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1 General experimental condition

1.1 Chemicals and instruments

All reagents are more than 98% pure and the solvent is A.R. It is used directly after
purchase. Poly Aluminum Ferric Chloride (PAFC) is reddish brown powder, the content
of alumina is about 30%, the content of Iron oxide is about 5%, in accordance with the
GB15892-2003 standard, China henan kechuang purification materials co, LTD.
Scanning electron microscope (SEM) image recorded on the Hitachi S4800. The
morphology of the materials was obtained on JEOL JEM-2010F High Resolution
Transmission Electron Microscope (HRTEM). FTIR spectral analysis by Bruker
TENSOR 27Two003040404. 1H and 13C NMR were obtained by Bruker 400 MHz
spectrometer. The X-ray photoemission (XPS) spectra were performed at room
temperature using a Thermo ESCALAB 250xi hemispherical electron energy analyzer.
1.2 Typical procedure for the synthesis of 3-alkylindole derivatives

Put polyaluminum ferric chloride (0.05g), 300-400 mesh silica gel (0.2g) in a
mortar, solid-phase grinding for 20 minutes at room temperature, prepare PLASC
catalyst in situ, and add indole (Immol), styrene oxide (1.5mmol), continue solid-phase
grinding at room temperature, and TLC monitors the progress of the reaction. After the
completion of the reaction, the reaction mixture was washed and extracted with ethyl
acetate (3x10 mL), the residue solid after extraction was the catalyst, and it was dried
in a vacuum oven at 30°C for 30 minutes (It can be used for the next batch reaction).
The extracted organic phase contains the reaction product and unreacted substrate, the
extraction solvent ethyl acetate is recovered by distillation, and the crude product is
purified by column chromatography (petroleum ether: ethyl acetate 7:3), finally, the
structure of the product is determined by NMR.
1.3 Typical procedure for the synthesis of Quinoxalines

Put polyaluminum ferric chloride (0.01g), 300-400 mesh silica gel (0.05g) in a
mortar, solid-phase grinding for 20 minutes at room temperature, prepare PLASC
catalyst in situ, and add a-dicarbonyls (1 mmol), 1,2-diamines (1mmol), continue solid-

phase grinding at room temperature, and TLC monitors the progress of the reaction.



After the completion of the reaction, the reaction mixture was washed and extracted
with ethyl acetate (3%10 mL), the residue solid after extraction was the catalyst, and it
was dried in a vacuum oven at 30°C for 30 minutes (It can be used for the next batch
reaction). The extracted organic phase contains the reaction product and unreacted
substrate, the extraction solvent ethyl acetate is recovered by distillation, and the crude
product is purified by column chromatography (petroleum ether: ethyl acetate 10:1),
finally, the structure of the product is determined by NMR.
1.4 Typical procedure for the synthesis of benzimidazole derivatives

Put polyaluminum ferric chloride (0.05g), 300-400 mesh silica gel (0.2g) in a
mortar, solid-phase grinding for 20 minutes at room temperature, prepare PLASC
catalyst in situ, and add benzaldehyde (1 mmol), 1,2-diamines (1mmol), continue solid-
phase grinding at room temperature, and TLC monitors the progress of the reaction.
After the completion of the reaction, the reaction mixture was washed and extracted
with ethyl acetate (3x10 mL), the residue solid after extraction was the catalyst, and it
was dried in a vacuum oven at 30°C for 30 minutes (It can be used for the next batch
reaction). The extracted organic phase contains the reaction product and unreacted
substrate, the extraction solvent ethyl acetate is recovered by distillation, and the crude
product is purified by column chromatography (petroleum ether: ethyl acetate 2:1),
finally, the structure of the product is determined by NMR.
1.4 Typical procedure for the synthesis of f-amino alcohol derivatives

Put polyaluminum ferric chloride (0.05g), 300-400 mesh silica gel (0.2g) in a
mortar, solid-phase grinding for 20 minutes at room temperature, prepare PLASC
catalyst in situ, and add aniline (1 mmol), styrene oxide (1mmol), continue solid-phase
grinding at room temperature, and TLC monitors the progress of the reaction. After the
completion of the reaction, the reaction mixture was washed and extracted with ethyl
acetate (3x10 mL), the residue solid after extraction was the catalyst, and it was dried
in a vacuum oven at 30°C for 30 minutes (It can be used for the next batch reaction).
The extracted organic phase contains the reaction product and unreacted substrate, the
extraction solvent ethyl acetate is recovered by distillation, and the crude product is

purified by column chromatography (petroleum ether: ethyl acetate 5:1), finally, the



structure of the product is determined by NMR.



