Metal—Free Stereoselective Addition of Propiolic acids to Ynamides: A Concise Synthetic Route to Highly Substituted Ene-Diyne-(*E*)-N,O-Acetals

Rangu Prasad, Suresh Kanikarapu, Shubham Dutta, SrinivasVangara, and Akhila K. Sahoo*

School of Chemistry, University of Hyderabad, Hyderabad 500046, India

E-mail: <u>akhilchemistry12@gmail.com;</u> akssc@uohyd.ac.in

SUPPORTING INFORMATION

Table of Contents	Page
General Experimental Information	S2
Materials	S2
Experimental Procedures, Spectral and Analytical data	S3-S26
X-ray crystallographic data	S26-S29
Hirshfeld surface analysis	S31-S33
References	S34
NMR data	S35-S144

General Experimental Information

All the reactions were performed in oven-dried round bottom (RB) flasks. Commercial grade solvents were distilled prior to use. Column chromatography was performed using either 100-200 Mesh or 230-400 Mesh silica gel or neutral alumina. Thin layer chromatography (TLC) was performed on silica gel GF254 plates and alumina plates.

Proton, carbon, and fluorine nuclear magnetic resonance spectra (¹H NMR, ¹³C NMR, and ¹⁹F NMR) were recorded based on the resonating frequencies as follows: (¹H NMR, 400 MHz; ¹³C NMR, 101 MHz; ¹⁹F NMR, 376 MHz) and (¹H NMR, 500 MHz; ¹³C NMR, 126 MHz; ¹⁹F NMR, 470 MHz) having the solvent resonance as internal standard (¹H NMR, CDCl₃ at 7.26 ppm; ¹³C NMR, CDCl₃ at 77.0 ppm). Few cases tetramethylsilane (TMS) at 0.00 ppm was used as reference standard. Data for ¹H NMR are reported as follows: chemical shift (ppm), multiplicity (s = singlet; bs= broad singlet; d = doublet; dd= doublet of doublet; bd= broad doublet; t = triplet; bt= broad triplet; q = quartet; m = multiplet; tt= triplet of triplet; dq= doublet of quartet), coupling constant, *J*, in (Hz), and integration. Data for ¹³C NMR, ¹⁹F NMR were reported in terms of chemical shift (ppm). IR spectra were reported in cm⁻¹. High resolution mass spectra were obtained in ESI mode. Melting points were determined by electro-thermal heating and are uncorrected. X-ray data was collected at 293 K using graphite monochromated Mo-K*a*radiation (0.71073 Å).

Materials: Unless otherwise noted, all the reagents and intermediates were obtained commercially and used without purification. 1,4–Dioxane, dichloromethane (CH₂Cl₂; DCM), toluene, acetonitrile (CH₃CN), 1,2-dichloroethane (DCE), and acetone were distilled over CaH₂. THF was freshly distilled over sodium/benzophenone ketyl under dry nitrogen. Propiolic acid was purchased from Sigma–Aldrich and used as received. Phenylpropiolic acid and 2-thiophenepropiolic acid were synthesized in our laboratory.

Experimental Procedures

Following the reported procedures, the ynamides $(1a-1z, 1za-1ze \text{ and } 5a-5l)^1$ were prepared (Table S1). Analytical and spectral data of these compounds are exactly matching with the reported values.

General Procedure (GP-1):¹

 $R = Br + HN R^{1} R^{1$

R = alkyl, aryl, hetero aryl groups;

 \mathbf{R}^1 = alkyl, aryl, allyl, propargyl, homo-propargyl groups

General Procedure for the Synthesis of Ynamide 1 & 5 (GP 1):¹

To a mixture of 1'' / 5''(2.0 mmol), CuSO₄·5H₂O (0.1 equiv), 1,10-phenanthroline (0.2 equiv) in dry toluene (8.0 mL), was added K₃PO₄ (2.0 equiv) portion wise. Subsequently, 1-bromo-2-arylacetylene 1' / 5' (2.4 mmol) was added. The reaction mixture was heated at 70 °C under nitrogen atmosphere. Progress of the reaction was monitored periodically by TLC. Upon completion, the reaction mixture was cooled to room temperature and diluted with dichloromethane (10 mL). The crude mixture was filtered through a small pad of Celite and concentrated under the reduced pressure. The crude residue was purified through column chromatography using ethyl acetate and hexane mixture on silica gel to provide 1 / 5.

General procedure for the preparation of propiolic acid derivates 2b, 2c (GP 2):²

Arl +
$$H_{2}^{OEt}$$
 $PdCl_{2}(PPh_{3})_{2}$ (2.0 mol%) O_{2}^{OEt} O_{2}^{OH} O_{2}^{OH} O_{2}^{OH} H_{2}^{OH} H_{2}^{OH}

To a solution of aryl iodide (7.5 mmol), ethyl propiolate (5.0 mmol), and K_2CO_3 (15 mmol) in THF (30 mL) was added PdCl₂(PPh₃)₂ (0.02 mmol) and CuI (0.04 mmol). The resulting mixture was then heated under a nitrogen atmosphere at 60 °C for12 h. The reaction was monitored by TLC to establish the consumption of starting material. The mixture was then cooled to room

temperature, the solid was removed by filtration. The filtrate was diluted with EtOAc and washed with water.

The combined organic layer was washed with brine and dried over Na₂SO₄. The resultant crude material was directly subjected to hydrolysis by subjecting to aqueous NaOH (1M, 3.0 equiv) in MeOH (5 mL) at 0 °C and then allowed to warm to rt and stirred overnight. The reaction mixture was acidified to pH = 1 by adding HCl (2M) and then extracted with DCM (1 × 10 mL). The organic layer was separated and the aqueous layer extracted with CH₂Cl₂ (3 × 10 mL). The combined organic layers were dried over MgSO₄ and evaporated to yield the respective arylpropiolic acids.

1u

 Table S1: List of Ynamides

1s

1t

1w

1v

General procedure for the chemo-, regio-, and stereoselective hydropropioloxylation of ynamide 1 with terminal propiolic acid 2a (GP-3):

The ynamide $\mathbf{1}$ (0.3 mmol) was taken in an RB flask and then propiolic acid $2\mathbf{a}$ (0.36 mmol) was introduced drop wise. The reaction mixture was stirred at RT. The progress of the reaction was periodically monitored by TLC. After complete consumption of ynamide $\mathbf{1}$, the reaction mixture was diluted with EtOAc and neutralized with saturated NaHCO₃ solution. The organic layer was

further extracted with EtOAc (10 mL) and dried over anhydrous Na₂SO₄. After evaporation of solvent under reduced pressure, the residue was purified by flash chromatography on silica gel (hexane/EtOAc) to afford the expected product **3**.

(*E*)-1-(4-methyl-N-(3-phenylprop-2-yn-1-yl)phenylsulfonamido)-2-phenylvinyl propiolate (3a):

Following the general procedure GP–3, compound **3a** (134 mg) was obtained in 98% yield as colorless solid; mp=124–126 °C; $R_f = 0.49$ (3:2 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (500 MHz, CDCl₃): δ 7.86 (d,

J = 8.5 Hz, 2H), 7.60 (d, J = 8.4 Hz, 2H), 7.39–7.27 (m, 3H), 7.26–7.15 (m, 5H), 7.08 (d, J = 7.0 Hz, 2H), 6.51 (s, 1H), 4.43 (s, 2H), 2.93 (s, 1H), 2.32 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 149.9, 144.3, 137.0, 136.0, 131.6, 131.4, 129.4, 128.84, 128.81, 128.6, 128.52, 128.3, 127.9, 123.5, 122.1, 86.0, 81.9, 77.3, 73.8, 39.8, 21.4.; IR (Neat) v_{max} 1724, 1351, 1264, 1100, 1052, 732,701 cm⁻¹; HRMS (ESI) for C₂₇H₂₁NNaO₄S (M+Na)⁺: calcd 478.1089, found 478.1084.

(*E*)-1-(4-Methyl-N-(3-phenylprop-2-yn-1-yl)phenylsulfonamido)-2-(naphthalen-1-yl)vinyl propiolate (3b):

Following the general procedure GP–3, compound **3b** (146 mg) was obtained in 96% yield as colorless solid; mp = 126–128 °C; R_f = 0.51 (3:2 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (600 MHz, CDCl₃): δ 7.99–7.89 (m, 2H), 7.87–7.76 (m, 2H), 7.72 (d, *J* = 8.4 Hz, 2H), 7.54–7.41

(m, 3H), 7.31–7.20 (m, 3H), 7.17–7.07 (m, 3H), 7.03 (d, J = 8.4 Hz, 2H), 4.33 (s, 2H), 3.07 (s, 1H), 2.25 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 150.0, 143.9, 138.8, 135.7, 133.3, 131.6, 131.4, 129.2, 128.8, 128.5, 128.4, 128.3, 128.0, 126.6, 126.4, 126.0, 125.5, 124.2, 122.1, 121.1, 85.9, 82.1, 77.5, 73.8, 40.0, 21.4; IR (Neat) v_{max} 2128, 1748, 1351, 1157, 111.4, 1046, 685 cm⁻¹; HRMS (ESI) for C₃₁H₂₄NO₄S (M+H)⁺: calcd 506.1426, found 506.1423.

(*E*)-2-(3-Cyanophenyl)-1-(4-methyl-N-(3-phenylprop-2-yn-1-yl)phenylsulfonamido)vinyl propiolate (3c):

Following the general procedure GP–3, compound **3c** (137 mg) was obtained in 93% yield as colorless solid; mp = 129–131°C; R_f = 0.43 (3:2 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (600 MHz, CDCl₃): δ 7.88 (d, J = 7.8 Hz, 1H), 7.77 (d, J = 8.4 Hz, 2H), 7.73 (s, 1H), 7.50 (d, J = 7.8 Hz,

1H), 7.40 (t, J = 7.8 Hz, 1H), 7.27–7.17 (m, 5H), 7.10 (d, J = 7.2 Hz, 2H), 6.51 (s, 1H), 4.41 (s, 2H), 2.97 (s, 1H), 2.34 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 149.5, 144.8, 138.5, 135.2, 133.1, 132.8, 132.3, 132.2, 131.9, 131.6, 131.5, 129.7, 129.6, 129.5, 129.4, 128.6, 128.3, 128.04, 127.99, 121.80, 121.76, 118.3,112.7, 86.5, 81.2, 77.9, 77.7, 73.4, 39.6, 21.5; IR (Neat) v_{max} 2227, 1745, 1509, 1349, 1272, 1159, 1099, 747, 625 cm⁻¹; HRMS (ESI) for C₂₈H₂₁N₂O₄S (M+H)⁺: calcd 481.1222, found 481.1222.

$(E) \hbox{-} 1-(4-Methyl-N-(3-phenylprop-2-yn-1-yl) phenylsulfon amido)-2-(4-yn-1-yl) phenylsulfon amido) phenylsulfon a$

(trifluoromethyl)phenyl)vinyl propiolate (3d):

Following the general procedure GP–3, compound **3d** (151 mg) was obtained in 96% yield as colorless solid; mp = 121–123 °C; R_f = 0.46 (3:2 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (600 MHz, CDCl₃): δ 7.79 (d, J = 7.8 Hz, 2H), 7.70 (d, J = 7.8 Hz, 2H), 7.55 (d, J = 7.8 Hz, 2H), 7.28–7.24

(m, 1H), 7.20 (t, J = 7.8 Hz, 4H), 7.08 (d, J = 6.6 Hz, 2H), 6.58 (s, 1H), 4.43 (s, 2H), 2.97 (s, 1H), 2.33 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 149.6, 144.6, 138.4, 135.5, 135.2, 131.5, 130.3 (q, J = 32 Hz, 1C), 129.5, 129.1, 128.6, 128.4, 128.0, 125.4, 123.9 (q, J = 272 Hz, 1C), 122.5, 121.9, 121.2, 86.3, 81.4, 77.6, 73.5, 39.7, 21.4; ¹⁹F NMR (471 MHz, CDCl₃) δ -62.7; IR (Neat) v_{max} 2228, 1722, 1488, 1350, 1288, 1162, 1054, 737, 692 cm⁻¹; HRMS (ESI) for C₂₈H₂₁F₃NO₄S (M+H)⁺: calcd 524.1143, found 524.1144.

