Electronic Supplementary Material (ESI) for New Journal of Chemistry.

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Synergistic effect of PMS activation by $LaCoO_3/g-C_3N_4$ for degradation of Tetracycline hydrochloride: performance, mechanism and phytotoxicity evaluation

Xiaoying Yuan, Yue Leng, Changlong Fang, Kangqi Gao, Chenyu Liu, Jianjun Song*, Yingshu Guo*

Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China

Corresponding author:

Yingshu Guo. E-mail: yingshug@126.com

Jianjun Song. E-mail: qlusong@163.com

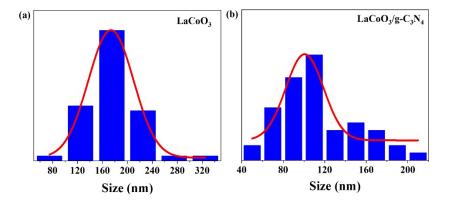
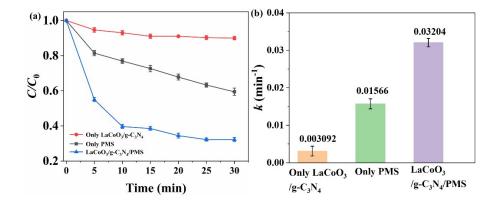
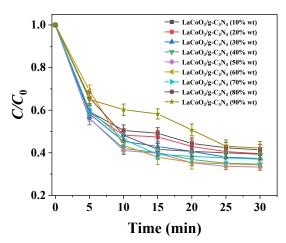
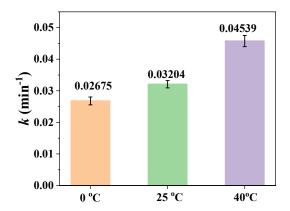
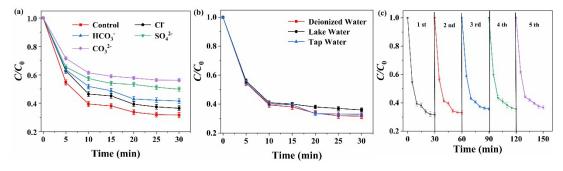
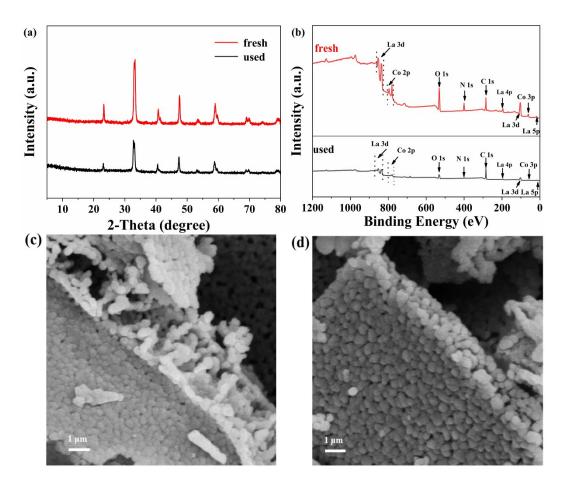



Fig. S1. The particle size distribution of the (a) LaCoO₃ catalyst, and (b) LaCoO₃/g-C₃N₄ catalyst.

Fig. S2. (a) TC degradation by different catalyst (b) and their reaction rate constants (k). Reaction condition: $[TC]_0 = 0.02 \text{ g/L}$, $[PMS]_0 = 0.1 \text{g/L}$, $[catalyst]_0 = 0.2 \text{ g/L}$, initial solution pH = 7, T = 25 °C.


Fig. S3. Effect of different account of g-C₃N₄ on the removal of TC in LaCoO₃/g-C₃N₄/PMS system. Reaction condition: $[TC]_0 = 0.02$ g/L, $[PMS]_0 = 0.1$ g/L, $[catalyst]_0 = 0.2$ g/L, initial solution pH = 7, T= 25 °C.

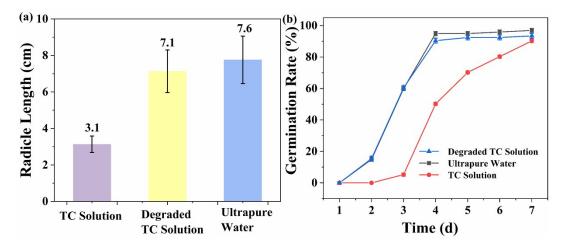

Fig. S4. The reaction rate constants of different temperature in LaCoO₃/g-C₃N₄/PMS system. Reaction condition: $[TC]_0 = 0.02$ g/L, $[PMS]_0 = 0.1$ g/L, $[catalyst]_0 = 0.2$ g/L, initial solution pH = 7, T= 25 °C.

Fig. S5. (a) Effect of inorganic anions (10 mM), (b) different water matrices on TC degradation, (c) Recycling test of LaCoO₃/g-C₃N₄ catalyst in LaCoO₃/g-C₃N₄/PMS system. Reaction condition: [TC]₀ = 0.02 g/L, [PMS]₀ = 0.1g/L, [catalyst]₀ = 0.2 g/L, initial solution pH = 7, T= 25 °C.

Fig. S6. (a)XRD patterns, (b) XPS spectrum and (c-d) SEM of fresh and used LaCoO₃/g-C₃N₄ composite.

Fig. S7. (a) The average radicle length of mung bean cultivated in TC solution, degraded TC solution and ultrapure water solutions, (b) and the germination rate in TC solution, degraded TC solution and ultrapure water solutions.

Table. S1 The k of LaCoO₃/g-C₃N₄/PMS system compared with other k.

System	Organic pollutants	Concentration	k (min ⁻¹)	References
BiOBr microsphere-S4/Vis	TC (tetracycline hydrochloride)	10 mg/L	0.039	[1]
35%-LFO/BOI/Vis+H ₂ O ₂	TC (tetracycline hydrochloride)	50 ppm	0.04423	[2]
g-C ₃ N ₄ /PS	CIP (ciprofloxacin)	10 mg/L	0.0649	[3]
Co-impregnated biochar/PMS	ACE (acetaminophen)	10 mg/L	0.032	[4]
LaCoO ₃ /g-C ₃ N ₄ /PMS	TC (tetracycline hydrochloride)	30 mg/L	0.03204	our work

references

^[1] L. Wang, A. Hu, H. Liu, K. Yu, S. Wang, X. Deng, D and Huang, D, Appl. Surf. Sci., 2022, 589,152902.

^[2] Z. Cao, Y. Zhao, Z. Zhou, Q. Wang, Q. Mei and H. Cheng, Appl. Surf. Sci., 2022, 590,153081.

^[3] H. Zhu, B. Yang, J. Yang, Y. Yuan and J. Zhang, Chemosphere, 2021, **276**, 130217.

^[4] M.T. Yang, Y. Du, W.C. Tong, A.C.K and Yip, K.A. Lin, Chemosphere, 2019, 226, 924-933.