2. The characterization results and experimental data

Table S1. Condition optimization of synthesis reaction of 3-alkylindole by PLASC catalysts

Co-catalyst

Entry  Main catalyst/g Silica gellg Main product 3 yields?
1 / / N.RP
2 / 0.5 N.R
3 PAFC (0.05) / 29
4 PAFC (0.02) 0.5 56
5 PAFC (0.05) 0.5 74
6 PAFC (0.10) 0.5 73
7 PAFC (0.05) 0.3 73
8 PAFC (0.05) 0.2 74
9 PAFC (0.05) 0.1 41
10¢ PAFC (0.05) 0.2 57
11¢ PAFC (0.05) 0.2 52
12¢ PAFC (0.05) 0.2 75
13f PAFC (0.05) / 40
14 PAC (0.05) / 25
15 PAC (0.05) 0.2 49
16 AICI; 6H,0 (0.1mmol) 0.2 24
17 FeCls 6H,O (0.1mmob) 0.2 22
18 AICI; 6H,0 (0.1mmol> +SDS 0.2 47
19 FeCls 6H,O (0.1mmol) +SDS 0.2 31
20 PAFC (0.05) +SDS 0.2 61
21 PAC (0.05) +SDS 0.2 35
221 In(NO); 3H,0 (0.1mmol) 0.2 70
232 50%wtHBF4 aqueous solution 0.3g 0.2 72

Reaction conditions: Put polyaluminum ferric chloride and 300-400 mesh silica gel in a mortar,
solid-phase grinding for 20 minutes at room temperature, then add indole (1 mmol) and styrene
oxide (1.2 mmol), and grind for 30 minutes at room temperature.

a]solated yields.

® No product is formed.

¢ The feeding amount is 1 mmol of indole and 1 mmol of styrene oxide.

4The feeding amount is 1.2 mmol of indole and 1 mmol of styrene oxide.

¢ Solvent is CHCl..

fSolvent is CH2Cl and no co-catalyst silica gel are added, and the reaction time is 3h.



Table S2. Amplification response

Reaction type Magnification  Yields (1mmol/20moml) %
Synthesis reaction of 3-alkylindole derivatives 10 74172
Synthesis reaction of 3-amino alcohol derivatives 10 90/87
Synthesis reaction of benzimidazole derivatives 10 91/90
Synthesis reaction of quinoxaline derivatives 10 99/99

The reaction conditions are the same as the small test conditions



Table S3. Synthesis reaction of 3-alkylindole derivatives by PLASC catalysts
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Reaction conditions: polyaluminum ferric chloride (0.05g), 300-400 mesh silica gel (0.2g) in a
mortar, solid-phase grinding at room temperature for 20 minutes, then add indole derivative
(2mmol), styrene oxide Derivative (1.2mmol), grind at room temperature for 30min.

Isolated yields.



Table S4. Synthesis reaction of B-amino alcohol derivatives by PLASC catalysts

NH, PAFC/Silica gel
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Reaction conditions: polyaluminum ferric chloride (0.05g), 300-400 mesh silica gel (0.2g) in a
mortar, solid-phase grinding at room temperature for 20 minutes, then add aniline (Immol), styrene
oxide (1.2mmol)), grind for 30min at room temperature.

Isolated yields.

Table S5. Synthesis reaction of benzimidazole derivatives by PLASC catalysts
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Reaction conditions: polyaluminum ferric chloride (0.05g), 300-400 mesh silica gel (0.2g) in a
mortar, solid-phase grinding at room temperature for 20 minutes, then add o-phenylenediamine
derivative (1Immol), benzaldehyde derived (2 mmol), grind at room temperature for 20 min.

Isolated yields.



Table S6. Synthesis reaction of quinoxaline derivatives by PLASC catalysts
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Reaction conditions: polyaluminum ferric chloride (0.01g), 300-400 mesh silica gel (0.04g) in a
mortar, solid-phase grinding at room temperature for 20 minutes, then add o-phenylenediamine
derivative (1mmol), benzil Derivative (1 mmol), grind at room temperature for 5 min.

Isolated yields.



Table S7 BET and pore size of the catalysts

Desorption average pore diameter

BET /( m3)
(4V/A by BET)/(nm)
Silica gel 343.8321 10.9328 nm
PLASC after useing one time 248.3609 8.7548
PLASC after using ten times 287.6113 7.8495

Table S8 Zeta potential of the catalysts

1 2 3 Average

Silica gel -0.6324 -0.6496 -0.5772 -0.6197

PAFC +0.4384 +0.4628 +0.4086 +0.4366

PLASC after useing one time -0.1690 -0.1928 -0.1574 -0.1730

PLASC after useing ten times -0.9367 -1.1139 -0.8816 -0.9774
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FigureS1. VSM of PLASC catalysts

The magnetic test results for the PLASC catalyst are shown in Figure S2. The results show that
the inclusion of ferric polymeric aluminium chloride does give the composite catalyst some
magnetic properties, but the magnetic properties are very weak, PLASC catalysts showed a
saturation magnetization (Ms) value of 0.0152 emu/g, and we do not believe that there is a
significant correlation between the magnetic properties and the catalytic effect of the catalyst. The
iron in the polymeric aluminium chloride iron mainly adjusts the electronic structure in the
composite, and the very small amount of Fe-O bonding improves the charge distribution of the
composite, effectively promoting its electron transport and enhancing the catalytic activity of the

composite catalyst.
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Figure S2. PLASC catalyst NHsTPD

Figure S3. is PAFC and PLASC catalyst NH3-TPD, B is silica gel, PAFC and silica
gel physically mixed, PAFC/silica gel composite NH3-TPD. Figure A shows that PAFC
begins to decompose around 600°C, and the PLASC composite formed by PAFC and
silica gel remains stable at 700°C after grinding. This is due to the Si-O-Al, Si-O-
formed in-situ during the grinding process. The Fe bond is more stable than the original
Al-O-Fe and AlI-O-Al bonds. Figure B shows: Compared with silica gel and the physical
mixture of PAFC and silica gel, after mechanical grinding of PAFC and silica gel, the
physical adsorption peak around 90°C is obviously increased. Combined with the SEM
image, it can be seen that this is due to the particle size of the material due to the
grinding effect. Smaller, increased surface area, and looser material surface, which is
also a manifestation of nanomaterials. The chemisorption peak near 200 °C shifts
toward higher temperature, indicating that Si-O-Al and Si-O are formed in situ At the
same time as the active bond sites of Fe, the acid sites of the catalyst are transformed
into strong acid sites, which is one of the reasons why the catalytic activity of PLASC

catalyst is stronger than that of PAFC itself.



