1	Support Information
2	Adsorption of nitrate from water by quaternized chitosan wrinkled
3	microspheres@MgFe-LDHs core-shell composite
4	Jumeng Bian ^a , Qi Zhu ^{a,} *, Aiwen Wang ^b , Yue Sun ^a , Kai Pang ^a , Xiao Li ^a , Ze
5	Lang ^a
6	a School of Chemistry and Materials Science, Heilongjiang University, Harbin
7	150080, China
8	b School of Environment, Harbin Institute of Technology, Harbin, 150090, China
9	*Corresponding author. Email: hdzhuqi@126.com
10	

11 1. Preparation of materials and characterization

12 1.1. Preparation of GCS

13 First, 250 ml liquid paraffin was added into a 500 ml round bottom flask, and a certain amount of Span80 was added. Then, 25 ml chitosan acetic acid solution (1 g 14 chitosan was dissolved in 3% (V/V) acetic acid solution, and the suspension was 15 uniformly dispersed by ultrasound) was added slowly at 500 rpm and kept in a constant 16 temperature water bath at 50°C for 3 h. After that, 0.8 ml glutaraldehyde was added 17 slowly and water bath was continued for 4 h. The liquid in the round bottom flask was 18 centrifugally washed three times with petroleum ether and isopropanol, and dried in an 19 oven at 60°C, GCS was successfully synthesized. 20

21 1.2. Preparation of GCS@CTA

0.4 g GCS and 10 ml isopropanol were added to the three-necked flask, then heated to 50°C with stirring, swelled for 1 h, slowly added dropwise with 2 mL of CTA, and then reacted at 70°C for 7 h. Finally, the liquid in the three-necked flask was centrifuged and washed three times with methanol and ethanol and dried in an oven to obtain the GCS@CTA.

27 1.3. Preparation of MgFe-Cl⁻-LDHs

MgCl₂ 6H₂O and FeCl₃ 6H₂O were added into 50 mL deionized water, and the 28 mixed metal salt solution of 0.06 mol L⁻¹ was prepared with the molar ratio of $[Mg^{2+}]/$ 29 [Fe³⁺] of 2:1, 3:1, 4:1, respectively. Then added 1 mol L⁻¹ NaOH solution under 30 vigorous stirring to ensure that the pH value of the solution was between 9-10. Then 31 the solution was transferred to a stainless steel autoclave and put in the oven at 120°C 32 for 12 h. Finally, deionized water and ethanol were used for centrifugal washing until 33 the solution was neutral, and the products were dried in an oven to obtain 2 MgFe-Cl-34 LDHs, 3 MgFe-Cl⁻-LDHs, and 4 MgFe-Cl⁻-LDHs, respectively. 35

36 1.4. Preparation of GCS@CTA @MgFe-LDHs

Add 0.2 g of GCS@CTA to 15 mL of deionized water and stir for 30 min obtained solution A. Solution B was obtained by adding 0.4879 g of MgCl₂ 6H₂O and 0.1622 g of FeCl₃ 6H₂O to 50 mL of deionized water. Subsequently, solution B was added dropwise to solution A with constant stirring, and 1 mol/L NaOH was used to ensure the pH value was between 9-10. The mixed solution was transferred to a stainless steel
autoclave and reacted in an oven at 120 °C for 12 h. Finally, deionized water and
ethanol were used for centrifugal washing until the solution was neutral, and the product
was dried in a 60 °C oven to obtain the GCS@CTA@MgFe-LDHs.

