Metal-Free Stereoselective Addition of Propiolic acids to Ynamides: A Concise Synthetic Route to Highly Substituted Ene-Diyne-(E)-N,OAcetals

Rangu Prasad, Suresh Kanikarapu, Shubham Dutta, SrinivasVangara, and Akhila K. Sahoo*

School of Chemistry, University of Hyderabad, Hyderabad 500046, India
E-mail: akhilchemistry12@gmail.com; akssc@uohyd.ac.in

SUPPORTING INFORMATION

Table of Contents Page
General Experimental Information S2
Materials S2
Experimental Procedures, Spectral and Analytical data S3-S26
X-ray crystallographic data S26-S29
Hirshfeld surface analysis S31-S33
References S34
NMR data S35-S144

General Experimental Information

All the reactions were performed in oven-dried round bottom (RB) flasks. Commercial grade solvents were distilled prior to use. Column chromatography was performed using either 100-200 Mesh or 230-400 Mesh silica gel or neutral alumina. Thin layer chromatography (TLC) was performed on silica gel GF254 plates and alumina plates.

Proton, carbon, and fluorine nuclear magnetic resonance spectra (${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and ${ }^{19} \mathrm{~F}$ NMR) were recorded based on the resonating frequencies as follows: $\left({ }^{1} \mathrm{H} \mathrm{NMR}, 400 \mathrm{MHz} ;{ }^{13} \mathrm{C}\right.$ NMR, $101 \mathrm{MHz} ;{ }^{19} \mathrm{~F}$ NMR, 376 MHz) and (${ }^{1} \mathrm{H}$ NMR, $500 \mathrm{MHz} ;{ }^{13} \mathrm{C}$ NMR, $126 \mathrm{MHz} ;{ }^{19} \mathrm{~F}$ NMR, 470 MHz) having the solvent resonance as internal standard (${ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}$ at $7.26 \mathrm{ppm} ;{ }^{13} \mathrm{C}$ $\mathrm{NMR}, \mathrm{CDCl}_{3}$ at 77.0 ppm). Few cases tetramethylsilane (TMS) at 0.00 ppm was used as reference standard. Data for ${ }^{1} \mathrm{H}$ NMR are reported as follows: chemical shift (ppm), multiplicity ($\mathrm{s}=$ singlet; $\mathrm{bs}=$ broad singlet; $\mathrm{d}=$ doublet; $\mathrm{dd}=$ doublet of doublet; $\mathrm{bd}=\mathrm{broad}$ doublet; $\mathrm{t}=$ triplet; $\mathrm{bt}=\mathrm{broad}$ triplet; $\mathrm{q}=$ quartet; $\mathrm{m}=$ multiplet; $\mathrm{tt}=$ triplet of triplet; $\mathrm{dq}=$ doublet of quartet), coupling constant, J, in (Hz), and integration. Data for ${ }^{13} \mathrm{C}$ NMR, ${ }^{19} \mathrm{~F}$ NMR were reported in terms of chemical shift (ppm). IR spectra were reported in cm^{-1}. High resolution mass spectra were obtained in ESI mode. Melting points were determined by electro-thermal heating and are uncorrected. X-ray data was collected at 293 K using graphite monochromated Mo-K α radiation ($0.71073 \AA$).

Materials: Unless otherwise noted, all the reagents and intermediates were obtained commercially and used without purification. 1,4-Dioxane, dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} ; \mathrm{DCM}\right)$, toluene, acetonitrile $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$, 1, 2-dichloroethane (DCE), and acetone were distilled over CaH_{2}. THF was freshly distilled over sodium/benzophenone ketyl under dry nitrogen. Propiolic acid was purchased from Sigma-Aldrich and used as received. Phenylpropiolic acid and 2-thiophenepropiolic acid were synthesized in our laboratory.