Figure S3. Morphological performance of materials in water and ethanol

a, b are the morphological performance of silica gel, PAFC, PLASC in water and
ethanol, respectively. From al to a5, it can be seen that PAFC and PLASC form a turbid
suspension after shaking in water, and the precipitation rate is very slow. The
comparison is made after 4h, because of the -O-Si-O-Fe-O-/-O- in PLASC Si-O-AI-O-
makes it more stable, and its precipitation rate is higher than that of PAFC alone. From
bl to b5, we can see that in ethanol, PAFC and PLASC are generally more stable than
water, and the precipitation rate is higher. The laser test at 30 min in b4 shows that
PAFC has Tyndall effect in ethanol due to its small part- The -Fe-O-, -AI-O- bond reacts
with ethanol to form a colloid, but the PAFC/silica gel composite under the same
conditions does not show this phenomenon, which proves that the PLASC after
grinding is more stable. As for its slightly turbidity, As shown by the finely divided

silica gel after grinding.



Table S9. Comparison of E-factors in the synthesis of 3-alkylindole catalyzed by different

catalysts
Reactant
Entry Indole/styrene Catalyst dosage/reuse (times)  Solvent (ml) Yield(%)  E factor
oxide (mmol)
13 0.25/0.3 15mgMIL-101(Fe)/ 4 / 91 0.005
24 11 50mgMCM-41/5 / 80 0.055
2mmol[H-
3° 11 2mmol[H-NMP]H:PO4/4 85 1.289
NMP]H,PO./4
48 1/1 0.5mmolNano MgO/5 / 70 0.025
57 11 10%molNano Fe304/2 / 76 0.065
6 121 0.5mL [bmim][OTf]/4 0.5mL [bmim][OTf] 85 0.751
7 11 10%molInCls/0 2mICHCl, 85 13.786
8° 11 10%molLiClO./0 2mICHsCN 85 8.153
This
1/1.2 250mgPLASC / 75 0.146

work




Table S10. Peak assignment of FT-IR of PLASC catalyst

Peak position (cm™) Peak attribution
3414 Physically adsorb the stretching vibration of water molecules
1635 Bending vibration of -OH
1090 Anti-symmetric stretching vibration of Si-O-Si
965 Bending vibration of Si-OH
802, 473 Symmetrical stretching vibration and bending vibration of Si-O

569 Bending vibration of Fe-O, Al-O
776 Stretching vibration of Fe-O, Al-O

975cm Bending vibration of Fe-OH, AIl-OH

1088, 1154 Anti-symmetric stretching vibration of Fe-O-Al, Al-O-A




Table S11. Comparison of the synthesis of quinoxaline derivatives in solvent-free, water, and

ethanol
Ri NH; OI’” PAFC/Silica gel Ry N
; - I
R, NH,  HOZ ar Ball-milling , RT R, N A
Solvent (5ml) catalyst (0.06g) Yield @
PLASC 99
/ PAFC 95
PAC 89
PLASC 92
Water PAFC 83
PAC 81
PLASC 99
Ethanol PAFC 99
PAC 99

Reaction conditions: Put polyaluminum iron chloride (0.01g) and 300-400 mesh silica gel (0.04g)
in a mortar, solid-phase grinding for 20 minutes at room temperature, then add o-phenylenediamine
derivative (1mmol), benzine Acyl derivative (1 mmol), grind at room temperature for 5 min or add
the catalyst, substrate, and solvent to the reaction tube and stir at room temperature for 30 min.
solated yields.

In view of the physical performance of the materials in different solvents, we
explored the catalytic effects in their respective systems. The results are shown in Table
S11. Under three conditions, such as solvent-free, water and ethanol, the catalytic effect
of PAFC is generally higher than that of PAC, while PLASC The catalytic effect of
PAFC is higher than that of PAFC alone. Obviously, the doping of Fe element improves
the catalytic effect, and the catalytic performance of the new species after grinding is
more prominent. At the same time, we observed that in terms of the final yield, the
performance of solvent-free and ethanol-solvent conditions is significantly better than
that of water-solvent. When ethanol is the solvent, the performance of various catalysts

is more prominent than that under solvent-free. This may be due to ethanol in this



synthesis system. It’s not surprising that PLASC in the solvent-free system can achieve
the same effect as that in the ethanol system. This just illustrates the superior effect of

PLASC catalyst in maintaining the output. At the same time, the use of organic solvents

