{CuCN}(32.9 \mathrm{mg}, 0.36 \mathrm{mmol})$, methanol (3 ml) as solvent and purified by column chromatography (hexane: $\mathrm{EA}=96: 4$) as colourless oil ($94 \mathrm{mg}, 45 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-9.44$ (s, $1 \mathrm{H}), 7.26(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.87-6.83(\mathrm{~m}, 2 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}), 2.17$ (ddd, $J=14.6,10.7,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.99$ (ddd, $J=14.6,11.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.25-1.24$ (m, 2H), 0.94 $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{〔} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta-200.6,155.6,128.5,115.7,86.4,51.2$, 32.6, 29.7, 16.0, 14.4. HRMS (ESI) (m/z): [M-H] calculated for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{3}, 207.1016$; found: 207.1009.

2-(4-hydroxyphenyl)-2-methoxyhexanal (24).

The title compound was prepared according to the method A by taking 1-hexyne ($100 \mathrm{mg}, 1.21 \mathrm{mmol}$), 1,4-benzoquinone (130.8 $\mathrm{mg}, 1.21 \mathrm{mmol}$), $\mathrm{CuCN}(26.8 \mathrm{mg}, 0.30 \mathrm{mmol})$, methanol (3 ml) as solvent and purified by column chromatography (hexane: EA= 96:4) as colourless oil ($140 \mathrm{mg}, 63 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta-9.45(\mathrm{~s}, 1 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 2 \mathrm{H}), 6.87-6.82(\mathrm{~m}, 2 \mathrm{H})$, $5.02(\mathrm{~s}, 1 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{ddd}, J=14.5,10.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{ddd}, J=14.5,10.4,6.2 \mathrm{~Hz}$, $1 \mathrm{H}), 1.38-1.30(\mathrm{~m}, 2 \mathrm{H}), 1.22-1.15(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 100 MHz): $\delta-200.7,155.6,128.6,128.5,115.6,86.3,51.2,30.1,24.7,23.0,14.0$. HRMS (ESI) $(\mathrm{m} / \mathrm{z}):[\mathrm{M}-\mathrm{H}]^{-}$calculated for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{3}, 221.1172$; found: 221.1168.

2-(4-hydroxyphenyl)-2-methoxyoctanal (25).

The title compound was prepared according to the method A by taking 1 -octyne ($100 \mathrm{mg}, 0.90 \mathrm{mmol}$), 1,4benzoquinone ($97.3 \mathrm{mg}, 0.90 \mathrm{mmol}$), $\mathrm{CuCN}(19.7 \mathrm{mg}$, 0.22 mmol), methanol (3 ml) as solvent and purified by column chromatography (hexane: $\mathrm{EA}=96: 4$) as colourless oil ($175 \mathrm{mg}, 70 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-9.44$ (s, 1H), $7.27(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{dd}, J=5.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{~s}$, $3 \mathrm{H}), 2.18$ (ddd, $J=14.5,10.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{ddd}, J=14.4,11.0,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.32-1.21(\mathrm{~m}$, $8 \mathrm{H}), 0.87(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta-200.7,155.7,128.5,115.7$, $114.8,86.4,51.2,31.6,30.3,29.6,22.6,22.5,14.0$. HRMS (ESI) $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NaO}_{3}, 273.1461$; found: 273.1470 .

2-(4-hydroxyphenyl)-2-methoxynonanal (26).

The title compound was prepared according to the method A by taking 1-nonyne ($100 \mathrm{mg}, 0.80 \mathrm{mmol}$), 1,4benzoquinone ($86.5 \mathrm{mg}, 0.80 \mathrm{mmol}$), $\mathrm{CuCN}(17.9 \mathrm{mg}$, 0.20 mmol), methanol (3 ml) as solvent and purified by column chromatography (hexane: $E A=96: 4$) as colourless oil ($180 \mathrm{mg}, 68 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta-9.44(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{dd}, J=6.5,2.3 \mathrm{~Hz}, 2 \mathrm{H})$, $6.85(\mathrm{dd}, J=9.2,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.49(\mathrm{~s}, 1 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{ddd}, J=16.0,10.7,5.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.05-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{dd}, J=11.1,4.8 \mathrm{~Hz}, 10 \mathrm{H}), 0.87(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta-200.8,155.7,128.5,128.4,115.7,86.4,51.2,31.8,30.3,29.9,29.2,22.6$, 22.5, 14.1. HRMS (ESI) (m/z): [M-H] calculated for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{3}, 263.1642$; found: 263.1655.

