Passion fruit-like microspheres of FeS_2 wrapped with carbon as excellent fast charging materials for supercapacitors

Xuexia Liu, Weizhen Deng, Limin Liu, Yinfeng Wang, Chunfang Huang, and Zhijun Wang*

College of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009,

PR China

Fig. S1 SEM image of $FeS_2@Carbon-3$ microspheres.

Fig. S2 SEM image of FeS₂@Carbon-0 microspheres.

Fig. S3 TEM image of $FeS_2@Carbon-0$ microspheres.

Fig. S4 Elemental mapping images of $FeS_2@Carbon-3$ microspheres.

Fig. S5 EDX spectrum of $FeS_2@Carbon-3$ microspheres.

Fig. S6 TGA of FeS₂@Carbon-3 microspheres.

Fig. S7 CV curves of FeS_2 at different scan rates.

Fig. S8 CV curves of the $FeS_2@Carbon-0$ microspheres at different scan rates.

Fig. S9 Galvanostatic charge-discharge curves of FeS₂ microspheres at different current densities.

Fig. S10 Galvanostatic charge-discharge curves of FeS₂@Carbon-0 microspheres at different current densities.

Fig. S11 TEM image of FeS₂@Carbon-3 microspheres after cycling test.

Fig. S12 The coulombic efficiency of FeS_2 , $FeS_2@Carbon-0$ and $FeS_2@Carbon-3$ microspheres at the current density of 5 A g⁻¹ associated to the galvanostatic chargedischarge cycles.

Fig. S13 The coulombic efficiency of FeS_2 , $FeS_2@Carbon-0$ and $FeS_2@Carbon-3$ microspheres at the current density of 8 A g⁻¹ associated to the galvanostatic chargedischarge cycles.

Fig. S14 The coulombic efficiency of FeS₂@Carbon-3 microspheres at different current densities of 3, 5 and 8 A g⁻¹ associated to the galvanostatic charge-discharge cycles.

Fig. S15 (a) CV at different scan rates, (b) GCD curves at different current densities and (c) Long cycle performance of the HSC.

Scan rates (mV s ⁻¹)	Specific capacitance (F g ⁻¹)			
	FeS ₂	FeS ₂ @Carbon-0	FeS ₂ @Carbon-3	
5	285.5	542.7	470.6	
10	231.4	457.3	427.6	
20	162.7	328.3	330.6	
50	90.3	180.8	197.9	
100	50.1	103.9	122.0	
200	29.3	56.1	70.1	

Table S1 The specific capacitance of FeS_2 , $FeS_2@Carbon-0$ and $FeS_2@Carbon-3$ microspheres at different scan rates.

Current density (A g-1)	Specific capacitance (F g ⁻¹)			
Current density (A g ⁻)	FeS ₂	FeS ₂ @Carbon-0	FeS ₂ @Carbon-3	
1	270.0	337.8	278.4	
2	216.0	274.7	242.2	
3	181.3	221.0	208.7	
5	134.4	165.6	171.7	
8	82.7	112.9	126.2	
10	58.9	83.3	100.0	

Table S2 The specific capacitance of FeS_2 , $FeS_2@Carbon-0$ and $FeS_2@Carbon-3$ microspheres at different current densities.

Materials	Electrolyte	Specific capacitance	Current density	Ref
FeS ₂ nano-alloys	30% KOH	406 F g ⁻¹	1 A g ⁻¹	1
FeS ₂ @Fe ₂ O ₃ hybrid	1M Li ₂ SO ₄	255 F g ⁻¹	1 A g ⁻¹	2
FeS ₂ nanobelts	1M Na ₂ SO ₄	317.9 F g ⁻¹	3 A g ⁻¹	3
FeS ₂ /GNS	2M KOH	793 C g ⁻¹	3 A g ⁻¹	4
FeS ₂ nanoellipsoids	2M KOH	515 C g ⁻¹	1 A g ⁻¹	5
FeS ₂ /graphene aerogel	6M KOH	268.7 F g ⁻¹	2 A g ⁻¹	6
FeS ₂ /Fe ₂ O ₃ @S-rGO	6M KOH	790 F g-1	2 A g ⁻¹	7
P-FeS ₂ /GNS	2M KOH	246 mAh g ⁻¹	3 A g ⁻¹	8
FeS_2 nanotubes	3M KCl	320 F g ⁻¹	1.25 A g ⁻¹	9
FeS_2/MoS_2 nanosheet	ЗМ КОН	495 mF cm ⁻²	1 mA cm ⁻²	10
FeS ₂ /PVP composite	ЗМ КОН	526.08 F g ⁻¹	1 A g ⁻¹	11
FeS ₂ /3DPC	1M KOH	304 F g ⁻¹	2 A g ⁻¹	12
Pyrite FeS ₂	3.5M KOH	206 F g ⁻¹	1 A g ⁻¹	13
Petal-like FeS ₂	6M KOH	321.3 F g-1	1 A g ⁻¹	15
FeS ₂ @Carbon-3	1M KOH	278.4 F g ⁻¹	1 A g ⁻¹	This work

Table S3 Comparison the specific capacitance with some reported literature on FeS_2 composites for supercapacitors.

Supporting References

[1] V. Sridhar, H. Park, J. Alloy. Compd., 2018, 732, 799-805.

[2] Y. Zhang, J. Q. Liu, Z. D. Lu, H. Xia, Mater. Lett., 2016, 166, 223-226.

[3] J. Z. Chen, X. Y. Zhou, C. T. Mei, J. L. Xu, S. Zhou, C. P. Wong, *Electrochim. Acta*, 2016, **222**, 172-176.

- [4] Z. Q. Sun, H. M. Lin, F. Zhang, X. Yang, H. Jiang, Q. Wang, F. Y. Qu, J. Mater. Chem. A, 2018, 6, 14956-14966.
- [5] Z. Q. Sun, X. Yang, H. M. Lin, F. Zhang, Q. Wang, F. Y. Qu, *Inorg. Chem. Front.*, 2019, 6, 659-670.

[6] L. Y. Pei, Y. Yang, H. Chu, J. F. Shen, M. X. Ye, Ceram. Int., 2016, 42, 5053-5061.

- [7] R. R. Bu, Y. Deng, Y. L. Wang, Y. Zhao, Q. Q. Shi, Q. Zhang, Z. Y. Xiao, Y. Y.
- Li, W. Sun, L. Wang, ACS Appl. Energy Materials, 2021, 4, 11004-11013.
- [8] Z. Q. Sun, F. Z. Li, Z. Q. Ma, Q. Wang, F. Y. Qu, J. Alloy. Compd., 2021, 854, 157114.
- [9] Y. C. Chen, J. H. Shi, Y. K. Hsu, Appl. Surf. Sci., 2020, 503, 144304.
- [10] Y. R. Wang, Y. B. Xie, J. Alloy. Compd., 2020, 824, 153936.
- [11] I. K. Durga, S. S. Rao, R. M. N. Kalla, J. W. Ahn, H. J. Kim, *J. Energy Storage*, 2020, **18**, 101216.
- [12] Y. Y. Huang, S. Bao, Y. S. Yin, J. L. Lu, Appl. Surf. Sci., 2021, 565, 150538.
- [13] S. Venkateshalu, P. F. Kumar, P. Kollu, S. K. Jeong, A. N. Grace, *Electrochim. Acta.*, 2018, **290**, 378-389.
- [14] A. M. Zardkhoshoui, S. S. H. Davarani, A. A. Asgharinezhad, *Dalton Trans.*, 2019, 48, 4274-4282.