45 1.5. Characterization

The crystallographic of samples were measured by X-ray diffraction (XRD-D8 46 Advance, Bruker, Cu K α radiation λ =1.5406 nm). FT-IR spectroscopy (Spectorn One, 47 Perkin Elmer) was selected to verify the samples. Micromorphological of samples were 48 characterized by scanning electron microscopy (Hitachi S-4800). The Brunauer-49 Emmett-Teller (BET) surface areas of the samples were measured by N2 adsorption on 50 AUTOSORB-1, and the plot of the pore diameter distribution was measured by Barrett-51 Joyner-Halenda (BJH) method. The elemental composition of samples were measured 52 by X-ray photoelectron spectroscopy (XPS). The zeta potential was measured by Zeta 53 Sizer Nano-ZS system (Malvern, United Kingdom). 54 55

Adsorbents	Dosage	рН	q _m (mg/g)	References
Polypyrrole-modified plastic-carbon	15 g/L	2-11	45.18	[1]
ZnCl ₂ -AC	20 g/L	4	5.53	[2]
Carboxymethyl β-cyclodextrin immobilized on hydrated lanthanum	0.5 g/L	3-11	37.50	[3]
La ₂ O ₃ AM@CS composite beads	2 g/L	3-11	27.84	[4]
Zr/quaternary ammonium powder with polyvinylidene fluoride			9.66	[5]
Zr cross-linked chitosan assisted bentonite	2 g/L	3-11	23.89	[6]
modified cellulose from Corn stalks	0.1 g	6.8	13.61	[7]
Chitosan grafted quaternized resin	2 g/L	2-11	34.5	[8]
GCS@CTA@MgFe-LDHs	0.4 g/L	4-11	71.5	This study

56 Table S1. Comparison of maximum nitrate adsorption capacities $(q_m, \text{ mg g-1})$ by

58 59 61 Table S2. Concentrations of Mg^{2+} and Fe^{3+} leached from GCS@CTA@MgFe-LDHs

62 extracted solution at pl	$\mathbf{I}4$
-----------------------------	---------------

_	Sample	Mg ²⁺ (mg L ⁻¹)	Fe ³⁺ (mg L ⁻¹)	рН (<i>T</i> =298К)
_	GCS@CTA@MgFe-LDHs	0.128	0.073	4 ± 0.5
53				

- 71 [1] Wu K, Li Y, Liu T, et al. The simultaneous adsorption of nitrate and phosphate by
- 72 an organic-modified aluminum-manganese bimetal oxide: Adsorption properties and
- 73 mechanisms[J]. Applied Surface Science, 2019, 478: 539-551.
- 74 [2] Nassar H, Zyoud A, El-Hamouz A, et al. Aqueous nitrate ion adsorption/desorption
- 75 by olive solid waste-based carbon activated using ZnCl2[J]. Sustainable Chemistry and
- 76 Pharmacy, 2020, 18: 100335.
- 77 [3] Teng Y, Song G, Chen R, et al. Carboxymethyl β -cyclodextrin immobilized on
- 78 hydrated lanthanum oxide for simultaneous adsorption of nitrate and phosphate[J].
- 79 Journal of the Taiwan Institute of Chemical Engineers, 2022, 132: 104153.
- 80 [4] Kumar I A, Jeyaprabha C, Meenakshi S, et al. Hydrothermal encapsulation of
- 81 lanthanum oxide derived Aegle marmelos admixed chitosan bead system for nitrate and
- phosphate retention[J]. International Journal of Biological Macromolecules, 2019, 130:
 527-535.
- 84 [5] Gao Q, Wang C-Z, Liu S, et al. Ultrafiltration membrane microreactor (MMR) for
- simultaneous removal of nitrate and phosphate from water[J]. Chemical Engineering
- 86 Journal, 2019, 355: 238-246.
- 87 [6] Kumar I A, Jeyaprabha C, Viswanathan N. Effect of polyvalent metal ions encrusted
- 88 biopolymeric hybrid beads on nitrate adsorption[J]. Journal of Environmental Chemical
- 89 Engineering, 2020, 8(4): 103894.
- 90 [7] Fan C, Zhang Y. Adsorption isotherms, kinetics and thermodynamics of nitrate and
- 91 phosphate in binary systems on a novel adsorbent derived from corn stalks[J]. Journal
- 92 of Geochemical Exploration, 2018, 188: 95-100.
- 93 [8] Banu H T, Meenakshi S. One pot synthesis of chitosan grafted quaternized resin for
- 94 the removal of nitrate and phosphate from aqueous solution[J]. International Journal of
- 95 Biological Macromolecules, 2017, 104: 1517-1527.
- 96