1s avoided.
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Figure S4. Mechanism of PLASC-catalyzed synthesis of 3-alkylindole derivatives
Based on conditional screening experiments and subsequent characterization and
analysis of the morphology, FT-IR and XPS of the PAFC/silica gel composite catalyst,
we found and confirmed the existence of new active bond (-O-Si-O-Fe-O-, -O-Al-O-
Si-O-) sites generated in situ during the grinding of PAFC and silica gel.On this basis,
the catalytic active centers of nanofibers formed by the active bonds are evenly
distributed in the system so that the new polynuclear metal species has a richer

electronic structure, and the overall catalytic performance is improved. we inferred the



catalytic mechanism of the catalytic system (taking the synthesis of 3-alkylindole
derivatives as an example), and the results are shown in Figure S5. First of all, PAFC
and silica gel form a fibrous nano-scale active bond (-O-Si-O-Fe-O-,-O-Al-O-Si-O-)on
the surface of silica gel through intermolecular interaction and coordination under the
action of mechanical force in the continuous grinding process. After adding the raw
materials in the one-pot cooking method, compared with the PAFC alone, the catalytic
bond positions in the new species are more diverse, and at the same time it brings a
richer electric field, and it is easier to form coordination with the styrene oxide (A)
oxygen. The electron cloud density around the oxygen atom increases and the
electronegativity increases. The two carbon atoms connected to the oxygen are
positively charged. Due to the influence of the benzene ring, the carbon atom at the
benzyl position is more positively charged, and at the same time indole (B) The
activation is completed by charge transfer at the 3 position, as an electrophile, it
preferentially attacks the more positively charged benzyl carbon. The epoxy styrene
carbon-oxygen bond is broken and added to the indole 3-position, after which the
catalyst is removed by reduction and elimination. , The reaction is complete. (For the

rest of the reaction mechanism, please refer to attached figures S6-S8.)
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3. Characterization data of the products:

Q)
®

2-(1H-indol-3-yl)-2-phenylethan-1-ol (Table S2, 2a): Brown-red solid, 74%. *H NMR (400 MHz,
CDCl3) 6 8.10 (s, 1H), 7.42 (d, J = 7.7 Hz, 1H), 7.28 (s, 5H), 7.23 - 7.11 (m, 2H), 7.02 (d, J = 7.7
Hz, 1H), 6.96 (d, J=5.1 Hz, 1H), 4.42 (t, J = 7.2 Hz, 1H), 4.23 — 4.07 (m, 2H). *C NMR (100 MHz,
CDCl3) 6 141.75, 136.51, 128.66, 128.37, 127.04, 126.79, 122.28, 122.03, 119.55, 119.39, 115.89,
111.30, 66.45, 45.65. (known compound®)

O \

2-(6-fluoro-1H-indol-3-yl)-2-phenylethan-1-ol (Table S2, 2b): Brown-red solid, 63%. *H NMR
(400 MHz, CDCls) 6 8.19 (s, 1H), 7.28 (t,J = 4.2 Hz, 5H), 7.21 (9, J = 4.4 Hz, 1H), 7.03 —6.92 (m,
2H), 6.77 (td, J = 9.2, 2.3 Hz, 1H), 4.39 (t, J = 6.8 Hz, 1H), 4.22 — 4.05 (m, 2H). 13C NMR (100
MHz, CDCl3) 5 141.45, 136.43, 136.31, 128.72, 128.29, 126.92, 123.60, 122.14, 122.11, 120.14,
120.04, 116.01, 108.43, 108.18, 97.64, 97.38, 66.41, 45.53. (known compound?®)

OH
|O N
cl H

2-(6-chloro-1H-indol-3-yl)-2-phenylethan-1-ol (Table S2, 2c): Brown-red solid, 61%. *H NMR
(400 MHz, CDCl3) & 8.17 (s, 1H), 7.30 (d, J = 4.4 Hz, 5H), 7.25 — 7.20 (m, 1H), 7.06 — 6.96 (m,
2H), 6.78 (td, J = 9.2, 2.3 Hz, 1H), 4.41 (t, J = 6.8 Hz, 1H), 4.23 — 4.06 (m, 2H). 1*C NMR (100
MHz, CDCl3) 5 141.41, 136.43, 136.31, 128.72, 128.28, 126.92, 123.59, 122.11, 122.07, 120.16,
120.06, 116.06, 108.45, 108.20, 97.62, 97.37, 66.42, 45.53. (known compound?®)

OH

2-(6-bromo-1H-indol-3-yl)-2-phenylethan-1-ol (Table S2, 2d): Brown-red solid, 51%. *H NMR
(400 MHz, CDCl3) 6 8.27 (s, 1H), 7.48 — 7.15 (m, 7H), 7.07 (d, J = 8.9 Hz, 1H), 6.89 (s, 1H), 4.33
(t, J = 6.7 Hz, 1H), 4.15 — 3.99 (m, 2H). 1*C NMR (100 MHz, CDCls) & 141.43, 137.24, 128.74,
128.30, 126.95, 125.93, 122.73, 122.61, 120.62, 116.05, 115.74, 114.22, 66.37, 45.44. (known
compound?)

OH

Iz __



O,N oH
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2-(5-nitro-1H-indol-3-yl)-2-phenylethan-1-ol (Table S2, 2f): yellow solid, 43%. 1H NMR (400
MHz, DMSO) 8 11.79 — 11.66 (m, 1H), 8.30 (d, J = 2.3 Hz, 1H), 7.95 (dd, J = 9.0, 2.3 Hz, 1H), 7.56
(d, J=2.3 Hz, 1H), 7.51 (d, J = 9.0 Hz, 1H), 7.37 — 7.33 (m, 2H), 7.28 (t, J = 7.5 Hz, 2H), 7.23 -
7.13 (m, 1H), 4.88 (t, J = 5.3 Hz, 1H), 4.40 (t, J = 6.9 Hz, 1H), 4.00 (dddd, J = 32.8, 12.3, 5.9, 4.3
Hz, 2H). 13C NMR (100 MHz, DMSO) 6 143.48, 140.55, 139.81, 128.67, 128.64, 126.83, 126.78,
126.60, 119.29, 116.86, 116.31, 112.27, 65.70, 45.36. (known compound?)