(*E*)-1-(4-Methyl-N-(3-phenylprop-2-yn-1-yl)phenylsulfonamido)-2-(4-nitrophenyl)vinyl propiolate (3e):

Following the general procedure GP–3, compound **3e** (140 mg) was obtained in 93% yield as colorless solid; mp = 135–137 °C; R_f = 0.39 (3:2 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (600 MHz, CDCl₃): δ 8.14 (d, J = 9.0 Hz, 2H), 7.80 (d, J = 7.8 Hz, 2H), 7.76 (d, J = 9.0 Hz, 2H),

7.29–7.17 (m, 5H), 7.09 (d, J = 9.0 Hz, 2H), 6.63 (s, 1H), 4.42 (s, 2H), 2.98 (s, 1H), 2.35 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 149.4, 147.3, 144.8, 139.4, 138.4, 135.3, 131.6, 131.5, 129.8, 129.6, 128.7, 128.4, 128.2, 128.0, 127.97, 123.8, 123.6, 121.7, 86.5, 81.2, 78.0, 73.3, 39.7, 21.5; IR (Neat) v_{max} 2125, 1722, 1524, 1347, 1163, 1026, 805, 668 cm⁻¹; HRMS (ESI) for C₂₇H₂₁N₂O₆S (M+H)⁺: calcd 501.1120, found 501.1121.

(*E*)-1-(4-Methyl-N-(3-phenylprop-2-yn-1-yl)phenylsulfonamido)-2-(3-((2-methylallyl)oxy)phenyl)vinyl propiolate (3f):

Following the general procedure GP–3, compound **3f** (144 mg) was obtained in 91% yield as colorless solid; mp = 127–129 °C; $R_f = 0.5$ (3:2 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (600 MHz, CDCl₃): δ 7.86 (d, J = 8.4 Hz, 2H), 7.29–7.16 (m, 7H), 7.11 (d, J = 7.2 Hz, 1H), 7.08 (d, J

= 7.2 Hz, 2H), 6.87 (dd, J = 8.4, 2.4 Hz, 1H), 6.48 (s, 1H), 5.07 (s, 1H), 4.97 (s, 1H), 4.43 (s, 2H), 4.40 (s, 2H), 2.93 (s, 1H), 2.32 (s, 3H), 1.81 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 158.8, 149.9, 144.3, 140.7, 137.1, 135.9, 132.5, 131.7, 131.5, 129.6, 129.4, 128.5, 128.3, 127.9, 123.5, 123.4, 122.1, 121.7, 116.32, 116.25, 113.9, 113.8, 112.6, 85.9, 81.9, 77.4, 73.7, 71.6, 39.8, 21.5, 19.4; IR (Neat) v_{max} 2221, 1728, 1365, 1260, 1119, 1017, 729, 595 cm⁻¹; HRMS (ESI) for C₃₁H₂₈NO₅ (M+H)⁺: calcd 526.1688, found 526.1687.

(*E*)-2-Cyclopropyl-1-(4-methyl-N-(3-phenylprop-2-yn-1-yl)phenylsulfonamido)vinyl propiolate (3g):

Following the general procedure GP–3, compound **3g** (122 mg) was obtained in 97% yield as colorless solid; mp = 118–120 °C; R_f = 0.53 (3:2 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (600 MHz, CDCl₃): δ 7.87

(d, J = 7.8 Hz, 2H), 7.29–7.21 (m, 5H), 7.20–7.16 (m, 2H), 5.05 (d, J = 15.0 Hz, 1H), 4.52 (s, 2H), 2.87 (s, 1H), 2.35 (s, 3H), 1.70–1.60 (m, 1H), 0.77–0.68 (m, 2H), 0.48–0.41 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 150.5, 144.0, 136.5, 136.0, 131.6, 130.8, 130.6, 129.5, 129.4, 128.3, 128.0, 122.4, 85.5, 82.8, 76.7, 73.9, 40.3, 21.5, 9.64, 9.61, 7.3; IR (Neat) v_{max} 2120, 1732, 1355, 1160, 1130, 690, 543 cm⁻¹; HRMS (ESI) for C₂₄H₂₁NNaO₄S (M+Na)⁺: calcd 442.1089, found 442.1088.

(*E*)-4-((*tert*-Butyldimethylsilyl)oxy)-1-(4-methyl-N-(3-phenylprop-2-yn-1-yl)phenylsulfonamido)but-1-en-1-yl propiolate (3h):

Following the general procedure GP–3, compound **3h** (145 mg) was obtained in 90% yield as colorless solid; mp = 126–128 °C; $R_f = 0.55$ (3:2 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (500 MHz, CDCl₃): δ 7.86 (d, J = 8.5 Hz, 2H), 7.32–7.20 (m, 7H), 5.79 (t, J = 7.5 Hz, 1H), 4.47 (s, 2H), 3.69

(t, J = 6.5 Hz, 2H), 2.89 (s, 1H), 2.48 (q, J = 6.5 Hz, 2H), 2.37 (s, 3H), 0.89 (s, 9H), 0.05 (s, 6H); ¹³C NMR (126MHz, CDCl₃) δ 150.1, 144.1, 137.7, 136.2, 131.6, 129.5, 128.4, 128.3, 128.0, 123.3, 122.3, 85.5, 73.8, 61.7, 40.3, 31.0, 25.9, 21.5, 18.2, -5.5; IR (Neat) v_{max} 2119, 1732, 1353, 1160, 1130, 1051, 757, 659 cm⁻¹; HRMS (ESI) for C₂₉H₃₆NO₅SSi (M+H)⁺: calcd 538.2083, found 538.1304.

(*E*)-1-(4-Methyl-N-(3-phenylprop-2-yn-1-yl)phenylsulfonamido)oct-1-en-1-yl propiolate (3i):

Following the general procedure GP–3, compound **3i** (135 mg) was obtained in 97% yield as colorless solid; mp = 121-123 °C; $R_f = 0.52$ (3:2 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (500 MHz, CDCl₃): δ 7.86 (d, J = 8.0 Hz, 2H), 7.35–7.20 (m, 7H), 5.66 (t, J = 7.5 Hz, 1H), 4.45 (s,

2H), 2.90 (s, 1H), 2.38 (s, 3H), 2.23 (q, J = 7.5 Hz, 2H), 1.44–1.33 (m, 2H), 1.32–1.15 (m, 6H), 0.85 (t, J = 6.5 Hz, 3H); ¹³C NMR (126MHz, CDCl₃) δ 150.4, 144.1, 136.7, 136.2, 131.6, 129.4, 128.4, 128.2, 128.0, 126.6, 122.3, 85.4, 82.5, 77.3, 73.8, 40.2, 31.5, 29.0, 28.7, 27.2, 22.5, 21.5, 14.0; IR (Neat) v_{max} 1733, 1356,1162, 1141, 1089, 661 cm⁻¹; HRMS (ESI) for C₂₇H₃₀NO₄S (M+H)⁺: calcd 464.1896, found 464.1886.

(*E*)-5-Chloro-1-(4-methyl-N-(3-phenylprop-2-yn-1-yl)phenylsulfonamido)pent-1-en-1-yl propiolate (3j):

Following the general procedure GP–3, compound **3j** (130 mg) was obtained in 95% yield as colorless solid; mp = 124–126 °C; $R_f = 0.5$ (3:2 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃): δ 7.86 (d, J = 8.0 Hz, 2H), 7.34–7.21 (m, 7H), 5.66 (t, J = 7.6 Hz, 1H), 4.46 (s, 2H),

3.53 (t, *J* = 6.4 Hz, 2H), 2.92 (s, 1H), 2.45 (q, *J* = 7.2 Hz, 2H), 2.39 (s, 3H), 1.99–1.85 (m, 2H);

¹³C NMR (101 MHz, CDCl₃) δ 150.1, 144.3, 137.5, 135.9, 131.6, 129.5, 128.5, 128.2, 128.0, 124.7, 122.1, 85.6, 82.2, 77.0, 73.6, 44.1, 40.0, 31.4, 24.6, 21.4; IR (Neat)*v*_{max} 2121,1733, 1353, 1157, 1126,1052, 657; HRMS (ESI) for C₂₄H₂₃ClNO₄S(M+H)⁺: calcd 456.1036, found 456.1094. (*E*)-1-(N-(3-(2-Methoxyphenyl)prop-2-yn-1-yl)-4-methylphenylsulfonamido)-2-phenylvinyl propiolate (3k):

Following the general procedure GP–3, compound **3k** (137 mg) was obtained in 94% yield as colorless solid; mp = 128–130 °C; R_f = 0.48 (3:2 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (500 MHz, CDCl₃): δ 7.85 (d, *J* = 8.5 Hz, 2H),7.60 (t, *J* = 1.0 Hz, 2H),7.35–7.27 (m, 3H), 7.25–7.17

(m, 3H), 6.94 (dd, J = 7.5, 2.0 Hz, 1H), 6.81–6.75 (m, 2H), 6.54 (s, 1H), 4.49 (s, 2H), 3.77 (s, 3H), 2.93 (s, 1H), 2.33 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 159.9. 149.7, 144.1, 137.1, 135.9, 133.7, 131.4, 129.8, 129.3, 128.8, 128.7, 128.50, 128.45, 123.3, 119.9, 111.3, 110.3, 85.6, 82.5, 77.2, 73.8, 55.5, 40.0, 21.5; IR (Neat) v_{max} 2927, 2120, 1733, 1491, 1352, 1292, 1160, 1019, 692, 660 cm⁻¹; HRMS (ESI) for C₂₈H₂₃NNaO₅S (M+Na)⁺: calcd 508.1195, found508.1192.

(*E*)-1-(4-Methyl-N-(3-(3-((2-methylallyl)oxy)phenyl)prop-2-yn-1-yl)phenylsulfonamido)-2-phenylvinyl propiolate (3l):

Following the general procedure GP–3, compound **3l** (147 mg) was obtained in 96% yield as colorless solid; mp = 128–130 °C; R_f = 0.4 (3:2 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃): δ 7.91 (d, *J* = 7.6 Hz, 2H), 7.65 (d, *J* = 7.2 Hz, 2H), 7.48–7.25 (m, 5H), 7.14 (t,

J = 8.0 Hz, 1H), 6.86 (d, J = 7.2 Hz, 1H), 6.80–6.69 (m, 2H), 6.55 (s, 1H), 5.10 (s, 1H), 5.02 (s, 1H), 4.47 (s, 2H), 4.37 (s, 2H), 2.99 (s, 1H), 2.38 (s, 3H), 1.85 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 158.2, 150.0, 144.5, 140.6, 137.1, 136.0, 131.4, 129.5, 129.1, 129.0, 128.7, 128.6, 124.2, 123.6, 123.1, 117.8, 115.5, 112.9, 86.0, 81.8, 73.8, 71.7, 39.9, 21.6, 19.5; IR (Neat) v_{max} 2226, 17321, 1698, 1358, 1163, 1108, 758 cm⁻¹; HRMS (ESI) for C₃₁H₂₈NO₅S (M+H)⁺: calcd 526.1688, found 526.1687.

(*E*)-1-(4-Methyl-N-(pent-2-yn-1-yl)phenylsulfonamido)-2-phenylvinyl propiolate (3m):

Following the general procedure GP–3, compound **3m** (120 mg) was obtained in 98% yield as colorless solid; mp= 118–120 °C; R_f = 0.51 (3:2 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (500 MHz, CDCl₃): δ 7.84 (d, J = 8.0 Hz, 2H), 7.59 (d, J = 7.5 Hz, 2H), 7.38–7.24 (m, 5H), 6.50 (s, 1H),

4.19 (s, 2H), 3.04 (s, 1H), 2.42 (s, 3H), 1.92 (q, J = 7.5 Hz, 2H), 0.88 (t, J = 7.5 Hz, 3H); ¹³C NMR (121 MHz, CDCl₃) δ 149.8, 144.1, 136.9, 136.0, 131.4, 129.3, 128.8, 128.7, 128.5, 123.4, 88.1, 77.2, 73.8, 71.8, 39.3, 21.5, 13.1, 12.1; IR (Neat) v_{max} 2119, 1735, 1348, 1160, 1114, 1015, 658, 533 cm⁻¹; HRMS (ESI) for C₂₃H₂₂NO₄S (M+H)⁺: calcd 408.1270, found 408.1267.