Experimental Procedures

Following the reported procedures, the ynamides ($\mathbf{1 a} \mathbf{- 1 z}, \mathbf{1 z a}-\mathbf{1 z e}$ and $\mathbf{5 a} \mathbf{- 5 I})^{1}$ were prepared (Table S1). Analytical and spectral data of these compounds are exactly matching with the reported values.

General Procedure (GP-1): ${ }^{1}$

$\mathrm{R}=$ alkyl, aryl, hetero aryl groups;
$\mathrm{R}^{1}=$ alkyl, aryl, allyl, propargyl, homo-propargyl groups

General Procedure for the Synthesis of Ynamide $1 \& 5$ (GP 1): ${ }^{\mathbf{1}}$

To a mixture of $\mathbf{1}^{\prime \prime} / \mathbf{5}^{\prime \prime}(2.0 \mathrm{mmol}), \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ (0.1 equiv), 1,10-phenanthroline (0.2 equiv) in dry toluene (8.0 mL), was added $\mathrm{K}_{3} \mathrm{PO}_{4}$ (2.0 equiv) portion wise. Subsequently, 1-bromo-2arylacetylene $\mathbf{1}^{\prime} / \mathbf{5}^{\prime}(2.4 \mathrm{mmol})$ was added. The reaction mixture was heated at $70{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. Progress of the reaction was monitored periodically by TLC. Upon completion, the reaction mixture was cooled to room temperature and diluted with dichloromethane (10 mL). The crude mixture was filtered through a small pad of Celite and concentrated under the reduced pressure. The crude residue was purified through column chromatography using ethyl acetate and hexane mixture on silica gel to provide $\mathbf{1 / 5}$.
General procedure for the preparation of propiolic acid derivates 2b, 2c (GP 2): ${ }^{\mathbf{2}}$

To a solution of aryl iodide (7.5 mmol), ethyl propiolate (5.0 mmol), and $\mathrm{K}_{2} \mathrm{CO}_{3}(15 \mathrm{mmol})$ in THF (30 mL) was added $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.02 \mathrm{mmol})$ and $\mathrm{CuI}(0.04 \mathrm{mmol})$. The resulting mixture was then heated under a nitrogen atmosphere at $60^{\circ} \mathrm{C}$ for 12 h . The reaction was monitored by TLC to establish the consumption of starting material. The mixture was then cooled to room
temperature, the solid was removed by filtration. The filtrate was diluted with EtOAc and washed with water.

The combined organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The resultant crude material was directly subjected to hydrolysis by subjecting to aqueous NaOH (1M, 3.0 equiv) in $\mathrm{MeOH}(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and then allowed to warm to rt and stirred overnight. The reaction mixture was acidified to $\mathrm{pH}=1$ by adding $\mathrm{HCl}(2 \mathrm{M})$ and then extracted with $\mathrm{DCM}(1 \times 10 \mathrm{~mL})$. The organic layer was separated and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and evaporated to yield the respective arylpropiolic acids.

Table S1: List of Ynamides

General procedure for the chemo-, regio-, and stereoselective hydropropioloxylation of ynamide 1 with terminal propiolic acid 2a (GP-3):

The ynamide $1(0.3 \mathrm{mmol})$ was taken in an RB flask and then propiolic acid $\mathbf{2 a}(0.36 \mathrm{mmol})$ was introduced drop wise. The reaction mixture was stirred at RT. The progress of the reaction was periodically monitored by TLC. After complete consumption of ynamide 1, the reaction mixture was diluted with EtOAc and neutralized with saturated NaHCO_{3} solution. The organic layer was
further extracted with $\mathrm{EtOAc}(10 \mathrm{~mL})$ and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of solvent under reduced pressure, the residue was purified by flash chromatography on silica gel (hexane/EtOAc) to afford the expected product 3 .
(E)-1-(4-methyl-N-(3-phenylprop-2-yn-1-yl)phenylsulfonamido)-2-phenylvinyl propiolate (3a):