2-ethoxy-2-(4-hydroxyphenyl)-2-phenylacetaldehyde (27).

The title compound was prepared according to the method A by taking phenylacetylene ($100 \mathrm{mg}, 0.98 \mathrm{mmol}$), 1,4-benzoquinone ($106 \mathrm{mg}, 0.98 \mathrm{mmol}$), $\mathrm{CuCN}(21.9 \mathrm{mg}, 0.25 \mathrm{mmol})$, ethanol (3 ml) as solvent and purified by column chromatography (hexane: EA= 95:5) as yellow oil ($225 \mathrm{mg}, 88 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $-9.74(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.33(\mathrm{~m}, 5 \mathrm{H}), 7.24(\mathrm{dt}, J=9.6,2.5 \mathrm{~Hz}, 2 \mathrm{H})$, $6.85-6.81(\mathrm{~m}, 2 \mathrm{H}), 5.77(\mathrm{~s}, 1 \mathrm{H}), 3.32-3.25(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta-198.6,155.9,137.6,130.4,129.4,128.7,128.5$, 128.4, 115.5, 88.8, 60.8, 15.4. HRMS (ESI) (m/z): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NaO}_{3}, 279.0992$; found: 279.0991 .

2-(4-hydroxyphenyl)-2-isopropoxy-2-phenylacetaldehyde (28).

The title compound was prepared according to the method A by taking phenylacetylene ($100 \mathrm{mg}, 0.98 \mathrm{mmol}$), 1,4 -benzoquinone ($106 \mathrm{mg}, 0.98 \mathrm{mmol}$), $\mathrm{CuCN}(21.4 \mathrm{mg}, ~ 0.24 \mathrm{mmol}$), isopropyl alcohol (3 ml) as solvent and purified by column chromatography (hexane: $\mathrm{EA}=94: 6$) as yellow oil ($194 \mathrm{mg}, 72 \%$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-9.75(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.38$ $-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 2 \mathrm{H}), 6.85-6.78(\mathrm{~m}, 2 \mathrm{H}), 5.22(\mathrm{~d}, J$ $=69.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{dt}, J=12.2,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.03(\mathrm{dd}, J=6.1,2.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta-199.3,155.6,139.0,131.0,130.6,128.9,128.3,128.2,115.2,88.6,68.3$, 23.9. HRMS (ESI) $(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}-\mathrm{H}]^{-}$calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{3}, 269.1172$; found: 269.1166 .

2-butoxy-2-(4-hydroxyphenyl)-2-phenylacetaldehyde (29).

The title compound was prepared according to the method A by taking phenylacetylene ($100 \mathrm{mg}, 0.98 \mathrm{mmol}$), 1,4-benzoquinone ($105.9 \mathrm{mg}, 0.98 \mathrm{mmol}$), $\mathrm{CuCN}(21.9 \mathrm{mg}, 0.25 \mathrm{mmol})$, n-butanol (3 ml) as solvent and purified by column chromatography (hexane: $\mathrm{EA}=95: 5$) as yellow oil ($170 \mathrm{mg}, 60 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta-9.75(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.29-7.27(\mathrm{~m}, 1 \mathrm{H})$, $7.26(\mathrm{~s}, 1 \mathrm{H}), 6.85-6.80(\mathrm{~m}, 2 \mathrm{H}), 5.20(\mathrm{~s}, 1 \mathrm{H}), 3.27-3.20(\mathrm{~m}, 2 \mathrm{H})$, $1.63-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.38(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}): \delta-198.9,155.6,138.1,130.3,130.1,128.6,128.4,128.3,115.3,88.2,64.9,32.1,19.4$, 13.9. HRMS (ESI) $(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NaO}_{3}$, 307.1305; found: 307.1318.

2-(4-hydroxyphenyl)-2-(isopentyloxy)-2-phenylacetaldehyde (30).