OH
|O A\
O,N l’:‘l

2-(6-nitro-1H-indol-3-yl)-2-phenylethan-1-ol (Table S2, 29): yellow solid, 47%. *H NMR (400
MHz, DMSO-dg) 8 11.72 (d, J =2.5 Hz, 1H), 8.30 (d, J = 2.1 Hz, 1H), 7.83 - 7.73 (m, 2H), 7.50 (d,
J=8.8Hz, 1H), 7.34 - 7.30 (m, 2H), 7.26 (dd, J = 8.4, 6.8 Hz, 2H), 7.19 — 7.14 (m, 1H), 4.87 (t, J
=5.3 Hz, 1H), 4.35 (t, J = 7.0 Hz, 1H), 4.07 — 3.93 (m, 2H). *C NMR (100 MHz, DMSO) § 143.56,
142.19, 134.93, 132.12, 130.08, 128.63, 128.60, 126.52, 119.31, 117.86, 113.94, 108.65, 65.54,
45.42. (known compound?)

Ql
®

NO,

2-(7-nitro-1H-indol-3-yl)-2-phenylethan-1-ol (Table S2, 2h): yellow solid, 53%. 'H NMR (400
MHz, CDCls) 6 9.91 (s, 1H), 8.07 (dd, J = 8.1, 0.9 Hz, 1H), 7.68 (dt, J = 7.8, 0.8 Hz, 1H), 7.37 —
7.19 (m, 6H), 7.05 (t, J = 8.0 Hz, 1H), 4.46 (td, J = 6.6, 0.9 Hz, 1H), 4.26 — 4.08 (m, 2H). *C NMR
(100 MHz, CDCls) & 140.96, 132.87, 131.01, 129.77, 128.81, 128.27, 127.59, 127.14, 124.24,
119.45, 118.88, 117.76, 66.48, 45.28. (known compound?)

0
N
H

2-(5-methoxy-1H-indol-3-yl)-2-phenylethan-1-ol (Table S2, 2i): Brown-black solid, 50%. H
NMR (400 MHz, CDCls) 6 8.16 (s, 1H), 7.45 — 7.21 (m, 4H), 7.21 — 7.07 (m, 2H), 6.89 (d, J = 5.2
Hz, 1H), 6.86 — 6.76 (m, 2H), 4.36 (d, J = 6.9 Hz, 1H), 4.20 — 4.02 (m, 2H), 3.73 — 3.65 (M, 6H).
13C NMR (100 MHz, CDCls) & 153.86, 141.76, 131.74, 128.67, 128.38, 127.49, 126.78, 122.88,
115.50, 112.28, 112.04, 101.35, 66.40, 55.91, 45.65. (known compound®)

OH

Iz



OH
o
N

H
2-(2-methyl-1H-indol-3-yl)-2-phenylethan-1-ol (Table S2, 2j): Brown-black solid, 78%. 'H
NMR (400 MHz, CDCl3) & 7.94 (s, 1H), 7.42 (d, J = 7.6 Hz, 1H), 7.29 (d, J = 6.4 Hz, 2H), 7.19 (dt,
J=25.1,9.6 Hz, 4H), 7.07 (t, J = 7.3 Hz, 1H), 6.99 (d, J = 7.5 Hz, 1H), 4.43 (q, J = 7.6 Hz, 1H),
4.27(d,J=7.7Hz, 2H), 2.30 - 2.22 (m, 3H). *C NMR (100 MHz, CDCls) 6 141.77, 135.52, 133.40,
128.49, 128.02, 127.74, 126.38, 121.12, 119.55, 119.25, 110.62, 110.05, 65.10, 45.14, 12.27.
(known compound?®)

E OH
(Lo

N

H

2-(5-fluoro-2-methyl-1H-indol-3-yl)-2-phenylethan-1-ol (Table S2, 2k): Brown-black solid,
65%. 'H NMR (400 MHz, CDCls) 5 8.06 (s, 1H), 7.33 — 7.24 (m, 4H), 7.18 (ddt, J = 8.5, 5.8, 2.1
Hz, 1H), 7.12 (dd, J = 8.8, 4.5 Hz, 1H), 7.06 (dd, J = 10.2, 2.5 Hz, 1H), 6.81 (td, J = 9.0, 2.5 Hz,
1H), 4.40 (dd, J = 8.8, 6.4 Hz, 1H), 4.33 — 4.19 (m, 2H), 2.32 (d, J = 1.3 Hz, 3H). 3C NMR (100
MHz, CDCl3) 5 158.78, 156.46, 141.31, 135.28, 131.93, 128.56, 127.88, 126.51, 111.07, 110.97,
110.48, 110.44, 109.29, 109.03, 104.42, 104.18, 64.84, 44.90, 12.40, 12.39. (known compound?)

cl OH
O N—cH,

N

H

2-(5-chloro-2-methyl-1H-indol-3-yl)-2-phenylethan-1-ol (Table S2, 2I): Brown-black solid, 63%.
'H NMR (400 MHz, CDCls) 6 8.08 (s, 1H), 7.39 (d, J = 1.9 Hz, 1H), 7.29 — 7.16 (m, 5H), 7.10 (d,
J=8.5Hz, 1H), 7.01 (dd, J = 8.6, 2.0 Hz, 1H), 4.39 (dd, J = 8.8, 6.5 Hz, 1H), 4.32 — 4.19 (m, 2H),
2.28 (s, 3H).3C NMR (100 MHz, CDCl3) & 141.24, 134.92, 133.79, 128.76, 128.59, 127.88, 126.56,
125.08, 121.28, 118.53, 111.53, 110.07, 64.93, 44.90, 12.35. (known compound?)