(*E*)-1-(4-Methyl-N-(3-(thiophen-2-yl)prop-2-yn-1-yl)phenylsulfonamido)-2-phenylvinyl propiolate (3n):

Following the general procedure GP–3, compound **3n** (133 mg) was obtained in 96% yield as colorless solid; mp = 132–134 °C; R_f = 0.4 (3:2 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (600 MHz, CDCl₃): δ 7.87 (d, J = 10.2 Hz, 2H), 7.59 (d, J = 9.0 Hz, 2H), 7.34 (t, J = 7.2 Hz, 2H), 7.33–7.27 (m, 1H), 7.24 (d, J

= 7.8 Hz, 2H), 7.18 (dd, J = 5.4, 1.2 Hz, 1H), 6.93 (d, J = 2.4 Hz, 1H), 6.89–6.86 (m, 1H), 6.50 (s, 1H), 4.44 (s, 2H), 2.96 (s, 1H), 2.36 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 149.9, 144.4, 137.0, 135.9, 132.5, 131.3, 129.5, 128.9, 128.8, 128.6, 128.5, 127.3, 126.6, 123.5, 122.0, 85.8, 79.3, 77.3, 73.7. 40.0, 21.6; IR (Neat) v_{max} 2119, 1726, 1345, 1119, 1162, 1018, 691, 661, 534 cm⁻¹; HRMS (ESI) for C₂₅H₁₉NNaO₄S₂ (M+Na)⁺: calcd 484.0653, found 484.0652.

(*E*)-2-Phenyl-1-(N-(3-phenylprop-2-yn-1-yl)phenylsulfonamido)vinyl propiolate (30):

Following the general procedure GP–3, compound **30** (131 mg) was obtained in 99% yield as colorless solid; mp= 120–122 °C; R_f = 0.42 (3:2 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (600 MHz, CDCl₃): δ 8.00 (d, *J* = 7.2 Hz, 2H), 7.61 (d, *J* = 7.2 Hz, 2H), 7.53 (t, *J* = 7.2 Hz, 1H), 7.44 (t, *J* = 7.8 Hz, 2H), 7.34 (t, *J* =

7.2 Hz, 2H), 7.29 (t, J = 7.8 Hz, 1H), 7.25 (t, J = 7.8 Hz, 1H), 7.19 (t, J = 7.8 Hz, 2H), 7.11–7.06 (m, 2H), 6.52 (s, 1H), 4.46 (s, 2H), 2.90 (s, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 149.9, 139.0, 136.8, 133.3, 131.61, 131.56, 131.3, 128.9, 128.7, 128.5, 128.0, 123.6, 122.0, 86.1, 81.7, 77.3,

73.7, 40.0; IR (Neat) v_{max} 1724, 1351, 1264, 1100, 1052, 732,701 cm⁻¹; HRMS (ESI) for C₂₆H₂₀NO₄S (M+H)⁺: calcd 442.1113, found 442.1110.

(*E*)-2-Phenyl-1-(2,4,6-triisopropyl-N-(3-phenylprop-2-yn-1-yl)phenylsulfonamido)vinyl propiolate (3p):

Following the general procedure GP–3, compound **3p** (159 mg) was obtained in 97% yield as colorless solid; mp = 116–118 °C; R_f = 0.33 (3:2 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃): δ 7.70–7.59 (m, 2H), 7.35–7.22 (m, 5H), 7.21–7.15 (m, 3H), 7.13–7.03 (m, 2H), 6.58–6.50 (m, 1H), 4.70–4.60 (m, 2H), 4.19–3.95 (m, 2H), 2.95–2.81

(m, 2H), 1.45–1.20 (m, 18H); ¹³C NMR (101 MHz, CDCl₃) δ 153.5, 151.7, 150.5, 136.6, 133.3, 131.6, 131.5, 129.0, 128.8, 128.4, 128.3, 128.0, 124.2, 123.8, 122.4, 85.7, 82.7, 73.9, 39.0, 34.2, 30.5, 25.1, 23.5; IR (Neat) v_{max} 2226, 1738, 1488, 1154, 1084, 1110, 750, 687 cm⁻¹; HRMS (ESI) for C₃₅H₃₇.NO₄S (M+Na)⁺: calcd 568.2522, found 568.2521.

General procedure for the chemo-, regio-, and stereoselective hydropropioloxylation of ynamide 1 / 5 with arylpropiolic acids 2b / 2c (GP-4):

To the solution of ynamide (0.3 mmol) in 2M toluene was introduced arylpropiolic acid **2** (0.36 mmol). The reaction mixture was stirred at RT. The progress of the reaction was periodically monitored by TLC. After complete consumption of ynamide, the reaction mixture was diluted with EtOAc and neutralized with saturated NaHCO₃ solution. The organic layer was further extracted with EtOAc (10 mL) and dried under anhydrous Na₂SO₄. After evaporation of solvent under reduced pressure, the residue was purified

by flash chromatography on silica gel (Hexane/EtOAc) to afford the expected product **4 /6**.

(E)-1-(4-methyl-N-(3-phenylprop-2-yn-1-yl)phenylsulfonamido)-2-phenylvinyl3-phenylpropiolate (4a):

Following the general procedure GP–4, compound **4a** (157 mg) was obtained in 98% yield as colorless solid; mp = 131–133 °C; $R_f = 0.43$ (3:2 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (500 MHz, CDCl₃): δ 7.94 (d, J = 8.5 Hz, 2H), 7.66 (d, J = 7.5 Hz, 2H), 7.52–7.29 (m, 8H), 7.19 (d, J = 7.5 Hz, 3H), 7.16–7.06

(m, 4H), 6.57 (s, 1H), 4.49 (s, 2H), 2.23 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 151.1, 144.1, 137.3, 136.2, 132.9, 131.6, 131.0, 129.3, 128.9, 128.71, 128.67, 128.6, 128.2, 127.9, 123.3, 122.2, 119.1, 89.0, 85.9, 82.1, 79.8, 40.0, 21.4; IR (Neat) v_{max} 1730, 1173, 1156, 1046, 1012, 682, 537cm⁻¹; HRMS (ESI) for C₃₃H₂₅NNaO₄S (M+Na)⁺: calcd 554.1403, found 554.1403.

(*E*)-2-(2-iodophenyl)-1-(4-methyl-N-(3-phenylprop-2-yn-1-yl)phenylsulfonamido)vinyl 3-phenylpropiolate (4b):

Following the general procedure GP–4, compound **4b** (183 mg) was obtained in 92% yield as colorless solid; mp = 123–125 °C; R_f = 0.49 (3:2 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (500 MHz, CDCl₃): δ

7.93–7.83 (m, 4H), 7.55–7.49 (m, 3H), 7.47–7.34 (m, 4H), 7.25–7.17 (m, 6H), 7.02–6.94 (m, 1H), 6.68 (s, 1H), 4.39 (s, 2H), 2.26 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 150.8, 144.0, 139.2, 139.0, 135.9, 133.0, 131.7, 131.1, 129.7, 129.4, 128.3, 127.9, 125.8, 122.2, 119.0, 100.2, 89.3, 85.9, 82.1,80.0, 40.2, 21.4; IR (Neat) ν_{max} 1724, 1348, 1285, 1151, 1076, 1053, 761, 580 cm⁻¹; HRMS (ESI) for C₃₃H₂₄INNaO₄S (M+Na)⁺: calcd 680.0368, found 680.0366.

(*E*)-1-(4-methyl-N-(3-phenylprop-2-yn-1-yl)phenylsulfonamido)-2-(3-(trifluoromethyl) phenyl) vinyl 3-phenylpropiolate (4c):

Following the general procedure GP–4, compound **4c** (169 mg) was obtained in 94% yield as colorless solid; mp = 130–132 °C; $R_f = 0.41$ (3:2 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (500 MHz, CDCl₃): δ 7.93 (d, J = 8.4 Hz, 2H), 7.65 (d, J = 7.2 Hz, 2H), 7.50 (t, J = 7.2 Hz, 1H), 7.46–7.27

(m, 7H), 7.20 (d, J = 7.8 Hz, 2H), 7.06 (t, J = 7.2 Hz, 2H), 6.79 (t, J = 8.4 Hz, 2H), 6.55 (s, 1H),

4.46 (s, 2H), 2.25 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 150.9, 140.4, 138.5, 135.8, 133.0, 132.7, 131.7, 130.6, 131.3, 131.2, 131.0, 130.8, 136.5, 129.4, 129.1, 128.64, 128.62, 128.4, 128.0, 125.93, 125.90, 125.87, 125.84, 125.2, 125.1, 125.0, 122.8, 122.2, 122.0, 119.0, 89.4, 86.3, 81.6, 79.7, 39.8, 21.4; ¹⁹F NMR (471 MHz, CDCl₃) δ -62.8 ppm; IR (Neat) v_{max} 1737, 1350, 1156, 1108, 1013, 756, 687 cm⁻¹; HRMS (ESI) for C₃₄H₂₄F₃NNaO₄S (M+Na)⁺: calcd 622.1276, found 622.1309.

(*E*)-2-(4-formylphenyl)-1-(4-methyl-N-(3-phenylprop-2-yn-1-yl)phenylsulfonamido)vinyl 3-phenylpropiolate (4d):

Following the general procedure GP–4, compound **4d** (166 mg) was obtained in 99% yield as colorless solid; mp = 138–140 °C; R_f = 0.46 (3:2 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (500 MHz, CDCl₃): δ 9.97 (s, 1H), 7.89 (d, J = 8.0 Hz, 2H), 7.82 (q, J = 8.5 Hz, 4H), 7.49 (t, J = 7.5 Hz,

1H), 7.44 (d, J = 7.5 Hz, 2H), 7.38 (t, J = 8.0 Hz, 2H), 7.24–7.18 (m, 3H), 7.16–7.07 (m, 4H), 6.65 (s, 1H), 4.48 (s, 2H), 2.24 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 191.6, 150.7, 144.4, 139.2, 138.0, 135.9, 135.8, 133.0, 131.5, 131.2, 129.8, 129.44, 129.38, 128.62, 128.57, 128.4, 128.0, 122.2, 121.9, 118.8, 89.5, 86.3, 81.6, 79.6, 40.0, 21.4; IR (Neat) v_{max} 2126, 1748, 1351, 1157, 1114, 1046, 754, 684 cm⁻¹; HRMS (ESI) for C₃₄H₂₅NNaO₅S (M+Na)⁺: calcd 582.1351, found 582.1350.

(*E*)-2-(4-cyanophenyl)-1-(4-methyl-N-(3-phenylprop-2-yn-1-yl)phenylsulfonamido)vinyl 3-phenylpropiolate (4e):

Following the general procedure GP–4, compound **4e** (159 mg) was obtained in 95% yield as colorless solid; mp = 133–135 °C; $R_f = 0.38$ (3:2 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (500 MHz, CDCl₃): δ 7.87 (d, J = 8.0 Hz, 2H), 7.76 (d, J = 8.0 Hz, 2H), 7.60 (d, J = 8.5 Hz, 2H), 7.53–7.48 (m, 1H), 7.47–7.43 (m, 2H), 7.42–7.36 (m, 2H), 7.25–7.19 (m,

3H), 7.18–7.13 (m, 2H), 7.12–7.08 (m, 2H), 6.62 (s, 1H), 4.47 (s, 2H), 2.26 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 150.6, 144.6, 139.4, 136.7, 135.6, 133.0, 132.2, 131.5, 131.3, 129.5, 129.4, 128.7, 128.6, 128.0, 121.8, 118.8, 118.6, 111.8, 89.6, 86.4, 81.4, 79.5, 39.9, 21.4; IR (Neat) ν_{max} 2121, 1724, 1343, 1160, 1114, 997, 752, 690 cm⁻¹; HRMS (ESI) for C₃₄H₂₄N₂NaO₄S (M+Na)⁺: calcd 579.1354, found 579.1360.

