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Table S1 The total change of Gibbs free energy (∆G*sol), computed standard potentials 
(E0

cal) and measured standard potentials (E0
exp vs. SHE, V) of various phenazine 

derivatives in alkaline aqueous solution. Phenazine (PZ), 1-hydroxyphenazine (1-
HPZ), 2-hydroxyphenazine (2-HPZ), 1-phenazinecarboxylic acid (PZ-1-C), phenazine-
1-carboxyamide (PZ-1-CA), 2,3-dihydroxyphenazine (2,3-DHPZ), 2-hydroxy-3-
aminophenazine (2,3-HAPZ), 2,3-diaminophenazine (2,3-DAPZ), 1,4-
phenazinedicarboxylic acid (PZ-1,4-DC), 1,5-phenazinedicarboxylic acid (PZ-1,5-
DC), 7,8-dihydroxy-2-phenazinesulfonic acid (7,8-DHPZ-2-S), 7,8-dihydroxy-2-
phenazinecarboxylic acid (7,8-DHPZ-2-C), benzo[a]hydroxyphenazine-7-carboxylic 
acid (BHPC), 1,2:3,4-dibenzophenazine (DBPZ), dibenzo[a,c]phenazin-11-amine 
(DBPZ-11-A), dipyridophenazine (DPPZ), 1-nitrophenazine (1-NPZ), 2-
nitrophenazine (2-NPZ), 2,3-dinitrophenazine (2,3-DNPZ).

No. Compound ∆G*sol (kJ mol-1) E0
cal (V) E0

exp (V)
P1 PZ -932.82 -0.426 -0.36[S1]

P2 1-HPZ -899.24 -0.600 -0.594[S2]

P3 2-HPZ -894.03 -0.627 -0.67[S3]

P4 PZ-1-C -906.96 -0.560 -0.536[S2]

P5 PZ-1-CA -907.35 -0.558 -0.56[S2]

P6 2,3-DHPZ -875.70 -0.722 -0.82[S1]

P7 2,3-HAPZ -885.54 -0.671 -0.78[S3]

P8 2,3-DAPZ -867.02 -0.767 -0.701[S2]

P9 PZ-1,4-DC -991.87 -0.120 -0.04[S4]

P10 PZ-1,5-DC -972.96 -0.218 -0.165[S4]

P11 7,8-DHPZ-2-S -865.67 -0.774 -0.86[S1]

P12 7,8-DHPZ-2-C -876.28 -0.719 -0.88[S1]

P13 BHPC -886.70 -0.665 -0.78[S3]

P14 DBPZ -862.58 -0.790 -0.778
P15 DBPZ-11-A -852.35 -0.843 -0.825
P16 DPPZ -866.44 -0.770 -0.732
P17 1-NPZ -941.31 -0.382 -0.45[S5]

P18 2-NPZ -928.96 -0.446 -0.39[S5]

P19 2,3-DNPZ -958.29 -0.294 -0.20[S5]
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Table S2 Comparison between the computed solvation free energy (∆Gsolv) and 
measured solubility (S) of various organic molecules in water. Alloxazine 7/8-
carboxylic acid (ACA), 3,3’-(phenazine-1,6-diylbis(azanediyl))diacetic acid (1,6-
DGAP), 3,3’-(phenazine-1,8-diylbis(azanediyl))diacetic acid (1,8-DGAP), 3,3’-
(phenazine-2,7-diylbis(azanediyl))diacetic acid (2,7-DGAP), 3,3’-(phenazine-1,6-
diylbis(azanediyl))dibutyric acid (1,6-DBAP), 6-(1H-pyrrol-1-yl) quinoxaline (6-
PyQX), 7-bromo-2,3-phenazinediol (7-Br-DHPZ), 4-carboxy-TEMPO (4CaT), 4-
cyano-TEMPO (4CyT), 2,5-dihydroxy-1,4-benzoquinone (DHBQ), 1,8-
dihydroxyanthraquinone (1,8-DHAQ).

Compound ∆Gsolv (kJ mol-1) S (mol L-1)
PZ 12.0 6.85×10-5[S1]

2-HPZ -44.0 1.7[S3]

PCA -40.1 0.27×10-3[S6]

2,3-DHPZ -43.0 0.1[S1]

2,3-HAPZ -44.3 0.43[S3]

7,8-DHPZ-2-S -70.7 1.8[S1]

7,8-DHPZ-2-C -77.0 0.95[S1]

BHPC -51.1 1.55[S3]

ACA -75.5 2[S7]

1,6-DGAP -42.0 0.115[S8]

1,8-DGAP -58.8 0.924[S8]

2,7-DGAP -67.4 0.886[S8]

1,6-DBAP -55.7 0.401[S8]

6-PyQX -2.50 6.6×10-4

7-Br-DHPZ 0.30 7.86×10-4

4CaT -29.0 0.021[S9]

4CyT -18.0 0.026[S9]

DHBQ -62.9 4.31[S10]

1,8-DHAQ -50.0 0.08[S11]

The solubilities for 6-PyQX and 7-Br-DHPZ in water are obtained from solubility 

experiments. The experimental procedure is described as follows. The excess 6-PyQX 