H,CO OH
O N—cH,

N

H

2-(5-methoxy-2-methyl-1H-indol-3-yl)-2-phenylethan-1-ol (Table S2, 2m): Brown-black solid,
55%. *H NMR (400 MHz, CDCl3) 8 7.93 (s, 1H), 7.31 (d, J = 7.2 Hz, 2H), 7.24 (dt, J = 8.1, 6.9 Hz,
2H), 7.19 — 7.13 (m, 1H), 7.09 (d, J = 8.7 Hz, 1H), 6.87 (d, J = 2.4 Hz, 1H), 6.74 (dd, J = 8.7, 2.4
Hz, 1H), 4.42 (t, J = 7.6 Hz, 1H), 4.28 (d, J = 7.6 Hz, 2H), 3.71 (s, 3H), 2.27 (s, 3H). *3C NMR (100
MHz, CDCl3) 6 153.76, 141.64, 134.26, 130.65, 128.46, 128.22, 127.99, 126.35, 111.13, 110.45,
109.82, 101.89, 64.91, 55.93, 55.89, 44.93, 12.39. (known compound?)



H,C OH
Oy
N
H
2-(2,5-dimethyl-1H-indol-3-yl)-2-phenylethan-1-ol (Table S2, 2n): Brown-black solid, 67%. ‘H
NMR (400 MHz, CDCls) 6 7.84 (s, 1H), 7.37 — 7.30 (m, 2H), 7.26 (dt, J = 7.7, 5.7 Hz, 3H), 7.17
(dd, J=12.1, 7.4 Hz, 2H), 6.97 — 6.90 (m, 1H), 4.46 (t, J = 7.7 Hz, 1H), 4.38 — 4.24 (m, 2H), 2.38
(s, 3H), 2.32 (s, 3H).3C NMR (100 MHz, CDCls) 5 141.77, 133.77, 133.53, 128.71, 128.44, 128.02,

128.00, 126.31, 122.65, 118.95, 110.23, 109.38, 65.11, 45.15, 21.70, 21.67, 12.35, 12.32. (known
compound?)

Lo

2-phenyl-2-(phenylamino)ethan-1-ol (Table S3, 3a): Yellowish brown solid, 90%. *H NMR (400
MHz, CDCls3) § 7.35 - 7.19 (m, 5H), 7.07 (g, J = 9.2, 8.6 Hz, 2H), 6.65 (g, J = 8.3 Hz, 1H), 6.53 (t,
J=9.0Hz, 2H), 4.43 (p, J=5.1 Hz, 1H), 3.86 (dt, J = 11.2, 5.6 Hz, 1H), 3.66 (td, J = 10.9, 6.8 Hz,
1H), 3.59 — 3.01 (m, 1H). C NMR (100 MHz, CDCl3) § 147.29, 140.20, 129.24, 128.86, 127.65,
126.81, 117.96, 113.96, 67.34, 59.95. (known compound?)

-0

o

1-benzyl-2-phenyl-1H-benzo[d]imidazole (Table S4, 4a): Brown solid, 91%. Brown-black solid,
74%.*"H NMR (400 MHz, CDCls) & 7.85 (d, J = 8.0 Hz, 1H), 7.70 — 7.65 (m, 2H), 7.47 — 7.40 (m,
3H), 7.31 (ddt, J=8.2, 5.0, 3.0 Hz, 4H), 7.27 — 7.22 (m, 2H), 7.12 — 7.07 (m, 2H), 5.46 (s, 2H). *C
NMR (100 MHz, CDCl3) 6 153.97, 142.24,136.13, 135.78, 130.24, 129.40, 129.27, 129.11, 128.88,
127.89, 125.99, 123.38, 123.07, 119.62, 110.76, 48.47. (known compound*?)

N
OO
N

o

O,N

1-(4-nitrobenzyl)-2-(4-nitrophenyl)-1H-benzo[d]imidazole (Table S4, 4b): Crimson solid, 85%.
'H NMR (400 MHz, DMSO) 5 8.39 —8.31 (m, 2H), 8.21 — 8.13 (m, 2H), 8.05 - 7.98 (m, 2H), 7.82
(dd, J =6.4, 2.8 Hz, 1H), 7.61 — 7.52 (m, 1H), 7.37 — 7.31 (m, 2H), 7.28 (d, J = 8.5 Hz, 2H), 5.85
(s, 2H). *C NMR (100 MHz, DMSO) § 151.51, 148.45, 147.35, 144.80, 143.12, 136.54, 136.40,
130.80, 127.88, 124.49, 124.40, 124.18, 123.40, 120.29, 111.72, 47.66. (known compound?')