Following the general procedure GP-3, compound $\mathbf{3 a}(134 \mathrm{mg})$ was obtained in 98% yield as colorless solid; $\mathrm{mp}=124-126{ }^{\circ} \mathrm{C} ; \quad R_{f}=0.49 \quad(3: 2$ hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.86$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.15(\mathrm{~m}, 5 \mathrm{H}), 7.08(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 2 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 2.93(\mathrm{~s}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $149.9,144.3,137.0,136.0,131.6,131.4,129.4,128.84,128.81,128.6,128.52,128.3,127.9,123.5$, 122.1, 86.0, 81.9, 77.3, 73.8, 39.8, 21.4.; IR (Neat) $v_{\max } 1724,1351,1264,1100,1052,732,701$ cm^{-1}; HRMS (ESI) for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{NNaO}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+}:$calcd 478.1089, found 478.1084.

(E)-1-(4-Methyl-N-(3-phenylprop-2-yn-1-yl)phenylsulfonamido)-2-(naphthalen-1-yl)vinyl propiolate (3b):

Following the general procedure GP-3, compound 3b (146 mg) was obtained in 96% yield as colorless solid; $\mathrm{mp}=126-128{ }^{\circ} \mathrm{C} ; R_{f}=0.51(3: 2$ hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.99-7.89 (m, 2H), 7.87-7.76 (m, 2H), 7.72 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.54-7.41 $(\mathrm{m}, 3 \mathrm{H}), 7.31-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.07(\mathrm{~m}, 3 \mathrm{H}), 7.03(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.33(\mathrm{~s}, 2 \mathrm{H}), 3.07(\mathrm{~s}$, $1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.0,143.9,138.8,135.7,133.3,131.6,131.4$, $129.2,128.8,128.5,128.4,128.3,128.0,126.6,126.4,126.0,125.5,124.2,122.1,121.1,85.9$, 82.1, 77.5, 73.8, 40.0, 21.4; IR (Neat) $v_{\max } 2128,1748,1351,1157,111.4,1046,685 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{NO}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$: calcd 506.1426, found 506.1423.
(E)-2-(3-Cyanophenyl)-1-(4-methyl-N-(3-phenylprop-2-yn-1-yl)phenylsulfonamido)vinyl propiolate (3c):

Following the general procedure GP-3, compound $\mathbf{3 c}(137 \mathrm{mg})$ was obtained in 93% yield as colorless solid; $\mathrm{mp}=129-131^{\circ} \mathrm{C} ; R_{f}=0.43(3: 2$ hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.88$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.40(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.17(\mathrm{~m}, 5 \mathrm{H}), 7.10(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 4.41(\mathrm{~s}$, $2 \mathrm{H}), 2.97(\mathrm{~s}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 149.5, 144.8, 138.5, 135.2, 133.1, $132.8,132.3,132.2,131.9,131.6,131.5,129.7,129.6,129.5,129.4,128.6,128.3,128.04,127.99$, $121.80,121.76,118.3,112.7,86.5,81.2,77.9,77.7,73.4,39.6,21.5$; IR (Neat) $v_{\max } 2227,1745$, 1509, 1349, 1272, 1159, 1099, 747, $625 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{28} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$: calcd 481.1222, found 481.1222.
(E)-1-(4-Methyl-N-(3-phenylprop-2-yn-1-yl)phenylsulfonamido)-2-(4(trifluoromethyl)phenyl)vinyl propiolate (3d):

Following the general procedure GP-3, compound 3d (151 mg) was obtained in 96% yield as colorless solid; $\mathrm{mp}=121-123{ }^{\circ} \mathrm{C} ; R_{f}=0.46(3: 2$ hexane/EtOAc); [Silica, UV and $\left.\mathrm{I}_{2}\right] ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.79$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.24$ $(\mathrm{m}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.08(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 2.97(\mathrm{~s}, 1 \mathrm{H})$, 2.33 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.6,144.6,138.4,135.5,135.2,131.5,130.3$ (q, J $=32 \mathrm{~Hz}, 1 \mathrm{C}), 129.5,129.1,128.6,128.4,128.0,125.4,123.9(\mathrm{q}, J=272 \mathrm{~Hz}, 1 \mathrm{C}), 122.5,121.9$, $121.2,86.3,81.4,77.6,73.5,39.7,21.4 ;{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.7$; IR (Neat) $v_{\max } 2228$, 1722, 1488, 1350, 1288, 1162, 1054, 737, $692 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{28} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NO}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$: calcd 524.1143, found 524.1144.
(E)-1-(4-Methyl-N-(3-phenylprop-2-yn-1-yl)phenylsulfonamido)-2-(4-nitrophenyl)vinyl propiolate (3e):