The title compound was prepared according to the method A by taking phenylacetylene ($100 \mathrm{mg}, 0.98 \mathrm{mmol}$), 1,4-benzoquinone $(105.9 \mathrm{mg}, 0.98 \mathrm{mmol}), \mathrm{CuCN}(21.9 \mathrm{mg}, 0.25 \mathrm{mmol})$, iso-amyl alcohol (3 ml) as solvent and purified by column chromatography (hexane: EA= 97:3) as yellow oil ($224 \mathrm{mg}, 75 \%$). ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-9.75(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.28-7.25$ (m, 2H), $6.86-6.80(\mathrm{~m}, 2 \mathrm{H}), 3.39-3.17(\mathrm{~m}, 2 \mathrm{H}), 1.76$ (td, $J=$ $13.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.56-1.49(\mathrm{~m}, 2 \mathrm{H}), 0.88-0.81(\mathrm{~m}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta-198.9,155.7,138.1,130.3$, $130.0,128.6,128.4,128.3,115.3,88.3,63.5,38.9,25.0,22.6$. HRMS (ESI) (m/z): $[M-H]^{-}$ calculated for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{3}, 297.1485$; found: 297.1481.

2-(4-hydroxyphenyl)-2-(octan-2-yloxy)-2-phenylacetaldehyde (31).

The title compound was prepared according to the method A by taking phenylacetylene ($100 \mathrm{mg}, 0.98 \mathrm{mmol}$), 1,4-benzoquinone ($105.9 \mathrm{mg}, 0.98 \mathrm{mmol}$), CuCN ($21.9 \mathrm{mg}, 0.25 \mathrm{mmol}$), 2-octanol (3 ml) as solvent and purified by column chromatography (hexane: EA= 97:3) as yellow oil ($129 \mathrm{mg}, 38 \%$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-9.72(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.42(\mathrm{~m}, 2 \mathrm{H})$, $7.36-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.29(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 3.50(\mathrm{dd}, J=12.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.49-1.41$ (m, $2 \mathrm{H}), 1.23-1.13(\mathrm{~m}, 8 \mathrm{H}), 0.96(\mathrm{dd}, J=8.0,4.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~d}$, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{\{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta-199.8,155.5,130.8,130.6,129.1,128.8$, $128.3,128.2,115.2,115.1,71.7,37.7,31.8,29.3,25.3,22.6,21.3,14.1$. HRMS (ESI) (m/z): [M-$\mathrm{H}]^{-}$calculated for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}_{3}, 339.1955$; found: 339.1954.

2-(4-hydroxyphenyl)-2-phenyl-2-(2,2,2-trifluoroethoxy)acetaldehyde (32).

The title compound was prepared according to the method A by taking phenylacetylene ($100 \mathrm{mg}, 0.98 \mathrm{mmol}$), 1,4 -benzoquinone ($105.9 \mathrm{mg}, 0.98 \mathrm{mmol}$), $\mathrm{CuCN}(21.9 \mathrm{mg}, 0.25 \mathrm{mmol}$), 2,2,2trifluoroethanol (3 ml) as solvent and purified by column chromatography (hexane: $\mathrm{EA}=93: 7$) as yellow oil ($269 \mathrm{mg}, 87 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-9.83(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.37(\mathrm{~m}, 5 \mathrm{H})$, $7.24-7.18(\mathrm{~m}, 2 \mathrm{H}), 6.90-6.84(\mathrm{~m}, 2 \mathrm{H}), 3.76-3.67(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta-197.0,156.6,136.3,130.4,128.9,128.6,127.9,125.1$, 122.4, 115.9, 89.4, 62.8 (q, $J=34.9 \mathrm{~Hz}$). ${ }^{19}$ F NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-73.9$. HRMS (ESI) $(\mathrm{m} / \mathrm{z}):[\mathrm{M}-\mathrm{H}]^{-}$calculated for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{O}_{3}, 309.0733$; found: 309.0740.

2-(4-hydroxyphenyl)-2-(methoxy-d 3)-2-phenylacetaldehyde (33).

The title compound was prepared according to the method A by taking phenylacetylene ($100 \mathrm{mg}, 0.98 \mathrm{mmol}$), 1,4-benzoquinone ($105.9 \mathrm{mg}, 0.98 \mathrm{mmol}$), $\mathrm{CuCN}(21.9 \mathrm{mg}, 0.25 \mathrm{mmol})$, methanol- d_{4} $(3 \mathrm{ml})$ as solvent and purified by column chromatography (hexane: $\mathrm{EA}=93: 7$) as yellow oil ($42 \mathrm{mg}, 90 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-9.68(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J$ $=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.73(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): $\delta-198.0,156.0,137.2,130.6,129.1,128.9,128.7,128.6,115.6,77.4$. HRMS (ESI) (m/z): [M-H] calculated for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{D}_{3} \mathrm{O}_{3}, 244.1048$; found: 244.1061 .