N Ph
A
L X
N Ph
2,3-Diphenyl-quinoxaline (Table S5, 5a): White solid, 99%. 1H NMR (400 MHz, CDCls) 6 8.22
(dt, J=6.8, 3.4 Hz, 1H), 7.77 (dt, J = 6.4, 3.4 Hz, 1H), 7.58 (dd, J = 7.7, 2.1 Hz, 2H), 7.44 — 7.32



(m, 3H). 3C NMR (100 MHz, CDCl3) & 153.47, 141.25, 139.11, 130.02, 129.92, 129.24, 128.87,
128.34. (known compound*?)

N Ph
X
LI X
F N Ph
6-fluoro-2,3-diphenylquinoxaline (Table S5, 5b): White solid, 99%. 'H NMR (400 MHz, CDCls)
58.19(dd, J=9.2,5.7 Hz, 1H), 7.83 (dd, J = 9.2, 2.8 Hz, 1H), 7.59 — 7.52 (m, 5H), 7.37 (q, J = 7.4,
6.9 Hz, 6H).*C NMR (100 MHz, CDCls3) § 164.10, 161.60, 154.20, 152.85, 152.82, 142.01, 141.88,

138.81, 138.72, 138.43, 131.33, 131.23, 129.90, 129.84, 129.11, 128.94, 128.36, 120.50, 120.24,
112.77, 112.56. (known compound?'?)

N Ph
A
XX
Br N Ph
6-bromo-2,3-diphenylquinoxaline (Table S5, 5¢): Light Yellow solid, 99%. '*H NMR (400 MHz,
CDCl3) 6 8.38 (s, 1H), 8.04 (d, J = 8.8 Hz, 1H), 7.82 (d, J = 8.9 Hz, 1H), 7.56 (d, J = 7.5 Hz, 4H),
7.37 (p, J=7.5,6.8 Hz, 6H). 3C NMR (100 MHz, CDCl3) 6 154.17, 153.69, 141.73, 139.91, 138.72,

138.61, 133.49, 131.47, 130.53, 129.93, 129.87, 129.18, 129.11, 128.38, 128.36, 123.87. (known
compound??)

N Ph
A
X
O,N N Ph
6-nitro-2,3-diphenylquinoxaline (Table S5, 5d): Light Yellow solid, 93%. *H NMR (400 MHz,
CDCl3) 6 9.03 (d, J = 2.5 Hz, 1H), 8.48 (dd, J = 9.1, 2.5 Hz, 1H), 8.26 (d, J = 9.2 Hz, 1H), 7.60 —
7.53 (m, 4H), 7.45 —7.32 (m, 6H). 3C NMR (100 MHz, CDCls) § 156.28, 155.65, 147.78, 143.54,

139.91, 138.05, 137.99, 130.76, 129.93, 129.85, 129.82, 129.67, 128.49, 125.60, 123.29. (known
compound*4)

N Ph
X
X
H,C N Ph
6-methyl-2,3-diphenylquinoxaline (Table S5, 5e): White solid, 99%. 'H NMR (400 MHz, CDCls)
5 8.02 (d, J=8.5Hz, 1H), 7.91 (s, 1H), 7.49 (d, J = 7.4 Hz, 5H), 7.27 (d, J = 6.9 Hz, 6H), 2.51 (s,

3H).3C NMR (100 MHz, CDCls) § 153.27, 152.53, 141.30, 140.45, 139.73, 139.27, 132.32, 129.95,
129.93, 128.74, 128.68, 128.28, 128.06, 22.02. (known compound*#)

N Ph
X
X
H,CO N Ph
6-methoxy-2,3-diphenylquinoxaline (Table S5, 5f): Purple solid, 95%. 'H NMR (400 MHz,
CDCl3) 6 8.05 (d,J=9.1 Hz, 1H), 7.51 (dt, J = 7.4, 3.7 Hz, 4H), 7.46 (d, J = 2.7 Hz, 1H), 7.40 (dd,
J =091, 2.8 Hz, 1H), 7.37 — 7.26 (m, 6H), 3.95 (s, 3H). 3C NMR (100 MHz, CDCls) & 160.66,

153.10, 150.69, 142.52, 139.03, 138.98, 137.18, 129.95, 129.64, 128.51, 128.29, 128.08, 128.05,
123.20, 106.20, 55.67. (known compound?*4)

H,C N Ph
A
/

HsC N Ph



6,7-dimethyl-2,3-diphenylquinoxaline (Table S5, 5j): White solid, 99%. 'H NMR (400 MHz,
CDCl3) 6 7.95 (s, 2H), 7.54 (dd, J = 7.4, 2.2 Hz, 4H), 7.38 — 7.31 (m, 6H), 2.52 (s, 6H). °C NMR
(100 MHz, CDCls) 6 152.47, 140.55, 140.21, 139.38, 129.89, 128.57, 128.23, 128.21, 20.53, 20.51.
(known compound?*?)

wh
oo
W

2,3-di(furan-2-yl)quinoxaline (Table S5, 5h): Pale brown solid, 94%. Pale brown solid, 94%.'H
NMR (400 MHz, CDCls) & 8.13 (dt, J = 7.0, 3.5 Hz, 2H), 7.75 (dd, J = 6.4, 3.4 Hz, 2H), 7.63 (d, J
= 1.7 Hz, 2H), 6.66 (d, J = 3.4 Hz, 2H), 6.57 (dd, J = 3.5, 1.8 Hz, 2H). *C NMR (100 MHz, CDCl5)
8 150.72, 144.26, 142.62, 140.59, 130.44, 129.10, 113.06, 111.96. (known compound*®)

