Supplementary Information

Three angular Zn_2Dy complexes showing effect of remote coordination at Zn and counter ions on the slow magnetic relaxation at Dy centre

Anangamohan Panja*^{a,b} Zvonko Jagličić,^c Paula Brandão,^d Kuheli Pramanik ^{a,b} and Narayan Ch. Jana,^a

^a Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India

^b Department of Chemistry, Gokhale Memorial Girls' College, 1/1 Harish Mukherjee Road, Kolkata-700020, India.

^c Institute of Mathematics, Physics and Mechanics & Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
 ^d Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal

* Corresponding author e-mail: ampanja@yahoo.co.in

Table of Contents

Table S1. Bond distances around metal coordination spheres in 1–34
Table S2. SHAPE analysis of the Dy(III) ion for complexes 1–3.
Table S3. Relaxation fitting parameters from the least-square fitting of the Cole-Cole plots of1 in the temperature range 1.9 K–10.0 K by the generalized Debye model
Table S4. The splitting of ${}^{6}\text{H}_{15/2}$ the lowest multiplets for 1 calculated byCASSCF/SINGLE_ANISO together with g-values for each Kramers doublets
Table S5. The splitting of ${}^{6}\text{H}_{15/2}$ the lowest multiplets for 2 calculated byCASSCF/SINGLE_ANISO together with g-values for each Kramers doublets
Table S6. The splitting of ${}^{6}\text{H}_{15/2}$ the lowest multiplets for 3 calculated byCASSCF/SINGLE_ANISO together with g-values for each Kramers doublets
Fig. S1. Asymmetric unit of complex 2 displaying a nitrate ion with half occupancy together with a scatter molecule of water of crystallisation over a same region. The bottom half showing contribution of each part in the full map
Fig. S2. ¹ H NMR of Schiff base ligand <i>N</i> , <i>N</i> '-bis(3-methoxy-5-methylsalicylidene)-1,2- phenylenediamine (H ₂ L) in CDCl ₃ at r.t
Fig. S3 : ¹³ C NMR of Schiff base ligand <i>N</i> , <i>N</i> '-bis(3-methoxy-5-methylsalicylidene)-1,2- phenylenediamine (H ₂ L) in CDCl ₃ at r.t
Fig. S4: (a), (b) and (c) represent experimental and simulated PXRD patterns of 1-3
Fig. S5 . A part of crystal packing of 1–3 showing both trimolecular and intermolecular π – π interactions
Fig. S6 . Magnetization plots of 1–3 at 2 K11
Fig. S7 . (a) to (c) represent the real and imaginary parts of ac susceptibility in 0 kOe dc field as a function of temperature for complexes 1–3 , respectively
Fig. S8 . Real and imaginary part of ac susceptibility at 2 K as a function of dc magnetic field (Top) and frequency (Bottom) for 1
Fig. S9 . Real and imaginary part of ac susceptibility at 2 K as a function of dc magnetic field (Top) and frequency (Bottom) for 2 14
Fig. S10 . Real and imaginary part of ac susceptibility at 2 K as a function of dc magnetic field (Top) and frequency (Bottom) for 3 15
Fig. S11 . (a) and (b) represent the temperature dependence of the in-phase ac susceptibility component of 2 and 3 , respectively, measured at 1.0 kOe applied magnetic field15
Fig. S12 . Frequency dependence of the in-phase and out-of-phase ac susceptibility components of 2 measured in the temperature range 1.9–10 K and at 1.0 kOe applied magnetic field
Fig. S13 . Frequency dependence of the in-phase and out-of-phase ac susceptibility components of 3 measured in the temperature range 1.9–10 K and at 1.0 kOe applied magnetic field

Fig. S14. The molecular structures of **1-3** derived from the experimental X-ray geometry used for CASSCF calculations overlaid with of *g*-tensor of the first Kramers doublet (x/y/z-axis are showed as red/green/blue arrows). The magnetic anisotropy axis calculated by Magellan is showed as an orange arrow.