The title compound was prepared according to the method A by taking phenylacetylene ($100 \mathrm{mg}, 0.98 \mathrm{mmol}$), 1,4-benzoquinone ($105.9 \mathrm{mg}, 0.98 \mathrm{mmol}$), $\mathrm{CuCN}(21.9 \mathrm{mg}, 0.25 \mathrm{mmol})$, allyl alcohol $(3 \mathrm{ml})$ as solvent and purified by column chromatography (hexane: $\mathrm{EA}=95: 5$) as yellow oil ($198 \mathrm{mg}, 74 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta-9.78(\mathrm{~s}, 1 \mathrm{H}), 7.43$ (ddd, $J=4.6,3.9,2.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.41-$ $7.33(\mathrm{~m}, 3 \mathrm{H}), 7.27(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.90-6.80(\mathrm{~m}, 2 \mathrm{H}), 5.94$ (ddt, $J=17.2,10.5,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{dq}, J=17.3,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, 5.17 (ddd, $J=10.5,3.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.83-3.77(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta$ 198.3, 155.9, 137.6, 134.4, 130.4, 129.5, 128.7, 128.6, 128.5, 116.6, 115.5, 88.7, 66.3. HRMS (ESI) $(\mathrm{m} / \mathrm{z}):[\mathrm{M}-\mathrm{H}]^{-}$calculated for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{O}_{3}, 267.1016$; found: 267.1011.

2-(cyclohexyloxy)-2-(4-hydroxyphenyl)-2-phenylacetaldehyde (35).

The title compound was prepared according to the method A by taking phenylacetylene (100 mg , 0.98 mmol), 1,4-benzoquinone ($105.9 \mathrm{mg}, 0.98 \mathrm{mmol}$), CuCN ($21.9 \mathrm{mg}, 0.25 \mathrm{mmol}$),
 cyclohexanol (3 ml) as solvent and purified by column chromatography (hexane: EA= 95:5) as yellow oil (108 mg, 35\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-9.74(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.36$ $-7.28(\mathrm{~m}, 5 \mathrm{H}), 6.80(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H}), 3.42-3.35(\mathrm{~m}$, $1 \mathrm{H}), 1.62(\mathrm{~s}, 4 \mathrm{H}), 1.43-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.29(\mathrm{dd}, J=5.4,3.0 \mathrm{~Hz}, 2 \mathrm{H})$, $1.15-1.09(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta-199.4$, 155.5, 139.7, 139.2, 130.6, 128.8, 128.3, 128.2, 115.1, 88.4, 73.8, 33.9, 25.6, 24.3. HRMS (ESI) (m/z): [M-H] calculated for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{3}$, 309.1485; found: 309.1501.

2-(benzyloxy)-2-(4-hydroxyphenyl)-2-phenylacetaldehyde (36).

The title compound was prepared according to the method A by taking phenylacetylene ($100 \mathrm{mg}, 0.98 \mathrm{mmol}$), 1,4-benzoquinone ($105.9 \mathrm{mg}, 0.98 \mathrm{mmol}$), CuCN ($21.9 \mathrm{mg}, 0.25 \mathrm{mmol}$), benzyl alcohol $(3 \mathrm{ml})$ as solvent and purified by column chromatography (hexane: $\mathrm{EA}=93: 7$) as yellow oil ($175 \mathrm{mg}, 55 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta-9.86(\mathrm{~s}, 1 \mathrm{H}), 7.49-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.30(\mathrm{~m}, 10 \mathrm{H})$, $6.88-6.82(\mathrm{~m}, 2 \mathrm{H}), 4.34(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right):$ $\delta-198.3,155.9,138.2,137.8,132.9,130.4,128.7,128.6,128.5$, 128.4, 127.6, 127.5, 115.5, 88.8, 67.2. HRMS (ESI) (m/z): [M-H] calculated for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{O}_{3}$, 317.1172; found: 317.1158.

2-(4-hydroxy-2-methylphenyl)-2-methoxy-2-phenylacetaldehyde (37).