Br
N iil.ﬂ
A
P
U
Br

2,3-bis(4-bromophenyl)quinoxaline (Table S5, 5i): White solid, 96%. *H NMR (400 MHz, CDCls)
58.13(dt,J=7.0,3.5Hz, 2H), 7.77 (dt, J = 6.4, 3.6 Hz, 2H), 7.48 (d, J = 8.2 Hz, 4H), 7.38 (d, J =
8.3 Hz, 4H).*C NMR (100 MHz, CDCl3) 6 151.88, 141.21, 137.63, 131.70, 131.56, 131.47, 130.44,
129.20, 123.74. (known compound?'?)

F
N iilll]
@i\
Z
) O
F

2,3-bis(4-fluorophenyl)quinoxaline (Table S5, 5j): Light yellow solid, 96%. *H NMR (400 MHz,
CDCl3) 6 8.11 (dd, J = 6.4, 3.5 Hz, 2H), 7.72 (dt, J = 6.4, 3.5 Hz, 2H), 7.48 (dd, J = 8.6, 5.4 Hz,
4H),7.02 (t, J=8.6 Hz, 4H).3C NMR (100 MHz, CDCl3) § 164.42, 161.94, 152.09, 141.13, 134.98,
134.95, 131.86, 131.78, 130.18, 129.11, 115.62, 115.40. (known compound*®)

CH,
N O
x
=
CH,

2,3-di-p-tolylquinoxaline (Table S5, 5k): White solid, 99%. *H NMR (400 MHz, CDCls) § 8.13
(dt, J = 6.8, 3.4 Hz, 2H), 7.70 (dt, J = 6.4, 3.4 Hz, 2H), 7.43 (d, J = 8.0 Hz, 4H), 7.13 (d, J = 7.9 Hz,
4H), 2.34 (s, 6H). *°C NMR (101 MHz, CDCl3) 6 153.50, 141.17, 138.77, 136.41, 129.79, 129.71,
129.15, 129.03, 21.44, 21.42. (known compound??)

OCH3
N i!lll
X
7
) O
OCH3



2,3-bis(4-methoxyphenyl)quinoxaline (Table S5, 5I): White solid, 90%. *H NMR (400 MHz,
CDCl3) 6 7.97 (dt, J = 7.0, 3.5 Hz, 2H), 7.55 (dp, J = 6.9, 3.8 Hz, 2H), 7.39 — 7.33 (m, 4H), 6.75 —
6.70 (m, 4H), 3.64 (s, 6H). *C NMR (100 MHz, CDCl3) 4 160.14, 152.98, 141.04, 131.68, 131.30,
129.55, 128.99, 113.76, 55.30, 55.28. (known compound*?)

Br
N O
X
=
N m'ii
Br

2,3-bis(4-bromophenyl)-6-methylquinoxaline (Table S5, 5l): White solid, 96%. 'H NMR (400
MHz, CDCls) 8 8.00 (d, J = 8.5 Hz, 1H), 7.89 (d, J = 1.5 Hz, 1H), 7.58 (dd, J = 8.6, 2.0 Hz, 1H),
7.49 —7.43 (m, 4H), 7.38 — 7.33 (m, 4H), 2.58 (s, 3H). **C NMR (100 MHz, CDCls) § 151.69,
150.93, 141.27, 141.04, 139.71, 137.78, 132.79, 131.63, 131.47, 131.44, 128.68, 127.98, 123.59,
123.51, 22.04, 22.02. (known compound??)

CH3
N !i!ll]
X
7

CH3

6-methyl-2,3-di-p-tolylquinoxaline (Table S5, 51): White solid, 97%. *H NMR (400 MHz,
CDCls) 6 8.00 (d, J = 8.5 Hz, 1H), 7.89 (s, 1H), 7.48 (dd, J = 8.6, 1.9 Hz, 1H), 7.41 (dd, J = 8.2,
2.3 Hz, 4H), 7.09 (d, J = 7.9 Hz, 4H), 2.52 (s, 3H), 2.31 (s, 6H). *C NMR (100 MHz, CDCls) &
153.31, 152.58, 141.24, 140.09, 139.66, 138.58, 138.50, 136.60, 132.00, 129.84, 129.81, 128.98,
128.68, 128.01, 21.95, 21.93, 21.43, 21.40. (known compound?'?)

OCH3
N lllll
X
7
N O
OCH3

2,3-bis(4-methoxyphenyl)-6-methylquinoxaline (Table S5, 51): White solid, 95%. *H NMR (400
MHz, CDCls) § 7.97 (d, J = 8.5 Hz, 1H), 7.86 (s, 1H), 7.47 (ddd, J = 8.8, 6.1, 2.3 Hz, 5H), 6.83 (d, J =
8.5 Hz, 4H), 3.75 (s, 6H), 2.53 (s, 3H). 2*C NMR (100 MHz, CDCls) § 160.06, 160.00, 152.80, 152.08,
141.09, 139.92, 139.50, 131.85, 131.83, 131.29, 131.25, 128.52, 127.86, 113.70, 55.27, 55.24, 21.90,
21.88. (known compound?*?)
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