Following the general procedure $\mathrm{GP}-3$, compound $\mathbf{3 e}(140 \mathrm{mg})$ was obtained in 93% yield as colorless solid; $\mathrm{mp}=135-137^{\circ} \mathrm{C} ; R_{f}=0.39(3: 2$ hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.14$ $(\mathrm{d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$,
7.29-7.17 (m, 5H), 7.09 (d, J=9.0 Hz, 2H), 6.63 (s, 1H), 4.42 (s, 2H), 2.98 (s, 1H), 2.35 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.4,147.3,144.8,139.4,138.4,135.3,131.6,131.5,129.8$, 129.6, 128.7, 128.4, 128.2, 128.0, 127.97, 123.8, 123.6, 121.7, 86.5, 81.2, 78.0, 73.3, 39.7, 21.5; IR (Neat) $v_{\max } 2125,1722,1524,1347,1163,1026,805,668 \mathrm{~cm}^{-1} ;$ HRMS (ESI) for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}$ $(\mathrm{M}+\mathrm{H})^{+}:$calcd 501.1120, found 501.1121.

(()-1-(4-Methyl-N-(3-phenylprop-2-yn-1-yl)phenylsulfonamido)-2-(3-((2methylallyl)oxy)phenyl)vinyl propiolate (3f):

Following the general procedure GP-3, compound $\mathbf{3 f}(144 \mathrm{mg})$ was obtained in 91% yield as colorless solid; $\mathrm{mp}=127-129{ }^{\circ} \mathrm{C} ; R_{f}=0.5$ (3:2 hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.86$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.29-7.16 (m, 7H), 7.11 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H}), 4.97(\mathrm{~s}, 1 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H})$, $4.40(\mathrm{~s}, 2 \mathrm{H}), 2.93(\mathrm{~s}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.8,149.9$, $144.3,140.7,137.1,135.9,132.5,131.7,131.5,129.6,129.4,128.5,128.3,127.9,123.5,123.4$, $122.1,121.7,116.32,116.25,113.9,113.8,112.6,85.9,81.9,77.4,73.7,71.6,39.8,21.5,19.4 ;$ IR (Neat) $v_{\max } 2221,1728,1365,1260,1119,1017,729,595 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{NO}_{5}$ $(\mathrm{M}+\mathrm{H})^{+}$: calcd 526.1688, found 526.1687.

(E)-2-Cyclopropyl-1-(4-methyl-N-(3-phenylprop-2-yn-1-yl)phenylsulfonamido)vinyl

 propiolate (3g):

Following the general procedure GP-3, compound $\mathbf{3 g}(122 \mathrm{mg})$ was obtained in 97% yield as colorless solid; $\mathrm{mp}=118-120^{\circ} \mathrm{C} ; R_{f}=0.53(3: 2$ hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.87$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.21(\mathrm{~m}, 5 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 2 \mathrm{H}), 5.05(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H})$, $2.87(\mathrm{~s}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.70-1.60(\mathrm{~m}, 1 \mathrm{H}), 0.77-0.68(\mathrm{~m}, 2 \mathrm{H}), 0.48-0.41(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.5,144.0,136.5,136.0,131.6,130.8,130.6,129.5,129.4,128.3,128.0$, $122.4,85.5,82.8,76.7,73.9,40.3,21.5,9.64,9.61,7.3$; IR (Neat) $v_{\max } 2120,1732,1355,1160$, 1130, 690, $543 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NNaO}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+}$: calcd 442.1089, found 442.1088 .

