Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

# **Supporting Information**

## A two-dimensional zeolitic imidazolate framework loaded with

### an acrylate-substituted oxoiron cluster as efficient

### electrocatalysts for the oxygen evolution reaction

Zhuojie Xiao<sup>a</sup>, Feng Xu<sup>a,\*</sup>

<sup>a</sup> China State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry & Chemical Engineering, Hunan University, Changsha, 410082, P. R. China

<sup>\*</sup> Corresponding author.

*E-mail address*: <u>feng\_xu@hnu.edu.cn</u> (Feng Xu)

#### **Materials and Methods:**

All of the reactants were reagent grade and used as purchased. Powder X-ray diffraction (PXRD) patterns were collected at room temperature on a Bruker D8 Advance. IR spectra were measured on PerkinElmer Spectrum 100 FT-IR spectrometer. X-ray photoelectron spectroscopy (XPS) were measured by Shimadzu AXIS SUPRA<sup>+</sup>. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectrometry (EDS) mapping were measured by JSM-7610Fplus and ULTIM MAX 40. Transmission electron microscopy(TEM) and energy-dispersive X-ray spectrometry (EDS) mapping were measured by Titan G260-300 and SUPER EDX. N<sub>2</sub> adsorption desorption were measured by JW-BK200C.

#### **TOF for OER**

The total number of oxygen turnovers is calculated by using the following eq.

$$= j \frac{mA}{cm^2} \times \frac{\frac{1C}{s}}{1000 \ mA} \times \frac{1 \ mol \ e^-}{96485 \ C} \times \frac{1 \ mol \ O_2}{4 \ mol \ e^-} \times \frac{6.02 \times 10^{23} \ mol \ O_2}{1 \ mol \ O_2} \times 1.56$$

$$= j \times 1.56 \times 10^{15} \frac{O_2/s}{cm^2}$$

Accordingly, the density of active sites for OER based on the Co and Fe is calculated as eq.:

$$(\frac{27.6}{58.9} + \frac{7.42}{55.9}) \times \frac{1mmol}{100 mg} \times 0.57 \frac{mg}{cm^2} \times 6.022 \times 10^{20} \frac{sites}{mol}$$
  
= 2.06 × 10<sup>18</sup> sites cm<sup>-2</sup>

For example, TOF of the catalyst for OER at an overpotential of 312 mV (j = 10 mA/cm<sup>2</sup>) is calculated as:

$$TOF = \frac{10 \times 1.56 \times 10^{15} \frac{O_2 / s}{cm^2}}{2.06 \times 10^{18} \, sites \, cm^{-2}} = 0.016 \, s^{-1}$$

#### Electrochemically active surface area

The electrochemically active surface area (ECSA) of the prepared catalyst was investigated through calculating the double-layer capacitance ( $C_{dl}$ ) by recording the CV curve with the non-Faradic region with different scan rate of 20-120 mV s<sup>-1</sup>. The slope of capacitive current ( $\Delta j = j_{anode} - j_{cathode}$ ) vs scan rate was double the value of  $C_{dl}$ . The double-layer capacitance ( $C_{dl}$ ) is directly proportional to ECSA, as given below.[1]

$$ECSA = \frac{C_{dl}}{C_s}$$

ECSA = Electrochemical active surface area (ECSA)

 $C_{dl}$  = Double layer capacitance

 $C_s =$  Specific capacitance (0.040 mF cm<sup>-2</sup>)



Fig. S1. XPS survey scan spectra of ZIF-L@Fe<sub>28</sub>



Fig. S2. Deconvolutions of XPS Co 2p core-level regions for (a) ZIF-L and (b)ZIF-L@Fe<sub>28</sub>



Fig. S3. SEM and corresponding EDS mapping images of ZIF-L@Fe<sub>28</sub> (160 mg)



Figure S4. The pore size distribution curves of (a) ZIF-L and (b) ZIF-L@Fe<sub>28</sub>.