(*E*)-1-(N-(3-(4-chlorophenyl)prop-2-yn-1-yl)-4-methylphenylsulfonamido)-2-phenylvinyl 3-phenylpropiolate (4f):

Following the general procedure GP–4, compound **4f** (165 mg) was obtained in 97% yield as colorless solid; mp = 128–130 °C; $R_f = 0.4$ (3:2 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (500 MHz, CDCl₃): δ 7.93 (d, J = 8.5 Hz, 2H), 7.64 (d, J = 7.5 Hz, 2H), 7.53–7.47 (m, 1H), 7.44–7.34

(m, 6H), 7.33–7.29 (m, 1H), 7.21 (d, J = 8.0 Hz, 2H), 7.09–7.05 (m, 2H), 7.03–6.96 (m, 2H), 6.56 (s, 1H), 4.47 (s, 2H), 2.25 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 151.2, 144.1, 137.2, 136.3, 134.3, 132.9, 132.8, 131.5, 131.1, 129.3, 128.9, 128.8, 128.71, 128.65, 128.6, 128.2, 123.5, 120.7, 119.0, 89.1, 84.8, 83.3, 79.8, 39.9, 21.4; IR (Neat) ν_{max} 2923, 1738, 1366, 1324, 1216, 1155, 812, 760cm⁻¹; HRMS (ESI) for C₃₃H₂₄ClNNaO₄S (M+Na)⁺: calcd 588.1012, found 588.1012.

(*E*)-1-(N-(3-(2-methoxynaphthalen-1-yl)prop-2-yn-1-yl)-4-methylphenylsulfonamido)-2-phenylvinyl 3-phenylpropiolate (4g):

Following the general procedure GP–4, compound **4g** (172 mg) was obtained in 94% yield as pale yellow solid; mp = 140–142 °C; $R_f = 0.4$ (3:2 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (500 MHz, CDCl₃): δ 8.04 (d, J = 8.5 Hz, 1H), 7.79 (dd, J = 21, 9.0 Hz, 2H), 7.71 (d, J = 8.5 Hz, 2H), 7.54–7.46 (m, 4H), 7.42–7.34 (m, 3H),7.26 (d, J = 9.0 Hz, 1H), 7.23–7.19

(m, 1H), 7.17–7.11 (m, 4H), 6.97 (d, J = 8.4, 2H), 6.71 (s, 1H), 4.34 (s, 2H), 4.00 (s, 3H), 2.16 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 154.2, 151.6, 143.4, 140.3, 136.8, 133.0, 132.6, 131.6, 130.9, 130.1, 129.0, 128.6, 128.1, 128.03, 127.96, 127.85, 126.9, 124.6, 123.8, 122.6, 119.2, 114.9, 114.2, 112.9, 89.2, 84.8, 83.4, 80.1, 56.3, 39.6, 21.3; IR (Neat) v_{max} 1745, 1350, 1273, 1159, 1100, 1017, 813, 688cm⁻¹; HRMS (ESI) for C₃₈H₂₉NNaO₅S (M+Na)⁺: calcd 634.1664, found 634.1654.

(*E*)-1-(N-(3-(2-Methoxyphenyl)prop-2-yn-1-yl)-4-methylphenylsulfonamido)-2-phenylvinyl 3-phenylpropiolate (4h):

Following the general procedure GP–4, compound **4h** (161 mg) was obtained in 96% yield as colorless solid; mp = 124–126 °C; R_f = 0.42 (3:2 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (600 MHz, CDCl₃): δ 7.91 (d, *J* = 9.0 Hz, 2H), 7.65 (d, *J* = 7.2 Hz, 2H), 7.49 (t, *J* = 7.8 Hz, 1H), 7.45

(d, J = 7.2 Hz, 2H), 7.38 (t, J = 7.8 Hz, 2H), 7.34 (t, J = 7.2 Hz, 2H), 7.29 (t, J = 7.2 Hz, 1H), 7.20–7.15 (m, 3H), 6.95 (dd, J = 7.8, 1.8 Hz, 1H), 6.75 (d, J = 8.4 Hz, 1H), 6.67 (t, J = 7.8 Hz, 1H), 6.59 (s, 1H), 4.54 (s, 2H), 3.77 (s, 3H), 2.23 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 159.9, 151.0, 143.9, 137.4, 136.2, 133.9, 133.6, 132.98, 132.96, 131.7, 131.0, 129.9, 129.6, 129.4, 129.1, 128.9, 128.7, 128.5, 123.0, 122.97, 120.0, 119.8, 119.2, 111.4, 110.3, 88.8, 85.9, 82.5, 79.9, 55.5, 40.2, 21.4; IR (Neat) v_{max} 2235, 1738, 1488, 1349, 1154, 1110, 1017, 687, 660 cm⁻¹; HRMS (ESI) for C₃₄H₂₈NO₅S (M+H)⁺: calcd 562.1688, found 562.1691.

(*E*)-1-(4-Methyl-N-(3-(3-(trifluoromethyl)phenyl)prop-2-yn-1-yl)phenylsulfonamido)-2-phenylvinyl 3-phenylpropiolate (4i):

Following the general procedure GP–4, compound **4i** (173 mg) was obtained in 96% yield as colorless solid; mp = 120–122 °C; $R_f = 0.46$ (3:2 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (600 MHz, CDCl₃): δ 7.95 (d, J = 8.4 Hz, 2H), 7.66 (d, J = 7.8 Hz, 2H), 7.50 (t, J = 7.2 Hz, 1H), 7.46 (d, J = 7.2 Hz, 2H),

7.42–7.35 (m, 4H), 7.34–7.26 (m, 1H), 7.22 (d, J = 8.4 Hz, 2H), 7.11–7.07 (m, 1H), 7.00–6.87 (d, J = 5.4 Hz, 2H), 6.69 (d, J = 9.6 Hz, 1H), 6.56 (s, 1H), 4.48 (s, 2H), 2.26 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 162.7, 161.1, 151.2, 144.2, 137.2, 136.2, 132.9, 131.5, 131.1, 129.7, 129.51, 129.46, 129.3, 129.2, 128.85, 128.81, 128.7, 128.64, 128.61, 128.2, 127.4, 124.0, 123.9, 123.4, 118.9, 118.4, 118.3, 115.6, 115.5, 89.2, 84.6, 83.2, 79.7, 39.9, 21.3; ¹⁹F NMR (471 MHz, CDCl₃) δ -62.96 ppm;IR (Neat) ν_{max} 172, 1698, 1351, 1156, 1109, 1085, 813, 741 cm⁻¹; HRMS (ESI) for C₃₄H₂₄F₃NNaO₄S (M+Na)⁺: calcd 622.1276, found 622.1279.

(E)-1-(4-methyl-N-(3-(p-tolyl)prop-2-yn-1-yl)phenylsulfonamido)-2-phenylvinyl3-phenylpropiolate (4j):

Following the general procedure GP–4, compound **4j** (160 mg) was obtained in 98% yield as colorless solid; mp = 124–126 °C; $R_f = 0.42$ (3:2 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (500 MHz, CDCl₃): δ 7.95 (d, J = 8.5 Hz, 2H), 7.68 (d, J = 7.5 Hz, 2H), 7.51 (d, J = 7.0 Hz, 1H), 7.45–7.33 (m, 7H), 7.22 (d, J = 8.0 Hz, 2H), 7.01 (d, J = 8.0 Hz, 2H), 6.94 (d, J = 8.0 Hz,

2H), 6.59 (s, 1H), 4.50 (s, 2H), 2.27 (s, 6H); 13 C NMR (126 MHz, CDCl₃) δ 151.1, 144.0, 138.3,

137.4, 136.3, 132.9, 131.6, 131.5, 130.9, 129.3, 128.9, 128.7, 128.62, 128.58, 128.5, 123.3, 119.2, 119.1, 88.9, 86.1, 81.4, 79.9, 40.0, 21.4, 21.3; IR (Neat) v_{max} 1735, 1602, 1508, 1348, 1254, 1162, 1051, 754 cm⁻¹; HRMS (ESI) for C₃₄H₂₇NNaO₅S (M+Na)⁺: calcd 568.1558, found 568.1551.

(*E*)-1-(N-(3-(4-methoxyphenyl)prop-2-yn-1-yl)-4-methylphenylsulfonamido)-2-phenylvinyl 3-phenylpropiolate (4k):

Following the general procedure GP–4, compound **4k** (167 mg) was obtained in 99% yield as colorless solid; mp = 136–138 °C; $R_f = 0.42$ (3:2 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (500 MHz, CDCl₃): δ 7.92 (d, J = 8.0 Hz, 2H), 7.64 (d, J = 8.5 Hz, 2H), 7.49–7.45 (m, 1H), 7.43–7.28 (m, 7H), 7.19 (d, J = 8.0 Hz, 2H), 7.03 (d, J = 9.0 Hz, 2H), 6.62 (d, J = 9.0 Hz, 2H), 6.55

(s, 1H), 4.46 (s, 2H), 3.70 (s, 3H), 2.24 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 159.4, 151.1, 144.0, 137.3, 136.2, 133.0, 132.9, 131.6, 131.0, 129.3, 128.9, 128.7, 128.6, 123.3, 119.1, 114.3, 113.5, 88.9, 85.9, 80.6, 79.8, 55.1, 40.1, 21.4; IR (Neat) v_{max} 2228, 1724, 1504, 1350, 1287, 1152, 1052, 832, 693 cm⁻¹; HRMS (ESI) for C₃₄H₂₈NO₅S (M+H)⁺: calcd 562.1688, found 562.1678.

(*E*)-1-(N-(3-(4-fluorophenyl)prop-2-yn-1-yl)-4-methylphenylsulfonamido)-2-phenylvinyl 3-phenylpropiolate (4l):

Following the general procedure GP–4, compound **41** (106 mg) was obtained in 95% yield as colorless solid; mp = 127–129 °C; $R_f = 0.43$ (3:2 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (600 MHz, CDCl₃): δ 7.93 (d, J = 8.4 Hz, 2H), 7.65 (d, J = 7.2 Hz, 2H), 7.50 (t, J = 6.6 Hz, 1H), 7.47–7.27 (m, 7H), 7.20 (d, J = 7.8 Hz, 2H), 7.06 (bt, J = 7.2 Hz, 2H), 6.79 (t, J = 8.4 Hz, 2H), 6.55 (s, 1H), 4.46 (s,

2H), 2.25 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 162.3 (d, J = 250 Hz, 1C), 151.2, 144.1, 137.2, 136.2, 133.5 (d, J = 8.6 Hz, 1C), 132.9, 131.5, 131.1, 129.3, 128.9, 128.8, 128.71, 128.66, 128.6, 123.5, 115.2 (d, J = 23.1 Hz, 1C), 89.1, 84.9, 81.9, 79.8, 40.0, 21.4; ¹⁹F NMR (376 MHz, CDCl₃) δ –110.18; IR (Neat) v_{max} 2128, 1732, 1353, 1160, 1116, 1087, 1018, 752, 660 cm⁻¹; HRMS (ESI) for C₃₃H₂₄FNNaO₄S (M+Na)⁺: calcd 572.1308, found 572.1302.

(*E*)-1-(N-(3-(4-bromophenyl)prop-2-yn-1-yl)-4-methylphenylsulfonamido)

- 2-phenylvinyl 3-phenylpropiolate (4m):

Following the general procedure GP-4, compound 4m (181 mg) was obtained in 99% yield as

colorless solid; mp = 133–135 °C; $R_f = 0.43$ (3:2 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (500 MHz, CDCl₃): δ 7.92 (d, J = 8.0 Hz, 2H), 7.64 (d, J = 7.5 Hz, 2H), 7.53-7.48 (m, 1H), 7.43-7.39 (m, 4H), 7.38-7.34 (m, 2H), 7.33-7.28 (m, 1H), 7.25–7.18 (m, 4H), 6.96–6.90 (m, 2H), 6.55 (s, 1H), 4.46 (s, 2H), 2.25 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 151.2, 144.1, 137.1, 136.2, 133.0, 132.9, 131.5, 131.2,

129.3, 128.9, 128.8, 128.72, 128.67, 123.6, 122.6, 121.1, 119.0, 89.1, 84.8, 83.4, 79.8, 39.9, 21.4; IR (Neat) v_{max} 1724, 1406, 1154, 1088, 820, 661, 549 cm⁻¹; HRMS (ESI) for C₃₃H₂₄BrNNaO₄S (M+Na)⁺: calcd 632.0507, found 632.0508.

