Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Instrument	Uses			
BAS-Epsilon electrochemical equipment with a cell contained three electrodes (GCE, platinum wire and Ag/AgCl.	Voltammetry measurements			
Quanta 250 FEG instrument	Scanning electron microscopy FE-SEM measurement			
Quanta 250 FEG instrument	energy dispersive X-ray spectroscopy (EDAX) measurement			
Witec Raman confocal microscope (laser excitation wavelength of 532 nm and 2 mW energy).	Raman spectroscopy measurement			
Fourier transform infrared (FTIR) Shimadzu IR- Affinity 1 Spectrometer (Japan).	Surface functional groups characterization			

Electrode	Linear dynamic range (µM)				Detection limit (nM)			
	DB	PA	AM	DAC	DB	PA	AM	DAC
RP-HPLC method [29]	0.165– 6.63	-	-	-	165	-	-	-
Spectrophotometric method [30]	5.3– 120	-	-	-	5300	-	-	-
HPTLC method [43]	-	238– 1190	-	-	-	238×10 ³	-	-
UPLC/DAD method [44]	-	331– 3970	-	-	-	331×10 ³	-	-
Synchronous fluorescence spectrofluorometric method [35]	-	-	0.489– 4.89	-	-	-	12	-
HPLC method [36]	-	-	0.489– 196	-	-	-	26.9	-
HPLC method with UV [8]	-	-	-	0.0677– 2.71	-	-	-	67.7
HPLC method [9]	-	-	-	0.112– 4.06	-	-	-	112
TU-SAMs [This work]	0.03- 20	0.05- 40	0.01- 35	0.01-20	0.85	3.78	0.65	0.60

Supplement Table 2: Comparison of figures of merit of TU-SAMs with different methods mentioned in literature for DB, PA, AM, and DAC determination.

RP-HPLC: Reversed phase-high performance liquid chromatography, **HPTLC:** Highperformance thin-layer chromatography, **UPLC/DAD**: Ultra high-performance liquid chromatography-diode array detector-tandem mass spectrometry.

Supplement Figure 1

Suppl. Figure 1(A): DPVs for 50 μ M DB, 50 μ M AM and 30 μ M DAC prepared in 0.1 M PBS/pH 2.0 recorded at TU-SAMs using different amounts of Au_{nano} (4-8 mg) in 1.0 mL DMF, scan rate 50 mV.s⁻¹. Inset; the relation between the anodic peak current for each of DB, AM, and DAC and different Au_{nano} amounts.

Suppl. Figure 1(B): DPVs for 50 μ M DB, 50 μ M AM and 30 μ M DAC prepared in 0.1 M PBS/pH 2.0 recorded at TU-SAMs using different amounts of TU (5-12 mg) in 1.0 mL DMF, scan rate 50 mV.s⁻¹. Inset; the relation between the anodic peak current for each of DB, AM and DAC and different TU amounts.

Supplement Figure 2

Suppl. Figure 2: CVs of 1.0 mM $K_3[Fe(CN)_6]$ prepared in 0.1 M KCl recorded at (A) GC, (B) GC/CNT, (C) GC/CNT-AU_{nano}, (D) GC/CNT-TU, and (E) TU-SAMs at different scan rate values from 10 to 100 mV.s⁻¹. Insets: Plot of the peak current of $K_3[Fe(CN)_6]$ as a function of the square root of scan rate.

Supplement Figure 3

Suppl. Figure 3: FTIR spectrum of CNTs/Aunano-TU composite