Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Electronic Supplementary Information

Zr-based metal organic framework nanoparticles coated with

a molecularly imprinted polymer for trace diazinon surface

enhanced Raman scattering analysis

Tiantian Wan^{a,b}, Luna Zhu^b, Zulei Zhang^{b*}, Hailong Wang^b, Yiwen Yang^b, Hongyin Ye^b, Hongmei Wang^b, Lei Li^{b*} and Jinchun Li^{a*}

^aSchool of Petrochemical Engineering, Changzhou University, Changzhou 213016, China

^bCollege of Biology and Chemical Engineering, Jiaxing University, Jiaxing 314001, China

*Corresponding author: Dr. Zulei Zhang, Professor Lei Li and Jinchun Li Email: jerry3641172@126.com, lei.li@mail.zjxu.edu.cn, lijinchun88@163.com Fax: +86-573-83646203; Tel: +86-573-83646203

1. Equations

The pseudo-first-order equation is generally expressed as:

$$\ln(Q_e - Q_t) = \ln Q_e - k_1 t \tag{1}$$

The pseudo-second-order equation is generally expressed as:

$$\frac{t}{Q_t} = \frac{1}{k_2 Q_e^2} + \frac{t}{Q_e}$$
(2)

where t (min) is adsorption time; Q_t (mg/g) and Q_e (mg/g) are the amounts of the adsorbed diazinon at time t (min) and at equilibrium, respectively; k_1 is the rate constant of the pseudo-first-order adsorption model, k_2 (g/(mg min)) represents the pseudo-second-order adsorption rate constant.

The Langmuir equation is as follows:

$$\frac{C_e}{Q_e} = \frac{1}{(Q_m K_L)} + \frac{C_e}{Q_m}$$
(3)

where K_L (L/mg) is the Langmuir constant, and Q_m (mg/g) is the maximum adsorption capacity for monolayer formation on the sorbents, C_e (mmol/L) is the free analytical concentration at equilibrium.

The linear mathematical expression of the Freundlich model is presented as:

 $\log q_e = \log k_F + (n) \log C_e \tag{4}$

 $k_F(g^{1-n} L^n/g)$ is Freundlich constant related to the adsorption capacity of the adsorbent, and *n* signifies adsorption intensity.

2. Supporting data

Fig. S1 SEM images of silver plated substrate at different magnifications

Fig.S2 (A) N_2 adsorption-desorption isotherm of (a) UiO-67, (b) MOFs-MIPs, (c) MOFs-NIPs and (B) pore size distribution of (a) UiO-67, (b) MOFs-MIPs, (c) MOFs-

Fig.S3 Zr3d high-resolution scans XPS spectrum of MOFs-MIPs after adsorption

Fig.S4 (a) Langmuir model and (b) Freundlich model of diazinon adsorption by MOFs-MIPs and MOFs-NIPs.