Electronic Supplementary Information

Amino-based Covalent Organic Frameworks for a Wide Range of Functional Modification

Yuling Zhao, Xianhui Xu, Chang Xu, Deyuan Meng, Xiaqian Liang, Jikuan Qiu*
Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions Ministry of Education, Henan Normal University Xinxiang, Henan 453007 (P. R. China)
E-mail: qiujikuan@htu.edu.cn
Section S1. Materials and methods

Benzene-1,3,5-Tricarbadehyde (TFB) (97%), 4-Cyanobenzaldehyde (≥98%), 4-(Trifluoromethyl) PhenylIsothiocyanate(≥98%), 4-CyanobenzoylChloride (≥98%) were purchased from Adamas Reagent, Ltd. p-chloronitrobenzene (CP) was purchased from Shanghai Chemical Reagent Co., Ltd. Dimethyl aminoterephthalate (99%) was purchased from Alfa Aesar (China) Chemical Co., Ltd. 2,5-diethoxybenzene-1,4-dicarbohydrazide (97%) was purchased from Zhengzhou Alfa Chemical Co. Ltd. Sodium hydrogen carbonate(KOH) (AR) was purchased from Tianjin Fengchuan Chemical Reagent Technology Co., Ltd. Sodium hydrogen carbonate(NaHCO\textsubscript{3})(99.5%) was purchased from Tianjin Tianli Chemical Reagent Co. Ltd. Organic solvents such as acetic acid (99.7+%), tetrahydrofuran (THF) (≥99%, AR), anhydrous MeOH (≥99.5%), N,N-dimethylformamide (DMF) (≥99.5%), acetone (≥99.5%) were purchased from commercially and used without further purification.

Power X-ray diffraction (PXRD) data were obtained with an X’ Pert3 powder diffractometer at 40 kV and 40 mA with Cu Kradiation from 2θ = 2° to 40° in 0.05° increment. Fourier transform infrared (FT-IR) of the samples were collected on a Spectrum 400 spectrometer (Perkin-Elmer). All samples were ground into a powder with KBr and pelletized before the measurements. Nitrogen adsorption and desorption isotherms were measured at 77 K using an ASiQwin Quantachrome instrument. The samples were treated at 150 °C for 8 h before measurements. Specific surface areas were calculated from the adsorption data using Brunauer-Emmett-Teller (BET) methods. Pore size distribution data were calculated based on the nonlocal density functional theory (NLDFT) model. Field emission scanning electron microscopy (FE-SEM) observations were performed on a Hitachi SU8010 microscope operated at an accelerating voltage of 10.0 kV. In order to analyze the thermal properties of the materials, thermogravimetric analysis (TGA) data were obtained on a STA449C under N\textsubscript{2} atmosphere from 50°C to 800°C along with a ramp rate of 10°C min-1.
Synthesis of 2-amino-1,4- dicarbohydrazide (2)

In a 100 mL round-bottom flask, a solution of 1.0g (4.7mmol) Dimethyl aminoterephthalate in 20 mL of methanol was mixed with 7.5mL of hydrazine hydrate. After refluxing the solution over night, a pale yellow precipitate appeared. The crude product was filtered and recrystallized from ethanol twice and further dried for 24 hours at 50 °C to afford the desired compound as a pale yellow powder (0.5 g, 50% yield).

Synthesis of \([\text{NH}_2]_{50\%}\text{COF-HNU13}\)

32.4 mg (0.20 mmol) of TFB (1), 31.4 mg (0.15 mmol) of 2-amino-1,4-dicarbohydrazide (2), 42.3mg (0.15 mmol) of 2,5-diethoxybenzene-1,4-dicarbohydrazide (3), dioxane(2mL), 1,3,5-Trimethylbenzene (6mL) were charged into a glass tube, after dispersing evenly, add 6M acetic acid(0.8mL), followed by the degassing procedure using freeze-pump-thaw cycles for three times. The glass vial was then flame-sealed and the mixture was allowed to react at 120°C for 3 days. After being collected by filtration, the precipitate was washed with ethanol, tetrahydrofuran, and acetone. Finally, the solid was dried at under vacuum at 60°C for 12 h to obtain \([\text{NH}_2]_{50\%}\text{COF-HNU13}\) as a yellow powder (yield: 95.0 %).