The title compound was prepared according to the method A by taking phenylacetylene $(100 \mathrm{mg}, 0.98 \mathrm{mmol})$, methyl- p benzoquinone ($119.6 \mathrm{mg}, 0.98 \mathrm{mmol}$), $\mathrm{CuCN}(21.9 \mathrm{mg}, 0.24 \mathrm{mmol})$, methanol (3 ml) as solvent and purified by column chromatography (hexane: EA=92:8) as yellow oil ($215 \mathrm{mg}, 84 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta-9.66(\mathrm{~s}, 1 \mathrm{H}), 7.33-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.03(\mathrm{~d}, J=1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.95(\mathrm{dd}, J=8.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~d}$, $J=21.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta-197.9,154.4$, $136.9,131.6,128.8,128.6,128.5,127.9,127.8,124.4,115.0,89.3,52.9,16.0$. HRMS (ESI) (m/z): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NaO}_{3}, 279.0992$; found: 279.0999.

2-(2,5-dichloro-4-hydroxyphenyl)-2-methoxy-2-phenylacetaldehyde (38).

The title compound was prepared according to the method A by taking phenylacetylene ($100 \mathrm{mg}, 0.98 \mathrm{mmol}$), 2,5dichlorobenzoquinone ($172.4 \mathrm{mg}, 0.98 \mathrm{mmol}$), $\mathrm{CuCN}(25.9 \mathrm{mg}, 0.24$ mmol), methanol (3 ml) as solvent and purified by column chromatography (hexane: EA=92:8) as yellow oil ($207 \mathrm{mg}, 67 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-9.80(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.37$ $(\mathrm{m}, 5 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta-195.8,152.2,135.3$, $133.5,131.5,129.3,128.7,128.6,128.4,118.7,118.6,87.8,52.9$. HRMS (ESI) (m/z): $[\mathrm{M}-\mathrm{H}]^{-}$ calculated for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{O}_{3}, 309.0080$; found: 309.1752.

2-hydroxy-2-(4-hydroxyphenyl)-2-phenylacetaldehyde (39).

The title compound was prepared according to the method B by taking phenylacetylene ($100 \mathrm{mg}, 0.98 \mathrm{mmol}$), 1,4-benzoquinone ($106 \mathrm{mg}, 0.98 \mathrm{mmol}$), $\mathrm{CuCN}(21.9 \mathrm{mg}, 0.25 \mathrm{mmol})$, TFA (56 mg , $0.5 \mathrm{mmol})$ and $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}(1: 1)$ as solvent and purified by column chromatography (hexane: $\mathrm{EA}=88: 12$) as yellow oil ($171 \mathrm{mg}, 75 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-9.91(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.40(\mathrm{~m}, 1 \mathrm{H})$, $7.38(\mathrm{dd}, J=4.2,1.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.17(\mathrm{~m}$, $2 \mathrm{H}), 6.84-6.80(\mathrm{~m}, 2 \mathrm{H}), 5.36(\mathrm{~s}, 1 \mathrm{H}), 4.39(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta-198.0$, $155.9,139.2,131.4,129.1,128.8,128.5,127.4,115.8,83.2$. $\operatorname{HRMS}(E S I)(m / z)$: $[M-H]^{-}$calculated for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{O}_{3}, 227.0703$; found: 227.0716.

2-(3-chlorophenyl)-2-hydroxy-2-(4-hydroxyphenyl)acetaldehyde (40)

The title compound was prepared according to the method B by taking 3-chlorophenylacetylene ($100 \mathrm{mg}, 0.73 \mathrm{mmol}$), 1,4benzoquinone ($78.9 \mathrm{mg}, 0.73 \mathrm{mmol}$), $\mathrm{CuCN}(16.3 \mathrm{mg}, 0.18$ mmol), TFA ($41 \mathrm{mg}, 0.36 \mathrm{mmol}$) and $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$ (1:1) as solvent and purified by column chromatography (hexane: EA= $90: 10$) as yellow oil ($180 \mathrm{mg}, 69 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz ,
CDCl_{3}): $\delta-9.90(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.20-$ $7.16(\mathrm{~m}, 2 \mathrm{H}), 6.88-6.83(\mathrm{~m}, 2 \mathrm{H}), 5.26(\mathrm{~d}, J=29.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}): \delta-197.3,156.0,141.2,135.0,131.1,130.0,129.0,128.7,127.6,125.5,115.9,82.8$. HRMS (ESI) (m/z): [M-H $]^{-}$calculated for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{ClO}_{3}, 261.0313$; found: 261.0324.