(or 7-Br-DHPZ) was first equilibrated in water for 48 hours at room temperature. After 

filtering the mixture through a 0.5 μm syringe-tip filter (Millipore, type FH), a saturated 

aqueous solution (200 mL) was obtained. Then, this aqueous solution was extracted 

using chloroform (50 mL). The obtained chloroform solution was concentrated by a 

known amount (5 mL) and the concentration was evaluated by UV-Vis (Shimadzu UV 
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mini 1240) spectrophotometer. The concentration was calculated according to a pre-

calibrated absorbance-concentration curve of known concentrations of 6-PyQX (or 7-

Br-DHPZ) in chloroform. 
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Fig. S1 Dependence of experimental vacuum to water solvation free energies on 

calculated solvent-accessible surface area (SASA) for various hydrocarbons.
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Fig. S2 The CV curve of 1,2:3,4-dibenzophenazine (DBPZ, P14) electrode in a 1 M 

KOH solution at 50 mV s-1. The standard potential is calculated to be -0.778 V. 
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Fig. S3 The CV curve of dibenzo[a,c]phenazin-11-amine (DBPZ-11-A, P15) electrode 

in a 1 M KOH solution at 50 mV s-1. The standard potential is calculated to be -0.825 

V.
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Fig. S4 The CV curve of dipyridophenazine (DPPZ, P16) electrode in a 1 M KOH 

solution at 50 mV s-1. The standard potential is calculated to be -0.732 V.



6

Fig. S5 Proposed phenazine derivative molecules as catholytes.

Table S3 The calculated standard potentials (E0
cal) and solvation free energy (∆Gsolv) 

in water for different DHPZ substitution patterns. 7,8-Dihydroxy-1-phenazinesulfonic 
acid (7,8-DHPZ-1-S), 7,8-dihydroxy-1-phenazinephosphonic acid (7,8-DHPZ-1-P), 
7,8-dihydroxy-2-phenazinephosphonic acid (7,8-DHPZ-2-P), 7,8-dihydroxy-1-
phenazinecarboxylic acid (7,8-DHPZ-1-C), 4,7,8-trihydroxy-2-phenazinesulfonic acid 
(4,7,8-THPZ-2-S), 4,7,8-trihydroxy-2-phenazinephosphonic acid (4,7,8-THPZ-2-P), 
4,7,8-trihydroxy-2-phenazinecarboxylic acid (4,7,8-THPZ-2-C), 3,7,8-trihydroxy-2-
phenazinesulfonic acid (3,7,8-THPZ-2-S), 3,7,8-trihydroxy-2-phenazinephosphonic 
acid (3,7,8-THPZ-2-P), 3,7,8-trihydroxy-2-phenazinecarboxylic acid  (3,7,8-THPZ-2-
C), 1,7,8-trihydroxy-2-phenazinesulfonic acid  (1,7,8-THPZ-2-S), 1,7,8-trihydroxy-2-
phenazinephosphonic acid  (1,7,8-THPZ-2-P), 1,7,8-trihydroxy-2-
phenazinecarboxylic acid  (1,7,8-THPZ-2-C).

No. Compound E0
cal (V) ∆Gsolv (kJ mol-1)

A1 7,8-DHPZ-1-S -0.626 -135.0
A2 7,8-DHPZ-1-P -0.714 -152.9
A3 7,8-DHPZ-2-P -0.655 -155.9
A4 7,8-DHPZ-1-C -0.521 -117.3
A5 4,7,8-THPZ-2-S -0.774 -138.9
A6 4,7,8-THPZ-2-P -0.787 -163.5
A7 4,7,8-THPZ-2-C -0.729 -121.2
A8 3,7,8-THPZ-2-S -0.572 -134.0
A9 3,7,8-THPZ-2-P -0.643 -157.5
A10 3,7,8-THPZ-2-C -0.589 -123.1
A11 1,7,8-THPZ-2-S -0.707 -136.0
A12 1,7,8-THPZ-2-P -0.767 -153.6
A13 1,7,8-THPZ-2-C -0.781 -125.5

Table S4 The calculated standard potentials (E0
cal) and solvation free energy (∆Gsolv) 

in water for different DCPZ substitution patterns. 6-Sulfo-phenazine-1,4-dicarboxylic 
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acid (1,4-DCPZ-6-S), 7-Sulfo-phenazine-1,4-dicarboxylic acid (1,4-DCPZ-7-S), 6-
phospho-phenazine-1,4-dicarboxylic acid (1,4-DCPZ-6-P), 7-phospho-phenazine-1,4-
dicarboxylic acid (1,4-DCPZ-7-P), phenazine-1,4,6-tricarboxylic acid (1,4,6-TCPZ), 
phenazine-1,4,7-tricarboxylic acid (1,4,7-TCPZ), phenazine-1,4,6,9-tetracarboxylic 
acid (1,4,6,9-TCPZ).

No. Compound E0
cal (V) ∆Gsolv(kJ mol-1)

C1 1,4-DCPZ-6-S -0.304 -168.0
C2 1,4-DCPZ-7-S -0.274 -160.9
C3 1,4-DCPZ-6-P -0.389 -183.5
C4 1,4-DCPZ-7-P -0.234 -175.3
C5 1,4,6-TCPZ -0.123 -143.0
C6 1,4,7-TCPZ -0.216 -137.7
C7 1,4,6,9-TCPZ +0.086 -171.7
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