**Fig. S5.** LSV polarization curves of ZIF-L, ZIF-L@Fe<sub>28</sub> (80mg), ZIF-L@Fe<sub>28</sub> (120mg) and ZIF-L@Fe<sub>28</sub> (160mg). (b) The corresponding Tafel plots of the catalysts.



**Fig. S6.** CVs in a non-faradic current region (1.423-1.323 V) at different scan rates (20 to 120 mV/s) of (a) ZIF-L, (b) ZIF-L@Fe<sub>28</sub> (120 mg), (c) ZIF-67, and (d) ZIF-67@Fe<sub>28</sub> (120 mg) in 1.0 mol/L KOH solution.



Fig. S7.  $(j_a - j_c)/2$  plotted against scan rates of ZIF-L, ZIF-L@Fe<sub>28</sub> (120 mg), ZIF-67 and ZIF-67@Fe<sub>28</sub> (120 mg)



**Fig. S8.** EIS Nyquist plots of ZIF-L, ZIF-L@Fe<sub>28</sub>(120mg), ZIF-67, ZIF-67@ Fe<sub>28</sub>(120mg) under a potential of 1.56V.



**Figure S9.** Equivalent circuit for the EIS data simulation, where Rs, Rct and CPE1 represent the solution resistance, charge transfer resistance and constant-phase element, respectively. The fitting results are shown in Table S2.

![](_page_7_Picture_2.jpeg)

**Figure S10.** TEM images of ZIF-L@Fe<sub>28</sub> (120 mg) a,b,c) before and d,e,f) after OER tests.

|                                    | Cu     | Fe     | molar ratio (Cu/Fe) |  |
|------------------------------------|--------|--------|---------------------|--|
| Fe <sub>28</sub>                   | 1.142% | 25.36% | 1.1:28              |  |
| ZIF-L@Fe <sub>28</sub><br>(120 mg) | 0.118% | 7.421  | 0.39:28             |  |

**Table S1.** Elemental analysis data of iron and copper in  $\{Fe_{28}\}$ .

**Table S2.** Surface element composition (XPS) of the ZIF-L and the ZIF-L@Fe<sub>28</sub> composite.

| Catalysts              | С     | Ο     | Ν     | Co   | Fe   |
|------------------------|-------|-------|-------|------|------|
| ZIF-L                  | 57.63 | 15.77 | 20.57 | 6.03 | 0    |
| ZIF-L@Fe <sub>28</sub> | 49.71 | 27.93 | 10.49 | 8.39 | 3.45 |

**Table S3.** The EIS fitting results of samples by fitting with the proposed equivalent circuit.

|                      | ZIF-L | ZIF-<br>L@Fe <sub>28</sub> (120mg) | ZIF-67 | ZIF-67@Fe <sub>28</sub> (120mg) |
|----------------------|-------|------------------------------------|--------|---------------------------------|
| $R_{\rm s}(\Omega)$  | 27.5  | 16.3                               | 22.6   | 20.3                            |
| $R_{\rm ct}(\Omega)$ | 118.0 | 46.7                               | 175.7  | 61.8                            |

**Table S4.** The C<sub>dl</sub>, ECSA, TOF and mass activity of ZIF-L, ZIF-L@Fe<sub>28</sub>(120mg), ZIF-67, ZIF-67@Fe<sub>28</sub>(120mg)

|                                        | ZIF-L  | ZIF-<br>L@Fe <sub>28</sub> (120mg) | ZIF-67 | ZIF-<br>67@Fe <sub>28</sub> (120mg) |
|----------------------------------------|--------|------------------------------------|--------|-------------------------------------|
| $C_{dl}$ (mF cm <sup>-2</sup> )        | 4.8    | 18.9                               | 3.5    | 7.1                                 |
| <i>ECSA</i> (m <sup>2</sup> g-<br>1)   | 120.0  | 472.5                              | 87.5   | 177.5                               |
| $TOF(s^{-1})$                          | 0.002  | 0.016                              | 0.0014 | 0.005                               |
| mass activity<br>(A mg <sup>-1</sup> ) | 0.0025 | 0.02                               | 0.0018 | 0.006                               |