2-(3-fluorophenyl)-2-hydroxy-2-(4-hydroxyphenyl)acetaldehyde (41)

The title compound was prepared according to the method B by taking 3-fluorophenylacetylene ($100 \mathrm{mg}, 0.83 \mathrm{mmol}$), 1,4benzoquinone ($89.7 \mathrm{mg}, 0.83 \mathrm{mmol}$), $\mathrm{CuCN}(18.6 \mathrm{mg}, 0.20$ mmol), TFA ($46 \mathrm{mg}, 0.4 \mathrm{mmol}$) and $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}(1: 1)$ as solvent and purified by column chromatography (hexane: $\mathrm{EA}=90: 10$) as yellow oil ($159 \mathrm{mg}, 65 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-9.90$ $(\mathrm{d}, \mathrm{J}=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{td}, \mathrm{J}=8.1,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.13(\mathrm{~m}$, $4 \mathrm{H}), 7.06$ (tdd, $\mathrm{J}=8.3,2.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.88-6.83(\mathrm{~m}, 2 \mathrm{H}), 5.28(\mathrm{~d}, \mathrm{~J}=21.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, \mathrm{~J}$ $=1.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta-197.4,155.6(\mathrm{~d}, J=85.8 \mathrm{~Hz}), 131.0,130.3$ (d, $J=8.2 \mathrm{~Hz}), 128.6(\mathrm{~d}, J=28.3 \mathrm{~Hz}), 127.6(\mathrm{~d}, J=31.8 \mathrm{~Hz}), 123.0,116.2,115.9,115.7(\mathrm{~d}, J=$ $9.1 \mathrm{~Hz}), 115.3(\mathrm{~d}, J=19.9 \mathrm{~Hz}), 114.6(\mathrm{~d}, J=23.1 \mathrm{~Hz}), 82.8 .{ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-$ 111.3. HRMS (ESI) (m/z): [M-H] calculated for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{FO}_{3}, 245.0608$; found: 245.0624.

2-(4-bromophenyl)-2-hydroxy-2-(4-hydroxyphenyl)acetaldehyde (42)

The title compound was prepared according to the method B by taking 4-bromophenylacetylene ($100 \mathrm{mg}, 0.73 \mathrm{mmol}$), 1,4benzoquinone ($78.9 \mathrm{mg}, 0.73 \mathrm{mmol}$), $\mathrm{CuCN}(16.3 \mathrm{mg}, 0.18$ mmol), TFA ($41 \mathrm{mg}, 0.36 \mathrm{mmol}$) and $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$ (1:1) as solvent and purified by column chromatography (hexane: EA= 90:10) as yellow oil ($185 \mathrm{mg}, 60 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta-9.88(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.29$ $-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.86-6.82(\mathrm{~m}, 2 \mathrm{H}), 5.36(\mathrm{~s}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta-197.4,156.0,138.2,132.0,131.0,129.1,129.0,122.8$, 115.9, 82.9. HRMS (ESI) (m/z): [M-H] calculated for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{BrO}_{3}, 304.9809$; found: 304.9816.

2-hydroxy-2-(4-hydroxyphenyl)-2-(p-tolyl)acetaldehyde (43)

The title compound was prepared according to the method B by taking 4-methylphenylacetylene ($100 \mathrm{mg}, 0.86 \mathrm{mmol}$), 1,4benzoquinone ($108 \mathrm{mg}, 0.86 \mathrm{mmol}$), $\mathrm{CuCN}(19.2 \mathrm{mg}, 0.22$ mmol), TFA ($49 \mathrm{mg}, 0.43 \mathrm{mmol}$) and $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$ (1:1) as solvent and purified by column chromatography (hexane: $\mathrm{EA}=89: 11$) as yellow oil ($164 \mathrm{mg}, 68 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-9.89$ $(\mathrm{s}, 1 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 4 \mathrm{H}), 6.85-6.82(\mathrm{~m}, 2 \mathrm{H}), 4.34(\mathrm{~s}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta-198.0,155.9,138.4,136.3,131.4,129.5,129.1,127.4$, 115.7, 83.1, 21.1. HRMS (ESI) (m/z): [M-H] calculated for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{O}_{3}, 241.0859$; found: 241.0870.