Bond	Distances			
	1#	2	3	
Dy-O1	2.271(5)	2.322(2)	2.273(2)	
Dy–O2(or O4)	2.692(6)	2.679(2)	2.673(2)	
Dy-O3 (or O12)	2.343(6)	2.255(2)	2.347(2)	
Dy-O5(or O8)	2.370(7)	2.324(2)	2.354(2)	
Zn-X (Cl/Br/I)	2.269(2)	2.399(1)	2.616(1)	
Zn-O1	2.030(5)	2.034(2)	2.024(2)	
Zn-O3(or O12)	2.051(5)	2.007(1)	2.049(2)	
Zn-N1	2.099(6)	2.043(2)	2.084(2)	
Zn-N2	2.061(7)	2.067(2)	2.058(2)	
Dy…Zn	3.493(1)	3.460(2)	3.494(1)	

 Table S1. Bond distances around metal coordination spheres in 1–3

Bond distances of only one crystallographically independent complex cation are given

|--|

Label	Shape	Symmetry	Distor	tion (1)	Distortion (2)	Distortion (3)
			Dy1	Dy2	Dy1	Dy1
OP-8	Octagon	$D_{8\mathrm{h}}$	30.198	30.419	32.728	32.943
HPY-8	Heptagonal pyramid	$C_{7\mathrm{v}}$	20.888	20.265	23.134	23.359
HBPY-8	Hexagonal bipyramid	$D_{6\mathrm{h}}$	9.520	10.056	9.646	9.888

CU-8	Cube	$O_{ m h}$	4.628	5.232	3.923	4.053
SAPR-8	Square antiprism	$D_{ m 4d}$	4.547	4.451	4.303	3.993
TDD-8	Triangular dodecahedron	D_{2d}	3.948	3.774	4.082	3.870
JGBF-8	Johnson gyrobifastigium J26	D_{2d}	13.159	13.081	13.568	13.542
JETBPY-8	Johnson elongated triangular	$C_{3\mathrm{h}}$	23.758	23.879	24.070	24.342
	bipyramid J14					
JBTPR-8	Biaugmented trigonal prism J50	C_{2v}	6.326	6.056	6.480	6.232
BTPR-8	Biaugmented trigonal prism	C_{2v}	6.292	6.049	6.406	6.114
JSD-8	Snub diphenoid J84	D_{2d}	6.971	6.555	7.542	7.385
TT-8	Triakis tetrahedron	$T_{\rm d}$	4.662	5.207	3.923	4.109
ETBPY-8	Elongated trigonal bipyramid	$D_{3\mathrm{h}}$	17.997	17.229	18.682	18.511

Table S3. Relaxation fitting parameters from the least-square fitting of the Cole-Cole plots of **1** in the temperature range 1.9 K–10.0 K by the generalized Debye model.

<i>T</i> (K)	$\chi_{\rm S}$ (emu/mol)	$\Delta \chi (\text{emu/mol})$	$\tau(s)$	α
1.9	0.35551	4.65656	0.00174	0.39228
2.09	0.31816	4.21951	0.00143	0.40764
2.29	0.33228	3.87446	0.00122	0.40024
2.48	0.34971	3.56489	0.00104	0.38936
2.67	0.37044	3.29147	8.95E-04	0.37728
2.87	0.38152	3.05708	7.71E-04	0.36621
3.06	0.39714	2.84116	6.69E-04	0.35638
3.25	0.40019	2.66563	5.78E-04	0.35015
3.45	0.40001	2.50865	4.99E-04	0.34642
3.64	0.43253	2.32625	4.43E-04	0.3353
3.83	0.40186	2.23298	3.71E-04	0.34367
4.03	0.41895	2.09582	3.27E-04	0.34188
4.22	0.41187	1.99915	2.83E-04	0.34685
4.42	0.43362	1.88362	2.55E-04	0.34749
4.61	0.44638	1.77849	2.27E-04	0.34723
4.8	0.44607	1.69649	2.01E-04	0.35071
5	0.4752	1.58714	1.83E-04	0.34981
5.5	0.52473	1.36045	1.47E-04	0.3481
6	0.54882	1.18664	1.16E-04	0.34969
6.5	0.5756	1.03525	9.69E-05	0.33992
7	0.61795	0.88424	8.36E-05	0.33394
7.5	0.63094	0.7758	7.00E-05	0.32766
8	0.67865	0.64245	6.53E-05	0.31186
8.5	0.62598	0.62317	4.38E-05	0.3293
9	0.62037	0.56338	3.53E-05	0.3325
9.5	0.49801	0.62674	1.85E-05	0.3577
10	0.33254	0.74001	8.11E-06	0.39487