(E)-1-(4-methyl-N-(3-phenylprop-2-yn-1-yl)phenylsulfonamido)-2-(4-(trifluoromethyl)phenyl)vinyl 3-phenylpropiolate (4n):

Following the general procedure GP–4, compound 4n (171 mg) was obtained in 94% yield as colorless solid; mp = 128–130 °C; $R_f = 0.39$ (3:2 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (500 MHz, CDCl₃): δ 7.94 (d, J = 8.0 Hz, 2H), 7.65 (d, J = 7.0 Hz, 2H), 7.49 (bt, J = 7.0 Hz, 1H), 7.44-7.29 (m, 9H), 7.22 (d, J = 7.5 Hz, 1H)Hz, 2H), 7.17 (d, J = 8.0 Hz, 2H), 6.57 (s, 1H), 4.50 (s, 2H), 2.25 (s, 3H); ¹³C

NMR (126 MHz, CDCl₃) δ 151.2, 144.2, 137.2, 136.3, 132.9, 131.8, 131.5, 130.0 (q, J = 32 Hz, 1C), 129.4, 128.9, 128.8, 128.72, 128.66, 127.0, 124.7 (q, J = 3.8 Hz, 1C), 124.3 (q, J = 212 Hz, 1C), 123.6, 118.9, 89.2, 84.9, 84.5, 79.8, 39.9, 21.3; ¹⁹F NMR (471 MHz, CDCl₃) δ –62.94; IR (Neat)v_{max} 2228, 1724, 1504, 1350, 1287,1102, 1052, 760, 542 cm⁻¹; HRMS (ESI) for C₃₄H₂₄F₃NNaO₄S (M+Na)⁺: calcd 622.1276, found 622.1270.

(*E*)-1-(4-methyl-N-(3-(thiophen-2-yl)prop-2-yn-1-yl)phenylsulfonamido)-2-phenylvinyl 3phenylpropiolate (40):

Following the general procedure GP-4, compound 40 (156 mg) was obtained in 97% yield as colorless solid; mp = 139–141 °C; $R_f = 0.37$ (3:2 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (500 MHz, CDCl₃): δ 7.92 (d, J = 8.0 Hz, 2H), 7.64 (d, J = 7.0 Hz, 2H), 7.52–7.43 (m, 3H), 7.41–7.28 (m, 5H), 7.21 (d, J = 8.0 Hz, 2H), 7.12 (bd, J = 5.0 Hz, 1H), 6.94 (bd, J = 2.5 Hz, 1H), 6.84–6.78 (m, 1H), 6.55 (s, 1H), 4.49 (s, 2H), 2.25 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 151.1, 144.2, 137.4, 136.2, 133.0, 132.5, 131.5, 131.0, 129.4, 128.9, 128.7, 128.6, 127.2, 126.6, 123.2, 122.1, 119.2, 89.1, 86.1, 79.8, 79.3, 40.2, 21.4; IR (Neat) v_{max} 2209, 1721, 1340, 1150, 1081, 790, 754, 730 cm⁻¹; HRMS (ESI) for C₃₁H₂₃NNaO₄S₂ (M+Na)⁺: calcd 560.0966, found 560.0966.

(*E*)-2-phenyl-1-(N-(3-phenylprop-2-yn-1-yl)phenylsulfonamido)vinyl 3-phenylpropiolate (4p):

Following the general procedure GP–4, compound **4p** (154 mg) was obtained in 99% yield as colorless solid; mp = 123–125 °C; R_f = 0.41 (3:2 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (500 MHz, CDCl₃): δ 7.98 (d, *J* = 7.0 Hz, 2H), 7.57 (d, *J* = 7.0 Hz, 2H), 7.43–7.20 (m, 12H), 7.06–7.00

(m, 4H), 6.49 (s, 1H), 4.42 (s, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 151.1, 139.3, 137.2, 133.1, 133.0, 131.6, 131.5, 131.0, 128.9, 128.8, 128.7, 128.64, 128.60, 128.58, 128.3, 127.9, 123.3, 122.1, 119.1, 89.1, 86.0, 82.0, 79.7, 40.1; IR (Neat) ν_{max} 2205, 1713, 1352, 1162, 1052, 890, 751, 667 cm⁻¹; HRMS (ESI) for C₃₂H₂₃NNaO₄S (M+Na)⁺: calcd 540.1245, found 540.1240.

(*E*)-2-Phenyl-1-(N-(3-(p-tolyl)prop-2-yn-1-yl)phenylsulfonamido)vinyl 3-phenylpropiolate (4q):

Following the general procedure GP–4, compound **4q** (152 mg) was obtained in 95% yield as colorless solid; mp = 126–128 °C; $R_f = 0.42$ (3:2 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (500 MHz, CDCl₃): δ 8.06 (d, 7.5 Hz, 2H), 7.65 (d, J = 7.5 Hz, 2H), 7.52–7.46 (m, 2H), 7.45–7.40 (m, 4H), 7.40–7.34 (m, 4H), 7.33–7.28 (m, 1H), 7.00 (d, J = 8.0 Hz, 2H), 6.92 (d, J = 8.0Hz, 2H), 6.57 (s, 1H), 4.50 (s, 2H), 2.25 (s, 3H); ¹³C NMR (101 MHz, CDCl₃)

δ 151.1, 139.3, 138.4, 137.2, 133.1, 133.0, 131.5, 131.0, 128.9, 128.8, 128.7, 128.6, 123.4, 119.09,119.05, 89.0, 86.2, 81.2, 79.8, 40.2, 21.4; IR (Neat) v_{max} 2121, 1724, 1344, 1160, 1088, 887, 752, 690 cm⁻¹; HRMS (ESI) for C₃₃H₂₅NNaO₄S (M+Na)⁺: calcd 554.1402, found 554.1404.

(*E*)-2-phenyl-1-(N-(3-phenylprop-2-yn-1-yl)methylsulfonamido)vinyl 3-phenylpropiolate (4r):

Following the general procedure GP–4, compound **4r** (135 mg) was obtained in 99% yield as colorless solid; mp = 127–129 °C; $R_f = 0.42$ (3:2 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (500 MHz, CDCl₃): δ 7.61 (d, J = 7.5 Hz, 2H), 7.46 (bt, J = 7.5 Hz, 3H), 7.41 (d, J = 7.5 Hz, 2H), 7.39–7.28 (m,

5H), 7.27–7.23 (m, 1H), 7.19 (t, J = 7.5 Hz, 2H), 6.53 (s, 1H), 4.51 (s, 2H), 3.28 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 151.4, 137.4, 133.1, 131.7, 131.4, 131.2, 128.9, 128.8, 128.7, 128.6, 128.2, 122.7, 121.8, 118.8, 89.8, 86.5, 82.4, 79.7, 42.0, 40.1; IR (Neat) v_{max} 1721, 1340, 1282, 1149, 1112, 1282, 1149, 1057, 961, 753 cm⁻¹; HRMS (ESI) for C₂₇H₂₁NNaO₄S (M+Na)⁺: calcd 478.1089, found 478.1113.

(*E*)-1-(4-Chloro-N-(3-phenylprop-2-yn-1-yl)phenylsulfonamido)-2-phenylvinyl 3phenylpropiolate (4s):

Following the general procedure GP–4, compound **4s** (157 mg) was obtained in 95% yield as colorless solid; mp = 132–134 °C; R_f = 0.39 (3:2 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (500 MHz, CDCl₃): δ 7.99 (d, J = 8.5 Hz, 2H), 7.65–7.60 (m, 2H), 7.52–7.47 (m, 1H), 7.46–7.42 (m, 2H), 7.41–7.37 (m, 2H), 7.38–7.31 (m, 5H), 7.23–7.18 (m, 1H), 7.16–7.09 (m, 4H), 6.57 (s,1H), 4.52 (s, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 151.0, 139.8, 137.8, 137.0, 133.0, 131.6,

131.4, 131.1, 130.2, 128.90, 128.85, 128.71, 128.66, 128.5, 128.1, 123.6, 121.9, 118.9, 89.4, 86.4, 81.8, 79.7, 40.3; IR (Neat) v_{max} 2225, 1731, 1358, 1164, 1107, 1050, 757 cm⁻¹; HRMS (ESI) for C₃₂H₂₂ClNNaO₄S (M+Na)⁺: calcd 574.0856, found 574.0857.

(*E*)-1-(4-methyl-N-(3-phenylprop-2-yn-1-yl)phenylsulfonamido)-2-phenylvinyl 3-(thiophen-2-yl)propiolate (4t):

Following the general procedure GP–4, compound **4t** (150 mg) was obtained in 91% yield as colorless solid; mp = 138–140 °C; $R_f = 0.38$ (3:2 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (500 MHz, CDCl₃): δ 7.93 (d, J = 5.0 Hz, 2H), 7.65 (bs, 2H),7.53 (s, 1H), 7.47–6.98 (m, 12H), 6.56 (s, 1H), 4.48 (s, 2H), 2.27

(s, 3H); 13 C NMR (126 MHz, CDCl₃) δ 151.0, 144.1, 137.3, 137.0, 136.2, 131.8, 131.5, 129.3,

128.9, 128.63, 128.59, 128.2, 127.8, 127.7, 123.2, 122.1, 118.8, 86.0, 84.2, 83.1, 82.0, 40.0, 21.4; IR (Neat) v_{max} 1678, 1414, 1299, 1260, 849, 747, 547 cm⁻¹; HRMS (ESI) for C₃₁H₂₃NNaO₄S₂ (M+Na)⁺: calcd 560.0966, found 560.0966.

(E)-1-(N-Allyl-4-methylphenylsulfonamido)-2-phenylvinyl propiolate (6a):

Following the general procedure GP–3, compound **6a** (101 mg) was obtained in 89% yield as colorless solid; mp = 121–123 °C; R_f = 0.39 (3:2 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (600 MHz, CDCl₃): δ 7.80 (d, J = 10.2 Hz, 2H), 7.53 (d, J = 9.0 Hz, 2H), 7.30 (bs, 5H), 6.47 (s, 1H), 5.59 (s,

1H), 5.08–4.90 (m, 2H), 3.90 (s, 2H), 3.04 (s, 1H), 2.41 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 149.9, 144.2, 137.0, 136.1, 131.5, 131.3, 129.6, 128.9, 128.7, 128.5, 128.2, 122.8, 120.0, 77.3, 73.8, 52.2, 21.6; IR (Neat) ν_{max} 2118, 1729, 1347, 1189, 1157, 1015, 935, 758, 687 cm⁻¹; HRMS (ESI) for C₂₁H₂₀NO₄S (M+H)⁺: calcd 382.1113, found 382.1110.

(*E*)-1-(N-Allyl-4-methylphenylsulfonamido)-2-phenylvinyl 3-phenylpropiolate (6b):

Following the general procedure GP–4, compound **6b** (125 mg) was obtained in 91% yield as pale yellow solid; mp = 141–143 °C; R_f = 0.40 (3:2 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (600 MHz, CDCl₃): δ 7.85 (d, J = 6.6 Hz, 2H), 7.62–7.56 (m, 4H), 7.54–7.50 (m, 1H), 7.45–7.41 (m, 2H), 7.38–7.34 (m, 2H),

7.32–7.26 (m, 3H), 6.52 (s, 1H), 5.70–5.60 (m, 1H), 5.10 (dd, J = 16.8, 0.6 Hz, 1H), 5.03 (d, J = 9.6 Hz, 1H), 3.95 (d, J = 7.2 Hz, 2H), 2.33 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 151.2, 144.0, 137.3, 136.3, 133.1, 131.7, 131.5, 131.2, 129.63, 129.56, 129.47, 129.40, 128.9, 128.8, 128.7, 128.5, 128.2, 122.3, 119.1, 89.0, 79.7, 52.4, 21.5; IR (Neat) v_{max} 1704, 1337, 1159, 1121, 1055, 811, 752, 589 cm⁻¹; HRMS (ESI) for C₂₇H₂₃NNaO₄S (M+Na)⁺: calcd 480.1245, found 480.1246.