2-(4-(tert-butyl)phenyl)-2-hydroxy-2-(4-hydroxyphenyl)acetaldehyde (44)

The title compound was prepared according to the method B by taking 4 -tert-butylphenylacetylene ($100 \mathrm{mg}, 0.63 \mathrm{mmol}$), 1,4-benzoquinone ($68 \mathrm{mg}, 0.63 \mathrm{mmol}$), $\mathrm{CuCN}(14 \mathrm{mg}, 0.16$ mmol), TFA ($56 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$ (1:1) as solvent and purified by column chromatography (hexane: EA= $88: 12$) as yellow oil ($213 \mathrm{mg}, 75 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta-9.90(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $6.88-6.82(\mathrm{~m}, 2 \mathrm{H}), 4.33(\mathrm{~s}, 1 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta-198.0,155.8$, 151.6, 136.2, 131.4, 129.1, 127.1, 125.8, 115.7, 83.0, 31.3, 29.7. HRMS (ESI) (m/z): [M-H] calculated for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{3}, 283.1329$; found: 283.1335 .

2-hydroxy-2-(4-hydroxy-2,5-dimethylphenyl)-2-phenylacetaldehyde (45)

The title compound was prepared according to the method B by taking phenylacetylene (100 mg ,
 0.98 mmol), 2,5 -dimethylbenzoquinone ($133 \mathrm{mg}, 0.98 \mathrm{mmol}$), CuCN ($21.9 \mathrm{mg}, 0.25 \mathrm{mmol}$), TFA ($56 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}(1: 1)$ as solvent and purified by column chromatography (hexane: EA= 88:12) as yellow oil ($158 \mathrm{mg}, 62 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $-9.96(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.33(\mathrm{ddd}, J=8.6,4.7$, $3.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 4.86(\mathrm{~s}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.19(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, 100 MHz): $\delta-197.7,153.8,138.3,137.5,132.5,128.6,128.0,127.7,120.2,119.2,89.5,53.0$, 20.2, 15.5. HRMS (ESI) (m/z): [M-H] calculated for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}_{3}, 255.1016$; found: 255.1028.

2-hydroxy-2-(4-hydroxyphenyl)heptanal (46)

The title compound was prepared according to the method B by taking 1-heptyne ($100 \mathrm{mg}, 1 \mathrm{mmol}$), 1,4-benzoquinone (108 $\mathrm{mg}, 1 \mathrm{mmol}), \mathrm{CuCN}(22.3 \mathrm{mg}, 0.25 \mathrm{mmol})$, TFA ($57 \mathrm{mg}, 0.5$ $\mathrm{mmol})$ and $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}(1: 1)$ as solvent and purified by column chromatography (hexane: $\mathrm{EA}=92: 8$) as colourless oil (122 mg , 55%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-9.51$ (s, 1H), 7.34 (d, J $=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.88-6.84(\mathrm{~m}, 2 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 1 \mathrm{H}), 1.99(\mathrm{ddd}, J=18.4,9.6,3.9 \mathrm{~Hz}$, $2 \mathrm{H}), 1.29(\mathrm{dd}, J=6.1,2.1 \mathrm{~Hz}, 6 \mathrm{H}), 0.86(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta-200.2$, $155.4,130.5,127.4,115.7,81.5,36.5,32.0,29.7,22.5,14.0 . \operatorname{HRMS}(E S I)(m / z)$: $[M-H]^{-}$calculated for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{3}, 221.1172$; found: 221.1174 .

2-hydroxy-2-(4-hydroxyphenyl)octanal (47)

The title compound was prepared according to the method B by taking 1 -octyne $(100 \mathrm{mg}, 0.89 \mathrm{mmol})$, $1,4-$ benzoquinone ($96 \mathrm{mg}, 0.89 \mathrm{mmol}$), $\mathrm{CuCN}(20 \mathrm{mg}, 0.22$ mmol), TFA ($46 \mathrm{mg}, 0.4 \mathrm{mmol}$) and $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}(1: 1)$ as solvent and purified by column chromatography (hexane: $\mathrm{EA}=92: 8$) as yellow oil ($146 \mathrm{mg}, 52 \%$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-9.51(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.06(\mathrm{~s}, 1 \mathrm{H})$, $3.79(\mathrm{~s}, 1 \mathrm{H}), 2.06-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{dd}, J=13.4,6.0 \mathrm{~Hz}, 8 \mathrm{H}), 0.86(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): $\delta-200.2,155.4,130.5,127.4,115.7,81.5,36.5,31.6,29.5,22.6,22.5$, 14.1. HRMS (ESI) (m/z): [M-H] calculated for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{3}$, 235.1329; found: 235.1329.