<i>E</i> (cm ⁻¹)	g _x	g _y	gz
0	0.123	0.267	19.029
108	0.874	1.434	15.916
164	1.276	3.224	12.800
224	3.288	3.986	9.772
283	0.236	0.973	18.277
346	2.539	5.330	8.256
412	1.992	6.389	13.077

Table S4. The splitting of ${}^{6}\text{H}_{15/2}$ the lowest multiplets for 1 calculated by CASSCF/SINGLE_ANISO together with *g*-values for each Kramers doublets

Table S5. The splitting of ${}^{6}\text{H}_{15/2}$ the lowest multiplets for **2** calculated by CASSCF/SINGLE_ANISO together with *g*-values for each Kramers doublets

0.155

19.220

0.057

614

<i>E</i> (cm ⁻¹)	g _x	g_y	g _z
0	0.072	0.167	19.224
114	0.624	0.751	16.521
200	0.857	1.475	14.829
255	0.458	2.401	13.754
333	1.039	2.373	11.553
409	3.069	5.393	11.696
554	0.630	0.865	18.468
719	0.063	0.201	19.428

Table S6. The splitting of ${}^{6}\text{H}_{15/2}$ the lowest multiplets for **3** calculated by CASSCF/SINGLE_ANISO together with *g*-values for each Kramers doublets

<i>E</i> (cm ⁻¹)	g _x	g_y	g _z
0	0.064	0.132	19.318

117	0.639	0.812	16.638
183	0.687	1.363	15.351
223	0.369	2.205	14.256
292	1.345	2.588	11.266
366	3.068	5.245	11.735
509	0.627	0.848	18.392
655	0.081	0.262	19.344

Fig. S1. Asymmetric unit of complex **2** displaying a nitrate ion with half occupancy together with a scatter molecule of water of crystallisation over a same region. The bottom half showing contribution of each part in the full map.

Fig. S2. ¹H NMR of Schiff base ligand N,N'-bis(3-methoxy-5-methylsalicylidene)-1,2-phenylenediamine (H₂L) in CDCl₃ at r.t.

Fig. S3: ¹³C NMR of Schiff base ligand N,N'-bis(3-methoxy-5-methylsalicylidene)-1,2-phenylenediamine (H₂L) in CDCl₃ at r.t.

Fig. S4: (a), (b) and (c) represent experimental and simulated PXRD patterns of 1-3.

Fig. S5. A part of crystal packing of 1–3 showing both trimolecular and intermolecular π – π interactions.

Fig. S6. Magnetization plots of 1–3 at 2 K.

Fig. S7. (a) to (c) represent the real and imaginary parts of ac susceptibility in 0 kOe dc field as a function of temperature for complexes **1–3**, respectively

Fig. S8. Real and imaginary part of ac susceptibility at 2 K as a function of dc magnetic field (Top) and frequency (Bottom) for **1**.

Fig. S9. Real and imaginary part of ac susceptibility at 2 K as a function of dc magnetic field (Top) and frequency (Bottom) for **2**.

Fig. S10. Real and imaginary part of ac susceptibility at 2 K as a function of dc magnetic field (Top) and frequency (Bottom) for **3**.

Fig. S11. (a) and (b) represent the temperature dependence of the in-phase ac susceptibility component of 2 and 3, respectively, measured at 1.0 kOe applied magnetic field.

Fig. S12. Frequency dependence of the in-phase and out-of-phase ac susceptibility components of **2** measured in the temperature range 1.9–10 K and at 1.0 kOe applied magnetic field.

Fig. S13. Frequency dependence of the in-phase and out-of-phase ac susceptibility components of **3** measured in the temperature range 1.9–10 K and at 1.0 kOe applied magnetic field.

Fig. S14. The molecular structures of **1-3** derived from the experimental X-ray geometry used for CASSCF calculations overlaid with of *g*-tensor of the first Kramers doublet (x/y/z-axis are showed as red/green/blue arrows). The magnetic anisotropy axis calculated by Magellan is showed as an orange arrow.

Fig. S15. The fits of experimental magnetic data of **1-3** utilizing CASSCF calculations, SINGLE_ANISO program and homemade routine. The best-fitted parameters: zJ = -0.0755 cm⁻¹ with scaling coefficient 1.018 for **1**, zJ = -0.0588 cm⁻¹ with scaling coefficient 1.036 for **2**, zJ = -0.0718 cm⁻¹ with scaling coefficient 1.059 for **3**.