(E)-4-((tert-Butyldimethylsilyl)oxy)-1-(4-methyl-N-(3-phenylprop-2-yn-1-

 yl)phenylsulfonamido)but-1-en-1-yl propiolate (3h):

Following the general procedure $\mathrm{GP}-3$, compound $\mathbf{3 h}(145 \mathrm{mg})$ was obtained in 90% yield as colorless solid; $\mathrm{mp}=126-128{ }^{\circ} \mathrm{C} ; R_{f}=0.55 \quad(3: 2$ hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.86(\mathrm{~d}, \mathrm{~J}$ $=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.20(\mathrm{~m}, 7 \mathrm{H}), 5.79(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H}), 3.69$ $(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.89(\mathrm{~s}, 1 \mathrm{H}), 2.48(\mathrm{q}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 6 \mathrm{H}) ;$ $\left.{ }^{13} \mathrm{CNMR}^{(126 M H z}, \mathrm{CDCl}_{3}\right) \delta 150.1,144.1,137.7,136.2,131.6,129.5,128.4,128.3,128.0,123.3$, $122.3,85.5,73.8,61.7,40.3,31.0,25.9,21.5,18.2,-5.5$; IR (Neat) $v_{\max } 2119,1732,1353,1160$, 1130, 1051, 757, $659 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{NO}_{5} \mathrm{SSi}(\mathrm{M}+\mathrm{H})^{+}$: calcd 538.2083, found 538.1304.
(E)-1-(4-Methyl-N-(3-phenylprop-2-yn-1-yl)phenylsulfonamido)oct-1-en-1-yl propiolate (3i):

Following the general procedure GP-3, compound $\mathbf{3 i}(135 \mathrm{mg})$ was obtained in 97% yield as colorless solid; $\mathrm{mp}=121-123{ }^{\circ} \mathrm{C} ; R_{f}=0.52(3: 2$ hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.86$
$(\mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.20(\mathrm{~m}, 7 \mathrm{H}), 5.66(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~s}$, $2 \mathrm{H}), 2.90(\mathrm{~s}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.44-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.15(\mathrm{~m}, 6 \mathrm{H})$, $0.85(\mathrm{t}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 150.4,144.1,136.7,136.2,131.6,129.4$, $128.4,128.2,128.0,126.6,122.3,85.4,82.5,77.3,73.8,40.2,31.5,29.0,28.7,27.2,22.5,21.5$, 14.0; IR (Neat) $v_{\max } 1733,1356,1162,1141,1089,661 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{NO}_{4} \mathrm{~S}$ $(\mathrm{M}+\mathrm{H})^{+}$: calcd 464.1896, found 464.1886.

(E)-5-Chloro-1-(4-methyl-N-(3-phenylprop-2-yn-1-yl)phenylsulfonamido)pent-1-en-1-yl propiolate ($\mathbf{3 j}$):

Following the general procedure GP-3, compound $\mathbf{3 j}$ (130 mg) was obtained in 95% yield as colorless solid; $\mathrm{mp}=124-126{ }^{\circ} \mathrm{C} ; \quad R_{f}=0.5(3: 2$ hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.86(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.21(\mathrm{~m}, 7 \mathrm{H}), 5.66(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~s}, 2 \mathrm{H})$, $3.53(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{~s}, 1 \mathrm{H}), 2.45(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.99-1.85(\mathrm{~m}, 2 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.1,144.3,137.5,135.9,131.6,129.5,128.5,128.2,128.0$, 124.7, 122.1, 85.6, 82.2, 77.0, 73.6, 44.1, 40.0, 31.4, 24.6, 21.4; IR (Neat) $v_{\max } 2121,1733,1353$, 1157, 1126, 1052, 657; HRMS (ESI) for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{ClNO}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$: calcd 456.1036, found 456.1094 . (E)-1-(N-(3-(2-Methoxyphenyl)prop-2-yn-1-yl)-4-methylphenylsulfonamido)-2-phenylvinyl propiolate (3k):