Synthesis of \([\text{R1}]_{50\%}\text{COF-HNU13}\)

20mg \([\text{NH}_2]_{50\%}\text{COF-HNU13}\), 60.8mg (0.4mmol) 4-Methylmercaptobenzaldehyde and EtOH (2mL) were added into a glass tube. After the slurry was sonicated for 5 min, 3M acetic acid (0.1 mL) was added. Then, the mixture was degassed and stirred at 80°C for 12 hours. Upon cooling, the resulting precipitate was collected by filtration and washed with water and ethanol. Finally, the solid was dried at under vacuum at 60 °C as a yellow powder (yield: 96%).

Synthesis of \([\text{R2}]_{50\%}\text{COF-HNU13}\)

20mg \([\text{NH}_2]_{50\%}\text{COF-HNU13}\), 81.3 mg (0.4 mmol) 4-(trifluoromethyl)phenyl
isothiocyanate and DMF (2 mL) were added into a glass tube. Then, the mixture was heated at 40°C for 3 hours under stirring. Upon cooling, the resulting precipitate was collected by filtration and washed with water and ethanol. Finally, the solid was dried at under vacuum at 60 °C as a yellow powder (yield: 97 %).

Synthesis of [R3]_{50%} COF-HNU13

20mg [NH$_2$]$_{50%}$COF-HNU13, 52.5mg (0.4mmol) 4-cyanobenzoyl chloride and 1/1 (v/v) mixture of THF/NaHCO$_3$ (aq) were added into a glass tube under ambient conditions. Then, the mixture was stirred for 3 hours. The resulting precipitate was collected by filtration and washed with water and ethanol. Finally, the solid was dried at under vacuum at 60 °C as a yellow powder (yield: 97 %).

Synthesis of [R4]_{50%} COF-HNU13

20mg [NH$_2$]$_{50%}$COF-HNU13, 63.0 mg (0.4mmol) p-chloronitro-benzene, 70 mg (1.25 mmol) KOH and DMF (5 mL) were added into a glass tube. Then, the mixture was heated at 50°C for 12 hours under stirring. Upon cooling, the resulting precipitate was collected by filtration and washed with water and ethanol. Finally, the solid was dried at under vacuum at 60 °C as a yellow powder (yield: 93 %).
Section S2. Figures S1-13

Figure S1 FT-IR spectra of the $[\text{NH}_2]_{0\%}\text{COF-HNU13}$ and $[\text{NH}_2]_{50\%}\text{COF-HNU13}$.

Figure S2 SEM images of the $[\text{NH}_2]_{50\%}\text{COF-HNU13}$.
Figure S3 Nitrogen sorption isotherms of [NH$_2$]$_{50\%}$COF-HNU13 and [R1]$_{50\%}$COF-HNU13 at 77 K.

Figure S4 (a) NLDFT pore size distributions of [NH$_2$]$_{50\%}$COF-HNU13 and [R1]$_{50\%}$COF-HNU13, (b) NLDFT pore size distributions of [R2]$_{50\%}$COF-HNU13, [R3]$_{50\%}$COF-HNU13 and [R4]$_{50\%}$COF-HNU13.
Figure S5 TGA curves of [NH$_2$]$_{50\%}$COF-HNU13.

Figure S6 SEM images of [R1]$_{50\%}$COF-HNU13.

Figure S7 SEM-EDS mapping images of [R1]$_{50\%}$COF-HNU13.
Figure S8 N\textsubscript{2} sorption isotherm at 77 K of \([R2]\)\textsubscript{50\%}\text{COF-HNU13}, \([R3]\)\textsubscript{50\%}\text{COF-HNU13} and \([R4]\)\textsubscript{50\%}\text{COF-HNU13}, respectively.

Figure S9 SEM images of the \([R2]\)\textsubscript{50\%}\text{COF-HNU13}.

Figure S10 SEM images of the \([R3]\)\textsubscript{50\%}\text{COF-HNU13}.
Figure S11 SEM images of the [R4]_{50\%} COF-HNU13.

Figure S12 (a) High-resolution N 1s XPS spectra of [NH2]_{50\%} COF-HNU13, (b) High-resolution F 1s XPS spectra of [R2]_{50\%} COF-HNU13, (c) High-resolution N 1s XPS spectra of [R3]_{50\%} COF-HNU13, (d) High-resolution Cl 2p XPS spectra of [R4]_{50\%} COF-HNU13.
Figure S13 (a) [NH_2]$_{50\%}$COF-HNU13 absorption spectrum of ofloxacin, and (b) [R2]$_{50\%}$COF-HNU13 absorption spectrum of ofloxacin.

Figure S14 1H NMR spectrum of the product of the model reaction between benzaldehyde (2 mmol) and 2-amino-1,4- dicarbohydrazide (1 mmol). 1H NMR spectrum of the product showed that the aldehyde selectively reacted with hydrazine.