5. NMR Spectra

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound $\mathbf{3}$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ spectra of compound 4

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ spectra of compound 4

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ spectra of compound 5

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ spectra of compound 6

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ spectra of compound 7

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ spectra of compound 7

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ spectra of compound $\mathbf{8}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ spectra of compound $\mathbf{8}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ spectra of compound 9

${ }^{1} \mathrm{H}$-NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$) Spectra of compound 10

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ spectra of compound $\mathbf{1 0}$

1	1	1	1	1	1	1	1	1	1	1		1							1		T
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

${ }^{19}$ F-NMR $\left(\mathrm{CDCl}_{3}, 377 \mathrm{MHz}\right)$ Spectra of compound 10

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ Spectra of compound $\mathbf{1 1}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ spectra of compound $\mathbf{1 1}$

${ }^{19} \mathrm{~F}$-NMR $\left(\mathrm{CDCl}_{3}, 377 \mathrm{MHz}\right)$ Spectra of compound 11

$\stackrel{\text { ® }}{\square}$

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	T
-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200

${ }^{19}$ F-NMR $\left(\mathrm{CDCl}_{3}, 377 \mathrm{MHz}\right)$ Spectra of compound 12
$\stackrel{\vec{m}}{\stackrel{7}{7}}$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ Spectra of compound 13

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ spectra of compound 13

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ Spectra of compound 14

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ spectra of compound $\mathbf{1 4}$
营

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ Spectra of compound 15

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ spectra of compound $\mathbf{1 5}$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ Spectra of compound 16

$\stackrel{\rightharpoonup}{\phi}$
$\stackrel{\text { \% }}{1}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ spectra of compound 16

${ }^{19}$ F-NMR $\left(\mathrm{CDCl}_{3}, 377 \mathrm{MHz}\right)$ Spectra of compound 16

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ Spectra of compound 17

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ spectra of compound $\mathbf{1 7}$

 $\begin{array}{lllllllllllllllllllllllllllll}1 \\ 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$
${ }^{19}$ F-NMR ($\left.\mathrm{CDCl}_{3}, 377 \mathrm{MHz}\right)$ Spectra of compound $\mathbf{1 7}$

T	1	1	T	+	1	1	1	1		1	1	1			1	1	1	1	1
-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200

${ }^{1} \mathrm{H}$-NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ Spectra of compound 18

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ spectra of compound 18

$\begin{array}{llllllllllllllllllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & -20\end{array}$
${ }^{19}$ F-NMR ($\left.\mathrm{CDCl}_{3}, 377 \mathrm{MHz}\right)$ Spectra of compound 18
\%

1	1	1	1	1	1	1	1	1	1	1	1	1	,	1	1	1		1	T
-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ Spectra of compound 19

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ spectra of compound 20

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ spectra of compound $\mathbf{2 0}$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ Spectra of compound 21

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ Spectra of compound 22

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ Spectra of compound 23

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ spectra of compound 23

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ Spectra of compound 24

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ spectra of compound 24

范
ジ
バあ
๗．0．

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ Spectra of compound $\mathbf{2 5}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ spectra of compound 25

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ Spectra of compound 27

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ spectra of compound 27

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ Spectra of compound 28

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ spectra of compound 28

 ig ĩ $\stackrel{\square}{\sim}$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ Spectra of compound 29

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ Spectra of compound 30

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ Spectra of compound 31

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ Spectra of compound 32

1

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ spectra of compound 32

${ }^{19}$ F-NMR ($\left.\mathrm{CDCl}_{3}, 377 \mathrm{MHz}\right)$ Spectra of compound 32

	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ Spectra of compound 33

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ Spectra of compound 34

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ Spectra of compound 35

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ spectra of compound 35

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	,	1	1	1	1	T
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ Spectra of compound 36

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ spectra of compound $\mathbf{3 6}$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ Spectra of compound 37

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ spectra of compound 37

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ Spectra of compound 38

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ spectra of compound 38

菅 离

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ Spectra of compound 39

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ spectra of compound 39
$\stackrel{\text { ® }}{\stackrel{2}{1}}$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ Spectra of compound 40

$\int 1$

${ }^{1} \mathrm{H}$-NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ Spectra of compound 41

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ spectra of compound 41

${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ spectra of compound 41

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ Spectra of compound 42

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ spectra of compound 42

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ Spectra of compound 43

	1	1	1	1	1	1	1	1	1	1	1	,	1	1	1	1	1	,	1	1	T
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ Spectra of compound 44

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ spectra of compound 44

领

	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	,	1	1	1	1
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ Spectra of compound 45

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ spectra of compound 45

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ Spectra of compound 46

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ Spectra of compound 47

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ spectra of compound 47