(*E*)-1-(4-methyl-N-(3-methylbut-2-en-1-yl)phenylsulfonamido)-2-phenylvinyl 3phenylpropiolate (6c):

Following the general procedure GP–4, compound **6c** (127 mg) was obtained in 87% yield as colorless solid; mp = 140–142 °C; $R_f = 0.43$ (3:2 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (500 MHz, CDCl₃): δ 7.84 (d, J = 8.5 Hz, 2H), 7.62–7.54 (m, 4H), 7.53–7.48 (m, 1H), 7.45–7.40 (m, 2H), 7.37–7.32 (m, 2H), 7.31–7.24 (m, 3H), 6.51 (s, 1H), 5.10–4.90 (m, 1H), 3.96 (d, J = 7.5 Hz, 2H), 2.32 (s, 3H), 1.50 (s, 3H), 1.49 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 151.2, 143.8, 138.4, 137.6, 136.5, 133.1, 132.1, 131.1, 129.4, 128.9, 128.7, 128.4, 128.2, 122.5, 119.2, 117.5, 88.9, 79.8, 47.2, 25.6, 21.5, 17.7; IR (Neat) v_{max} 1753, 1490, 1397, 1221, 1198, 1030, 756, 691 cm⁻¹; HRMS (ESI) for C₂₉H₂₈NO₄S (M+H)⁺: calcd 486.1739, found 486.1738.

(*E*)-1-(4-methyl-N-(4-phenylbut-3-yn-1-yl)phenylsulfonamido)-2-phenylvinyl 3phenylpropiolate (6d):

Following the general procedure GP–4, compound **6d** (153 mg) was obtained in 93% yield as colorless solid; mp = 136–138 °C; R_f = 0.49 (3:2 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (500 MHz, CDCl₃): δ 7.93 (d, J = 7.0 Hz, 2H), 7.68 (bd, J = 3.0 Hz, 2H), 7.59 (d, J = 7.5 Hz, 2H), 7.54 (t,

J = 7.5 Hz, 1H), 7.45 (t, J = 7.5 Hz, 2H), 7.40–7.22 (m, 10H), 6.62 (s, 1H), 3.59 (s, 2H), 2.65 (s, 2H), 2.32 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 151.4, 144.2, 136.6, 136.0, 133.1, 131.6, 131.5, 131.2, 129.6, 129.0, 128.8, 128.7, 128.6, 128.2, 128.1, 127.8, 123.6, 123.2, 119.0, 89.3, 85.9, 82.3, 79.6, 48.0, 21.4, 19.3; IR (Neat) v_{max} 1721, 1358, 1144, 1103, 1012, 755, 684 cm⁻¹; HRMS (ESI) for C₃₄H₂₈NO₄S (M+H)⁺: calcd 546.1739, found 546.1739.

(*E*)-1-(4-Methyl-N-(4-(pyrazin-2-yl)but-3-yn-1-yl)phenylsulfonamido)-2-phenylvinyl 3-phenylpropiolate (6e):

Following the general procedure GP–4, compound **6e** (153 mg) was obtained in 93% yield as colorless solid; mp = 149–151 °C; R_f = 0.32 (3:2 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃): δ 8.54–8.39 (m, 3H), 7.88 (d, *J* = 8.0 Hz, 2H), 7.68–7.27 (m, 12H), 6.58

(s, 1H), 3.57 (t, J = 6.8 Hz, 2H), 2.67 (t, J = 7.2 Hz, 2H), 2.30 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 151.4, 147.6, 144.3, 144.1, 142.7, 140.0, 136.5, 135.7, 133.1, 131.28, 131.25, 129.7, 129.0, 128.9, 128.7, 128.6, 128.2, 123.8, 118.9, 90.9, 89.4, 79.5, 79.1, 47.5, 21.5, 19.4; IR (Neat) v_{max} 2220, 1731, 1353, 1142, 1086, 1013, 687, 544 cm⁻¹; HRMS (ESI) for C₃₂H₂₆N₃O₄S (M+H)⁺: calcd 548.1644, found 548.1648.

(*E*)-1-(4-methyl-N-(4-phenylbut-3-yn-1-yl)phenylsulfonamido)-2-phenylvinyl 3-(thiophen-2-yl)propiolate(6f):

Following the general procedure GP–4, compound **6f** (141 mg) was obtained in 85% yield as colorless solid; mp = 138–140 °C; R_f = 0.38 (3:2 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (500 MHz, CDCl₃): δ 7.92 (d, J = 8.5 Hz, 2H), 7.69 (d, J = 7.5 Hz, 2H), 7.55 (dd, J = 16.0, 5.0 Hz,

2H), 7.40–7.25 (m, 10H), 7.12 (t, J = 4.5 Hz, 1H), 6.62 (s, 1H), 3.59 (t, J = 7.5 Hz, 2H), 2.64 (t, J = 7.5 Hz, 2H), 2.33 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 151.2, 144.2, 137.2, 136.4, 135.8, 132.1, 131.5, 131.3, 129.6, 128.9, 128.7, 128.5, 128.1, 128.0, 127.8, 123.6, 123.1, 118.6, 85.8, 83.9, 83.4, 82.2, 47.9, 21.4, 19.2; IR (Neat) ν_{max} 1739, 1491, 1324, 1154, 1089, 1047, 814, 717, 663 cm⁻¹; HRMS (ESI) for C₃₂H₂₅NNaO₄S₂ (M+Na)⁺: calcd 574.1123, found574.1113.

(E)-1-(N,4-Dimethylphenylsulfonamido)-2-phenylvinyl 3-phenylpropiolate (6g):

Following the general procedure GP–3, compound **6g** (109 mg) was obtained in 96% yield as colorless solid; mp = 120–122 °C; $R_f = 0.4$ (3:2 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (600 MHz, CDCl₃): δ 7.79 (d, J = 8.4 Hz, 2H),

7.52 (d, J = 7.8 Hz, 2H), 7.36 (t, J = 7.8 Hz, 2H), 7.33–7.28 (m, 3H), 6.31 (s, 1H), 3.03 (s, 1H), 2.99 (s, 3H), 2.43 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 150.5, 144.2, 139.0, 135.4, 131.2, 129.8, 128.7, 128.6, 127.8, 120.3, 77.4, 73.6, 36.3, 21.6; IR (Neat) v_{max} 1730, 1349, 1320, 1158, 1105, 1012, 849, 682 cm⁻¹; HRMS (ESI) for C₁₉H₁₇NNaO₄S (M+Na)⁺: calcd 378.0776, found378.0779.

(E)-1-(N-Methyl-4-nitrophenylsulfonamido)-2-phenylvinyl propiolate (6h):

Following the general procedure GP–3, compound **6h** (112 mg) was obtained in 96% yield as colorless solid; mp = 132–134 °C; $R_f = 0.38$ (3:2 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (600 MHz, CDCl₃): δ 8.33 (d, J = 8.4 Hz, 2H), 8.07 (d, J = 8.4 Hz, 2H), 7.48 (d, J = 7.2 Hz, 2H), 7.37 (t, J = 6.6 Hz, 2H), 7.33 (d, J = 7.2 Hz, 1H), 6.38 (s, 1H), 3.08 (s, 3H), 3.07 (s, 1H); ¹³C

NMR (151 MHz, CDCl₃) δ 150.3, 150.1, 144.0, 137.9, 130.7, 129.1, 128.8, 128.5, 124.3, 121.3, 78.1, 73.1, 36.6; IR (Neat) v_{max} 1742, 1693, 1527, 1347, 1308, 1104, 1080, 1014, 854, 683, 605 cm⁻¹; HRMS (ESI) for C₁₈H₁₅N₂O₆S (M+H)⁺: calcd 387.0651, found 387.0647.

(E)-2-(4-Chlorophenyl)-1-(N,4-dimethylphenylsulfonamido)vinyl propiolate (6i):

Following the general procedure GP–3, compound **6i** (108 mg) was obtained in 93% yield as colorless solid; mp = 122–124 °C; $R_f = 0.4$ (3:2 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (600 MHz, CDCl₃): δ 7.78 (d, J = 8.4 Hz, 2H), 7.46

(d, J = 8.4 Hz, 2H), 7.35–7.29 (m, 4H), 6.27 (s, 1H), 3.02 (s, 1H), 2.98 (s, 3H), 2.44 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 150.4, 144.3, 139.4, 135.2, 134.5, 129.84, 129.80, 128.94, 127.86, 119.4, 77.5, 73.5, 36.2, 21.6; IR (Neat) v_{max} 2912, 1713, 1570, 1445, 1337, 1235, 1162, 888, 694 cm⁻¹; HRMS (ESI) for C₁₉H₁₆ClNNaO₄S (M+Na)⁺: calcd 412.0386, found 412.0381.

(*E*)-2-([1,1'-Biphenyl]-4-yl)-1-(N,4-dimethylphenylsulfonamido)vinyl 3-phenylpropiolate (6j):

Following the general procedure GP–4, compound **6j** (143 mg) was obtained in 94% yield as colorless solid; mp = 124–126 °C; $R_f = 0.48$ (3:2 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (600 MHz, CDCl₃): δ 7.85 (d, J = 7.2 Hz, 2H), 7.67–7.58 (m, 8H), 7.53 (bt, J = 7.2 Hz, 1H), 7.49–7.42 (m,

4H), 7.37 (bt, J = 7.2 Hz, 1H), 7.29–7.24 (m, 1H), 6.38 (s, 1H), 3.10 (s, 3H), 2.30 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 151.8, 144.0, 141.2, 140.3, 139.3, 135.6, 133.1, 131.3, 130.4, 129.7, 129.1, 128.83, 128.77, 127.9, 127.6, 127.3, 127.0, 119.7, 119.0, 89.2, 79.6, 36.6, 21.5; IR (Neat) v_{max} 1709, 1594, 1349, 1159, 1085, 1017, 813, 692, 582 cm⁻¹; HRMS (ESI) for C₃₁H₂₅NNaO₄S (M+Na)⁺: calcd 530.1402, found 530.1407.

(*E*)-2-(4-Chlorophenyl)-1-(N,4-dimethylphenylsulfonamido)vinyl 3-phenylpropiolate (6k):

Following the general procedure GP–4, compound **6k** (130 mg) was obtained in 93% yield as colorless solid; mp = 128–130 °C; $R_f = 0.43$ (3:2 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (600 MHz, CDCl₃): δ 7.82 (d, J = 8.4 Hz, 2H), 7.58 (d, J = 7.2 Hz, 2H), 7.55–7.48 (m, 3H), 7.44 (t, J = 7.8

Hz, 2H), 7.36–7.33 (m, 2H), 7.27 (d, J = 8.4 Hz, 2H), 6.30 (s, 1H), 3.03 (s, 3H), 2.31 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 151.7, 144.2, 139.7, 135.4, 134.4, 133.2, 131.3, 130.0, 129.9, 129.7, 128.9, 128.8, 127.9, 118.9, 89.4, 79.4, 36.4, 21.5; IR (Neat) v_{max} 1727, 1355, 1157, 1111, 1086, 812, 750, 653 588 cm⁻¹; HRMS (ESI) for C₂₅H₂₀ClNNaO₄S (M+Na)⁺: calcd 488.0699, found 488.0694.

(*E*)-2-(4-Acetylphenyl)-1-(N-benzyl-4-methylphenylsulfonamido)vinyl 3-phenylpropiolate (6l):

Following the general procedure GP–4, compound **61** (155 mg) was obtained in 92% yield as colorless solid; mp = 130–132 °C; $R_f = 0.4$ (3:2 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (600 MHz, CDCl₃): δ 7.83 (d, J = 7.8 Hz, 2H), 7.79 (d, J = 8.4 Hz, 2H), 7.61–7.50 (m, 3H), 7.46–7.37 (m,

4H), 7.29 (d, J = 7.8 Hz, 2H), 7.17–7.06 (m, 5H), 6.51 (s, 1H), 4.40 (s, 2H), 2.59 (s, 3H), 2.35 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 197.6, 150.9, 144.2, 138.3,136.6, 136.3, 135.9, 133.6, 133.1, 131.3, 129.7, 129.6, 128.80, 128.75, 128.3, 128.2, 128.1, 122.4, 119.0, 89.5, 79.5, 52.6, 26.6, 21.5; IR (Neat) v_{max} 2219, 1728, 1701, 1348, 1161, 1103, 1044, 810, 709, 683cm⁻¹; HRMS (ESI) for C₃₃H₂₇NNaO₅S (M+Na)⁺: calcd 572.1508, found 572.1506.