Following the general procedure GP-3, compound $\mathbf{3 k}$ (137 mg) was obtained in 94% yield as colorless solid; $\mathrm{mp}=128-130^{\circ} \mathrm{C}$; $R_{f}=0.48(3: 2$ hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.85$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{t}, J=1.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.17$
$(\mathrm{m}, 3 \mathrm{H}), 6.94(\mathrm{dd}, J=7.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.81-6.75(\mathrm{~m}, 2 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H})$, $2.93(\mathrm{~s}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.9 .149 .7$, 144.1, 137.1, 135.9, 133.7, $131.4,129.8,129.3,128.8,128.7,128.50,128.45,123.3,119.9,111.3,110.3,85.6,82.5,77.2$, $73.8,55.5,40.0,21.5$; IR (Neat) $v_{\max } 2927,2120,1733,1491,1352,1292,1160,1019,692,660$ cm^{-1}; HRMS (ESI) for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{NNaO}_{5} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+}$: calcd 508.1195, found508.1192.
(E)-1-(4-Methyl-N-(3-(3-((2-methylallyl)oxy)phenyl)prop-2-yn-1-yl)phenylsulfonamido)-2phenylvinyl propiolate (31):

Following the general procedure GP-3, compound 31 (147 mg) was obtained in 96% yield as colorless solid; $\mathrm{mp}=128-130^{\circ} \mathrm{C} ; R_{f}=0.4(3: 2$ hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.91$ (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.14(\mathrm{t}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.80-6.69(\mathrm{~m}, 2 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 5.02(\mathrm{~s}$, $1 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H}), 4.37(\mathrm{~s}, 2 \mathrm{H}), 2.99(\mathrm{~s}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 158.2,150.0,144.5,140.6,137.1,136.0,131.4,129.5,129.1,129.0,128.7,128.6,124.2$, $123.6,123.1,117.8,115.5,112.9,86.0,81.8,73.8,71.7,39.9,21.6,19.5$; IR (Neat) $v_{\max } 2226$, 17321, 1698, 1358, 1163, 1108, $758 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{NO}_{5} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$: calcd 526.1688, found 526.1687.
(E)-1-(4-Methyl-N-(pent-2-yn-1-yl)phenylsulfonamido)-2-phenylvinyl propiolate (3m):

Following the general procedure $\mathrm{GP}-3$, compound $\mathbf{3 m}(120 \mathrm{mg})$ was obtained in 98% yield as colorless solid; $\mathrm{mp}=118-120{ }^{\circ} \mathrm{C} ; R_{f}=0.51(3: 2$ hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.84$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.24(\mathrm{~m}, 5 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H})$, $4.19(\mathrm{~s}, 2 \mathrm{H}), 3.04(\mathrm{~s}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.88(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.8,144.1,136.9,136.0,131.4,129.3,128.8,128.7,128.5,123.4,88.1$, $77.2,73.8,71.8,39.3,21.5,13.1,12.1$; IR (Neat) $v_{\max } 2119,1735,1348,1160,1114,1015,658$, $533 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$: calcd 408.1270, found 408.1267.
(\boldsymbol{E})-1-(4-Methyl-N-(3-(thiophen-2-yl)prop-2-yn-1-yl)phenylsulfonamido)-2-phenylvinyl propiolate (3n):

Following the general procedure GP-3, compound $\mathbf{3 n}(133 \mathrm{mg})$ was obtained in 96% yield as colorless solid; $\mathrm{mp}=132-134^{\circ} \mathrm{C} ; R_{f}=0.4$ (3:2 hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.87(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.59(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{dd}, J=5.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.89-6.86(\mathrm{~m}, 1 \mathrm{H}), 6.50(\mathrm{~s}$, $1 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 2.96(\mathrm{~s}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.9,144.4,137.0$, $135.9,132.5,131.3,129.5,128.9,128.8,128.6,128.5,127.3,126.6,123.5,122.0,85.8,79.3,77.3$, 73.7. 40.0, 21.6; IR (Neat) $v_{\max } 2119,1726,1345,1119,1162,1018,691,661,534 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{NNaO}_{4} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{Na})^{+}$: calcd 484.0653, found 484.0652.
(E)-2-Phenyl-1-(N-(3-phenylprop-2-yn-1-yl)phenylsulfonamido)vinyl propiolate (30):