| Catalysts                                                       | Electrolyte                    | Overpotential<br>(mV)        | Tafel<br>slope<br>(mV<br>dec <sup>-1</sup> ) | Reference |
|-----------------------------------------------------------------|--------------------------------|------------------------------|----------------------------------------------|-----------|
| Yolk/shell ZIF-<br>67@POM                                       | 1.0 M KOH                      | 287(10 mA cm <sup>-2</sup> ) | 58                                           | 2         |
| ZIF-8@ZIF-<br>67@POM                                            | 1.0 M KOH                      | 490(10 mA cm <sup>-2</sup> ) | 88                                           | 3         |
| PBA@POM                                                         | 1.0 M KOH                      | 440(10 mA cm <sup>-2</sup> ) | 23                                           | 4         |
| SiW <sub>9</sub> Co <sub>3</sub> [h]@ZIF-<br>67                 | 0.1 M KOH                      | 420(10 mA cm <sup>-2</sup> ) | 94                                           | 5         |
| Mo <sub>x</sub> Co <sub>x</sub> C@C                             | 1.0 M KOH                      | 295(10 mA cm <sup>-2</sup> ) | 39                                           | 6         |
| Co-Mo <sub>2</sub> C@NC                                         | Phosphate<br>buffer (pH<br>=7) | 440(10 mA cm <sup>-2</sup> ) | 156                                          | 7         |
| Fe/Ni <sub>2.4</sub> /Co <sub>0.4</sub> -MIL-<br>53             | 1.0 M KOH                      | 219(10 mA cm <sup>-2</sup> ) | 54                                           | 8         |
| Quasi-ZIF-67-350                                                | 1.0 M KOH                      | 286(10 mA cm <sup>-2</sup> ) | 84                                           | 9         |
| WS <sub>2</sub> /Co <sub>1-x</sub> S/N                          | 1.0 M KOH                      | 365(10 mA cm <sup>-2</sup> ) | 64                                           | 10        |
| Co <sub>3</sub> O <sub>4</sub> /CoMoO <sub>4</sub><br>nanocages | 1.0 M KOH                      | 318(10 mA cm <sup>-2</sup> ) | 63                                           | 11        |
| ZIF-L@Fe <sub>28</sub>                                          | 1.0 M KOH                      | 312(10 mA cm <sup>-2</sup> ) | 78                                           | This work |

**Table S5.** Comparison of OER activities for the reported MOF-based catalysts.

#### References

[1] M. Yu, G. Moon, E. Bill, et al., ACS Appl. Energy Mater. 2 (2019) 1199-1209.

[2] Q.Y Li, L. Zhang, Y.X Xu, et al., ACS Sustain. Chem. Eng. 7 (2019) 5027-5033.

[3] Y Wang, Y Wang, Li Zhang, et al., Inorg. Chem. Front. 6 (2019) 2514-2520.

[4] Y. Wang, Y. Wang, L. Zhang, et al., Chem.-Asian J. 14 (2019) 2790-2795.

[5] V.K. Abdelkader-Fernández, D.M. Fernandes, S.S. Balula, et al., J. Mater. Chem. A. 8 (2020) 13509-13521.

[6] C. Chen, A. Wu, H. Yan, et al., Chem. Sci. 9 (2018) 4746-4755.

[7] M. Wang, S. Dipazir, P. Lu, et al., J. Colloid Interface Sci. 532 (2018) 774-781.

[8] F. L Li, Q. Shao, X Huang, et al., Angew. Chem. Int. Ed. 57 (2018) 1888-1892.

[9] R. M Zhu, J. W Ding, J. P Yang, et al., ACS Appl. Mater. Interfaces 12 (2020) 25037–25041

[10] Z. Huang, Z. X Yang, Z. Hussain, et al., Electrochim. Acta 330 (2020) 135335.

[11] L. Zhang, T. Mi, M.A. Ziaee, et al., J. Mater. Chem. A 6 (2018) 1639-1647.