(*E*)-1-(N-Benzyl-4-methylphenylsulfonamido)-2-(thiophen-3-yl)vinyl 3-phenylpropiolate (6m):

Following the general procedure GP–4, compound **6m** (134 mg) was obtained in 87% yield as colorless solid; mp = 131–133 °C; $R_f = 0.36$ (3:2 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (600 MHz, CDCl₃): δ 7.87 (d, J = 8.4 Hz, 2H), 7.58–7.48 (m, 3H), 7.43 (t, J = 7.8 Hz, 2H), 7.36–7.28 (m, 3H),

7.23–7.09 (m, 7H), 6.54 (s, 1H), 4.44 (s, 2H), 2.36 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 151.0, 144.0, 136.0, 133.9, 133.1, 132.5, 131.2, 129.6, 128.7, 128.3, 128.1, 127.7, 126.0, 125.1, 119.1, 118.8, 89.0, 79.6, 52.4, 21.5; IR (Neat) ν_{max} 2226, 1717, 1350, 1277, 1165, 1150, 1106, 1077, 785, 685, 661 cm⁻¹; HRMS (ESI) for C₂₉H₂₃NNaO₄S₂ (M+Na)⁺: calcd 536.0966, found 536.0960.

(*E*)-1-(2-Oxooxazolidin-3-yl)-2-phenylvinyl 3-phenylpropiolate (6n):

Following the general procedure GP–4, compound **6n** (106 mg) was obtained in 94% yield as pale yellow solid; mp = 126–128 °C; $R_f = 0.42$ (3:2 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (600 MHz, CDCl₃): δ 7.63 (dd, J = 8.4, 2.4 Hz, 2H), 7.53–7.46 (m, 1H), 7.44–7.29 (m, 7H), 6.42 (s, 1H),

4.43–4.35 (m, 2H), 3.80–3.70 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 155.4, 152.0, 136.6, 133.3, 131.6, 131.2, 128.8, 128.7, 128.5, 128.2, 118.9, 117.4, 89.8, 79.5, 63.2, 44.3; IR (Neat)*v*_{max} 2228,

1724, 1667, 1605, 1349, 1285, 1090, 1052, 653, 543 cm⁻¹; HRMS (ESI) for $C_{20}H_{15}NNaO_4S$ (M+Na)⁺: calcd 356.0899, found 356.0896.

Au(I)-Catalyzed Spiro-Heterobicyclization; synthesis of 7 /8: General Procedure 5

General Procedure 5A: A solution of $[Au(PPh_3)]SbF_6$ in 1,2-DCE was prepared as following: AuCl(PPh_3) (3 mol%) was dissolved in 1,2-DCE (3 mL). The solution was treated with AgSbF_6 (5 mol%) and stirred for 10 min. AgCl precipitation formed gradually and the supernatant was used for the following reactions.

General Procedure 5B: To a solution of 3a/4l (1 equiv.) in 1,2-DCE was added water (2.5 equiv.) followed by [Au(PPh₃)]SbF₆ (3 mol%) (obtained from general procedure 5A). The resulting mixture was left to stir at 60 °C. The reaction mixture was monitored until TLC analysis indicated consumption of the starting material. The solution was filtered through a silica gel plug (1:1 hexanes:EtOAc), and the filtrate concentrated. The resulting residue was purified by flash column chromatography to afford the desired cyclized product 7/8.

(5S,Z)-2-benzylidene-8-methylene-9-phenyl-4-tosyl-1,6-dioxa-4-azaspiro[4.4]nonan-7-one (7):

Compound **7** (94 mg, 47%) was obtained as colorless crystalline solid. Mp = 158–162 °C; R_f = 0.43 (3:2 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃): 7.84 (d, *J* = 8.4 Hz, 2H), 7.43–7.39 (m, 3H), 7.33–7.26

(m, 4H), 7.21–7.16 (m, 2H), 7.14–7.09 (m, 1H), 7.08–7.03 (m, 2H), 6.62 (d, J = 3.6 Hz, 1H), 5.70 (d, J = 3.2 Hz, 1H), 5.57 (t, J = 3.4 Hz, 1H), 5.14 (s, 1H), 4.27 (dd, J = 12.4, 1.2 Hz, 1H), 4.10 (dd, J = 12.4, 2 Hz, 1H), 2.47 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 165.8, 145.3, 143.6, 136.5, 133.4, 133.3, 133.1, 130.2, 129.9, 128.8, 128.6, 128.4, 128.0, 127.8, 126.4, 125.3, 117.6, 101.0, 54.0, 49.4, 29.7, 21.6; IR (Neat) v_{max} 1723, 1597, 1503, 1151, 1052, 832, 613 cm⁻¹; HRMS (ESI) for C₂₇H₂₄NO₅S (M+H)⁺: calcd 474.1370, found 474.1334.

(5S,Z)-2-(4-fluorobenzylidene)-9,10-diphenyl-4-tosyl-1,6-dioxa-4-azaspiro[4.5]dec-8-en-7one (8):

Compound **8** (113 mg, 54%) was obtained as colorless crystalline solid. Mp = 146-150 °C; R_f = 0.48 (3:2 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (500 MHz, CDCl₃): 7.91 (d, *J* = 8.5, 2H), 7.41 (d, *J* = 8.0, 2H), 7.31–7.28 (m, 2H), 7.27–7.23 (m, 5H), 7.22–7.18 (m, 2H), 7.15–7.05 (m,

3H), 6.95 (br t, J = 8.8, 2H), 6.51 (d, J = 2.0, 1H), 5.79 (d, J = 2.5, 1H), 5.04 (s, 1H), 4.11 (dd, J = 12.5, 1.5 Hz, 1H), 3.96 (dd, J = 12.5, 1.0 Hz, 1H), 2.48 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 160.1 (d, J = 291 Hz, 1C), 145.1, 143.9 (d, J = 9.05 Hz, 1C), 136.2, 134.1, 133.4, 131.5, 129.8, 129.7, 129.23, 129.17, 128.9, 128.5, 128.0, 127.6, 127.4, 127.1, 116.5, 116.4, 115.1 (d, J = 85.1 Hz, 1C), 99.4, 51.0, 49.3, 21.6; ¹⁹F NMR (376 MHz, CDCl₃) δ –110.48; IR (Neat) ν_{max} 1731, 1504, 1360, 1107, 743, 724, 633 cm⁻¹; HRMS (ESI) for C₃₃H₂₇FNO₅S (M+H)⁺: calcd 568.1594, found 568.1594.

X-ray crystallography:

1. Single crystal X-ray data for the compound **3g** were collected using the 'Bruker D8 VENTURE Photon III detector' system [Mo-K α fine focus sealed tube λ = 0.71073 Å] at 296K, 298K, and 294K graphite monochromator with a ω scan. Data reduction was performed using Bruker SAINT software. Intensities for absorption were corrected using SADABS 2014/5.Structure solution and refinement were carried out using Bruker SHELX-TL.

Figure	S1 .	Molecular	structure	of	compound	3g	(Oxygen	(red),	nitrogen	(blue),	and	sulphur
(yellow)											

Compound	3g
formula	$C_{24}H_{21}NO_4S$
Formula weight	419.50
crystal system	Monoclinic
space group	P 1 21/n 1
T [K]	293 K
a [Å]	8.2335(3)
b [Å]	18.3922(8)
c [Å]	14.6378(6)
α [°]	90
β [°]	104.229(1)
γ [^o]	90
V [Å ³]	2148.63(15)
Z	4

$\rho_{calcd} [\mathrm{g \ cm^{-3}}]$	1.297
μ [mm ⁻¹]	0.181
total reflns	5329
unique reflns	5318
observed	3710
$R_1[I>2\sigma(I)]$	0.0476
wR2 [all]	0.1404
GOF	1.056
Diffractometer	Bruker D8 VENTURE
	Photon IIIdetector
CCDC Number	2120261

Table S2. Crystallographic data for compound 3g

2. Single crystal X-ray data for the compound **6b** were collected using the 'Bruker D8 VENTURE Photon III detector' system [Mo-K α fine focus sealed tube λ = 0.71073 Å] at 296K, 298K, and 294K graphite monochromator with a ω scan. Data reduction was performed using Bruker SAINT software. Intensities for absorption were corrected using SADABS 2014/5.Structure solution and refinement were carried out using Bruker SHELX-TL.

Figure S2. Molecular structure of compound 6b (Oxygen (red), nitrogen (blue), and sulphur (yellow)

Compound	6b
formula	C ₂₇ H ₂₃ NO ₄ S
Formula weight	457.52
crystal system	Orthorhombic
space group	P 21 21 21
T [K]	296 K
a [Å]	8.793(3)
b [Å]	15.899(5)
c [Å]	17.594(6)
α [°]	90
β [°]	90
γ [^o]	90
V[Å ³]	2459.6(14)
Z	4
$ ho_{calcd} [g \text{ cm}^{-3}]$	1.236

μ [mm ⁻¹]	0.164
total reflns	6130
unique reflns	6113
observed	3288
$R_1[I > 2\sigma(I)]$	0.0462
wR2 [all]	0.1349
GOF	1.007
Diffractometer	Bruker D8 VENTURE
	Photon IIIdetector
CCDC Number	2120262

Table S3. Crystallographic data for compound 6b

Hirshfeld Surface Analysis³

The Hirshfeld surface images (Fig. 1a & Fig. 1b) in which, the red spots signify the high contact populations, while blue and white spots are for low contact populations. This suggests that the negative (red) or positive value (blue and white) of d_{norm} depends on the intermolecular contacts being shorter (red) or longer (blue and white) than the van der Waals separations. For each point on the Hirshfeld surface, the normalized contact distance (d_{norm}) was determined by the equation as shown below.

$$[d_{norm} = (d_i - d_i^{vdW})/r_i^{vdW} + (d_e - d_e^{vdW}/r_e^{vdW}]$$

In which d_i is measured from the surface to the nearest atom interior to the surface interior, while d_e is measured from the surface to the nearest atom exterior to the surface interior, where r_i^{vdW} and r_e^{vdW} are the van der Waals radii of the atoms. Hirshfeld surface graphs and two-dimensional

fingerprint plots of **3g** and **6b** (Fig. S3 & Fig. S4) were analyzed using Crystalexplorer 17.5 software.

Figure S3: Hirshfeld surface calculations and 2D-fingerprint plots of compounds 3g

Hirshfeld surface analysis indicated that H^{...}H, H^{...}C and H^{...}O bond interactions are the primary contributors to the intermolecular stabilization in the crystal. The Hirshfeld surface and subsequent fingerprint plots were calculated for **3g** and **6b** individually, to quantify the intermolecular contacts present within the crystal structures of these compounds (Fig. S3 & Fig. S4). The X-ray single-crystal crystallographic information file of **3g** and **6b** were used as input files.

Significant intermolecular interactions are mapped in Fig. S3 & Fig. S4. On the Hirshfeld surfaces the H...H interactions appear as the largest region 40.7% for **3g** (Fig. S3) and 46.1% for **6b** (Fig. S4) of the fingerprint plot. Two sharp spikes on the fingerprint plot were observed for the O···H/H···O contacts, corresponding to the C···H···O interactions. These spikes are indicative of a strong hydrogen-bond interaction. The C···H/H···C contacts contribute to 29.0% for **3a** (Fig. S3) and 31.13% for **6b** (Fig. S4) of the Hirshfeld surface area.

All other contacts observed were found to contribute less than 6.7% (**3g**) and 1.2% (**6b**). It is therefore clear that the C···H/H···C, O···H/H···O and especially H···H contacts, were the most significant contributors among the interacting atoms. This finding therefore indicates the significance of these contacts in the packing arrangement of the crystal structure. Based on these findings a detailed model was constructed showing the most prominent short range intermolecular contacts that are responsible for the packing arrangement and formation of the three-dimensional network structure of **3g** and **6b** respectively (Fig. S3 & Fig. S4). 2-D column graphs (i) and (r) for **3g** and **6b** show the percentage contributions of the individual atomic contacts to the Hirshfeld surface.

Figure S4: Hirshfeld surface calculations and 2D-fingerprint plots of compounds 6b.

References

(1) (a) S. Dutta, R. K. Mallick, R. Prasad, V. Gandon, and A. K. Sahoo, *Angew. Chem. Int. Ed.*, 2019, **58**, 2289 –2294; (b) B. Prabagar, S. Nayak, R. K. Mallick, R. Prasad and A. K. Sahoo, *Org. Chem. Front.*, 2016, **3**, 110-115.

(2) (a) Hyun-Suk Yeom, Jaeyoung Koo, Hyun-Sub Park, Yi Wang, Yong Liang, Zhi-Xiang Yu, and Seunghoon Shin, *J. Am. Chem. Soc.*, 2012, **134**, 208–211; (b) Xia, Xiao-Feng; Zhao, Mingming; He, Wei; Zou, Lianghua; San, Xinxin; Wang, Dawei, *Advanced Synthesis & Catalysis*, 2020 **362**, 3621-3626.

(3) (a) M. A. Spackman, J. J. McKinnon, *CrystEngComm.*, 2002, 4, 378–392; (b) M. A. Spackman, D. Jayatilake, Hirshfeld surface analysis, *CrystEngComm.* 2009, 11, 19–32; (c) C. Zhang, X. Xue, Y. Cao, Y. Zhou, H. Li, J. Zhou, T. Gao, Intermolecular friction symbol derived from crystal information, *CrystEngComm.* 2013, 15, 6837–6844; (d) M.J. Turner, J.J. McKinnon, S.K. Wolff, D.J. Grimwood, P.R. Spackman, D. Jayatilaka, M.A. Spackman, Crystal Explorer 17; University of Western Australia: Pert, Australia, 2017.

S35

S3€

1	0	-20	-40	-60	-80	-100	-120	-140	-160	-180	-200 ppm
						ĸ				FZ - Prod SI SF WDW SSB LB GB PC	ressing parameters 65536 470.6394242 MHz EM 0 0.30 Hz 0 1.00
Ĺ					*					NUC1 P1 PLW1 SF02 NUC2 CPDPRG[2 PCPD2 PLW2 PLW12	470.5923503 MHz 19F 12.00 usec 36.12599945 W 500.1820007 MHz 1H waltz16 80.00 usec 4.84679985 W 0.17039999 W
0		CF ₃								SWH FIDRES AQ RG DW DE TE D1 D11 D12 TD0 SEC0	113636.367 Hz 1.733953 Hz 0.5767168 sec 456 4.400 usec 6.50 usec 298.1 K 1.0000000 sec 0.0300000 sec 0.0002200 sec 1 100 502002 Wi
			1	. 1						F2 - Acq Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS	uisition Parameters 20210915 10.03 h spect 2109128_0042 (zgfhigqn.2 131072 CDC13 16 4
				- 62						NAME EXPNO PROCNO	K SURESH UPDATED 500 142 1

X : parts per Million : Proton

85.445 82.793 77.211 77.000 76.789 76.703 73.859

40.329

21.486

9.642 9.613 7.248

V

S∰0

S§9

S5€

S6⊉

7.633 7.619 7.512 7.296 7.296 7.228 7.228 7.228 7.250 7.228 7.228 7.232 7.252 7.232 7.2522 7.232

. J J J 1 L 1 1 1 6 L 1 L ι L

Current I	Data Pa	ram	eters	
EXPNO	K SUP	esn	126	1 500
PROCNO			120	
				-
Date	uisicio	202	10728	ers
Time			15.21	h
INSTRUM			spect	
PROBHD	Z1194	70_0	291 (
PULPROG	ZQ	fhi	gqn.2	
TD		1	31072	
SOLVENI			32	
DS			4	
SWH	11	1363	6.367	Hz
FIDRES		1.7	33953	Hz
AQ).57	67168	sec
RG			1.96	
DE			6.50	usec
TE			298.6	K
D1	1	.000	00000	sec
D11	0	.030	00000	sec
D12	0	.000	02000	sec
TD0			1	
SFOI	4 / ().//	105	MHZ
P1			15.00	usec
PLW1	45	846	00067	W
SFO2	500	0.37	10015	MHz
NUC2			1H	
CPDPRG[2		wa	1tz16	
PCPD2 PTW2	23	231	00090	usec w
PLW12	0	362	98999	W
FZ - Pro	cessing	g pa	ramete 65536	ers
SF	470	0.81	72619	MHz
WDW			EM	
SSB			0	
LB			0.30	Hz
GB			1 00	
PC			1.00	

										PC.	1.00
			Sa		ST 2				8		
the balance timber of the large	terresplate a territoria a dere an Arentha	haddongstah garaganta dia mangatan kan	hadeline of the city freed the server and a free of gold	na an An Alban and present and a field process of a shifter of	Althouse and a second second defendence in the second second second second second second second second second s	later and the state of the second	and an office many and an instrumentations at a	tendertelle telse entrettille de flyppent	inside at the the billion of the the stand	-togethe dedent of the environment of the bit respectively to	electric for the second state of the
and a grant and a set	alian tantan jalin (Alamin'n alian 1977)	ine and an film in the second state	Letherals and addingtradge phone it	er fil fil wal papeloup practical and supervision	an la fan de	ng n	and and so in the second s	الحبيا فيعتبه ويستر ويحتون فالفلا وفالمطرب مربا	and a free second a standard and a standard a	en and friedered in the product of the factor of the second second second second second second second second s	and the state of the
										,	
	1 .	1 '	1				1	' 1	' 1		
	0	-20	-40	-60	-80	-100	-120	-140	-160	-180	ppm

S72∄

S7€

64

S8€

-62.96 Current Data Parameters NAME K SURESH UPDATED 500 EXPNO 143 PROCNO 1
 F2 - Acquisition Parameters

 Date_
 20210915

 Time
 10.07 h

 INSTRUM
 spect

 PROBHD
 2109128_0042 (

 PULPROG
 zgfhigqn.2

 TD
 131072

 SOLVENT
 CDC13

 NS
 16
PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE TE D1 D11 D11 D12 TD0 SF01 NUC1 Ph 16 4 113636.367 Hz 1.733953 Hz 0.5767168 sec 4.50 usec 298.1 K 1.00000000 sec 0.0300000 sec 1 ∥ H、 Ph `O CF Ťs 4i 1 470.5923603 MHz 19F 36.12599945 W 500.1820007 MHz 1H waltz16 80.00 usec 4.84679985 W 0.17039999 W P1 PLW1 PLW1 SFO2 NUC2 CPDPRG[2 PCPD2 PLW2 PLW12
 F2
 Processing parameters

 SI
 65536

 SF
 470.6394242
 MHz

 WDW
 EM
 0

 SSB
 0
 LB
 0.30 Hz

 GB
 0
 PC
 1.00
. . . -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 ppm

17

S9€

62.94

Current Da	ita Parameters
NAME P	Suresh Ascend 500
EXPNO	125
PROCNO	1
F2 - Acqui	sition Parameters
Date_	20210728
Time	15.15 h
INSTRUM	spect
PROBHD 2	(119470_0291
PULPROG	zgfhigqn.2
TD	131072
SOLVENT	CDC13
NS	32
DS	4
SWH	113636.367 Hz
FIDRES	1.733953 Hz
AQ	0.5767168 sec
RG	7.96
DW	4.400 usec
DE	6.50 usec
TE	298.6 K
DI	1.00000000 sec
DII	0.03000000 sec
DIZ	0.00002000 sec
1DU SEO1	470 7701802 MU-
NUCL	470.7701802 MHZ
D1	15 00 0000
DIWI	45 R4600067 W
SFO2	500 3710015 MH*
NUC2	14
CPDPRG[2	waltz16
PCPD2	80.00 usec
PLW2	23.23100090 W
PLW12	0.36298999 W
F2 - Proce	ssing parameters
SI	65536
SF	470.8172619 MHz
WDW	EM
SSB	0
LB	0.30 Hz
GB	0
PC	1.00

ng talan dalam tang tang tang talan tang separah talan tang seri Kandapan bertapat penakan tahun talan tahun t	nan kala mangsili fanyasikan di pangsilan sina di pangsilan sa falansa kanan k Manga Kananya Kanana kalang ng kalan dipang ng kanan dipang ng mana kana kang p	energenen en stanligen en der seiner einer het. En seiner eine stanligen einer stanlige für den seiner einstellte ges	fernergen generalen for gesche begrechten gesche bei einen soch soch einen gesche bei einen gesche bei eine bei Begrechten gesche bereiten sich der gesche gesche beiten forste beiten forste beiten gesche beiten forste beiten	h bi kan na kana kana kana kana kana kana k	aaraa ahaa ahaa hahaa ahaa ahaa ahaa ah	allen skip provinser i legen fjelst store allen er dra store en gelans De ekster en server top og en gref at de jens beget te dere provinser to de De ekster	hasing berkengan ang fisikana kawang bahayan ang bahayan ang bahayan ang bahayan ang bahayan ang bahayan ang ba Ing kana kang ang bahayan a	rtterte forganderte er forger formaler gift alle bei bereitige en erforste begen form i tertig terforster finnen sterkiger	ารการสารารการการการการการการการการการการการการ	na shiri, atiyaya talaan daga da ahar Yariyayaya tiyana di sana yaayaa yaa
0	-20	-40	-60	-80	100	120	140	160	100	1
	-20	-40	-00	-00	-100	-120	-140	-160	-180	ppr

SS19080

SS19091

S10€

national and a second	Inthe headers and an	apont low house which and the advantage of	i i na serie de la compansión de la compan -	
		80 7 0 60 5 0	40 30 20	10 0 ppm
170 160 150 140	130 120 110 100 50			

80021 7 0 0 7 M 77 77 76 76 (1)) L

00 Ч. 52

-21.56

X : parts per Million : Proton

vs-78-94_Carbon-1-3.jdf	13.975 13.975 13.975 13.975 13.975 13.1729 13.174 13.174 13.174 13.174 13.174 13.174 13.174 129.556 129.632 129.632 129.632 129.632 129.556 129.700 77.211 77.000 76.780 71.28.357 128.235 128.235 128.235 128.235 128.235 79.7000 76.780 71.100 71.14 72.383 52.383 52.383	Filename Author Experiment Sample_Id Solvent Actual_Start_Time Revision_Time	<pre>= vs-78-94_Carbon-1- = delta = carbon_auto.jxp = vs-78-94 = CHLOROFORM-D = 11-FEB-2021 17:03: = 17-FEB-2021 01:17:</pre>
Ph H_Ph		Comment Data Format Dim_Size (Domain Dim_Title Dim_Units Dimensions Site Spectrometer	<pre>= single pulse decou = 1D COMPLEX = 26214 = Carbon13 = Carbon13 = [ppm] = X = ACRHEM_UOH = JNM-ECZ600R/M1</pre>
0 0 N 6b Ts		Field_Strength <_Acq_Duration <_Domain <_Freq <_Offset <_Points <_Prescans <_Resolution <_Sweep <_Sweep_Clipped <pre>frr Freq</pre>	<pre>= 14.09636928[T] (60 = 0.34603008[s] = Carbon13 = 150.91343039[MHz] = 100[ppm] = 16384 = 4 = 2.88992217[Hz] = 47.34848485[KHz] = 37.87878788[kHz] = Proton = 600.17230.6[MHz]</pre>
		Inc.inc. Inc.offset Blanking Dipped Scans Total_Scans Relaxation_Delay Recvr Gain Remp_Get K 90 Width	= 5 5 [pm] = 2 [us] = FALSE = 562 = 562 = 56 = 19.5 [dC] = 11 [us] = 0.24602000 [c]
		_rcd_lime [Angle [Angle [rr_Atn_Dec [rr_Atn_Dec_Calc [rr_Atn_Dec_Default_Calc [rr_Atn_Noe [rr_Dec_Bandwidth_Hz [rr_Dec_Bandwidth_Ppm [rr_Dec_Freq [rr_Dec_Merit_Factor	= 0.346350618] = 30(deg] = 10.3[dB] = 3.66666667[us] = 33.452[dB] = 33.452[dB] = 33.452[dB] = 7.23684211[kHz] = 12.05794078[ppm] = 600.1723046[MHz] = 2.2
		<pre>Irr_Decoupling Irr_Noe Irr_Offset_Default Irr_Pwidth Irr_Pwidth_Default_Calc Irr_Pwidth_Default_Calc Irr_Pwidth_Temp1 Irr_Wurst_ Decimation_Rate Experiment_Path Initial Wait</pre>	<pre>= TRUE = TRUE = WALTZ = 5[ppm] = 76[us] = 76[us] = 76[us] = 76[us] = FALSE = 0 = c:\Program Files\J</pre>
190.0 180.0 170.0 160.0 1	annahma-Harl/Y burch/Harsesurgenergenergenergenergenergenergenergen	Noe_Time Noe_Time_Flag Relaxation_Delay_Calc Relaxation_Delay_Temp	= 2[s] = FALSE = 0[s] = 2[s]

X : parts per Million : Proton