Following the general procedure GP-3, compound $\mathbf{3 o}(131 \mathrm{mg})$ was obtained in 99% yield as colorless solid; $\mathrm{mp}=120-122{ }^{\circ} \mathrm{C} ; R_{f}=0.42$ (3:2 hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.00(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.61$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.11-7.06$ $(\mathrm{m}, 2 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 4.46(\mathrm{~s}, 2 \mathrm{H}), 2.90(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.9,139.0$, $136.8,133.3,131.61,131.56,131.3,128.9,128.7,128.5,128.0,123.6,122.0,86.1,81.7,77.3$,
73.7, 40.0; IR (Neat) $v_{\max } 1724,1351,1264,1100,1052,732,701 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{NO}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}:$calcd 442.1113, found 442.1110.
(E)-2-Phenyl-1-(2,4,6-triisopropyl-N-(3-phenylprop-2-yn-1-yl)phenylsulfonamido)vinyl propiolate (3p):

Following the general procedure GP-3, compound 3p (159 mg) was obtained in 97% yield as colorless solid; $\mathrm{mp}=116-118{ }^{\circ} \mathrm{C} ; R_{f}=0.33(3: 2$ hexane/EtOAc); [Silica, UV and $\left.\mathrm{I}_{2}\right] ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.70-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.22(\mathrm{~m}, 5 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.13-7.03(\mathrm{~m}$, 2H), 6.58-6.50 (m, 1H), 4.70-4.60 (m, 2H), 4.19-3.95 (m, 2H), 2.95-2.81 $(\mathrm{m}, 2 \mathrm{H}), 1.45-1.20(\mathrm{~m}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.5,151.7,150.5,136.6,133.3$, $131.6,131.5,129.0,128.8,128.4,128.3,128.0,124.2,123.8,122.4,85.7,82.7,73.9,39.0,34.2$, 30.5, 25.1, 23.5; IR (Neat) $v_{\max } 2226,1738,1488,1154,1084,1110,750,687 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{35} \mathrm{H}_{37} \mathrm{NO}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+}$: calcd 568.2522, found 568.2521.

General procedure for the chemo-, regio-, and stereoselective hydropropioloxylation of ynamide 1 / 5 with arylpropiolic acids 2b / 2c (GP-4):

To the solution of ynamide (0.3 mmol) in 2 M toluene was introduced arylpropiolic acid $2(0.36 \mathrm{mmol})$. The reaction mixture was stirred at RT. The progress of the reaction was periodically monitored by TLC. After complete consumption of ynamide, the reaction mixture was diluted with EtOAc and neutralized with saturated NaHCO_{3} solution. The organic layer was further extracted with EtOAc (10 mL) and dried under anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of solvent under reduced pressure, the residue was purified
by flash chromatography on silica gel (Hexane/EtOAc) to afford the expected product 4 / 6.
(E)-1-(4-methyl-N-(3-phenylprop-2-yn-1-yl)phenylsulfonamido)-2-phenylvinyl

Following the general procedure GP-4, compound $\mathbf{4 a}(157 \mathrm{mg})$ was obtained in 98% yield as colorless solid; $\mathrm{mp}=131-133{ }^{\circ} \mathrm{C} ; R_{f}=0.43$ (3:2 hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.94(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.66(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.29(\mathrm{~m}, 8 \mathrm{H}), 7.19(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.16-7.06$ $(\mathrm{m}, 4 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 151.1, 144.1, $137.3,136.2,132.9,131.6,131.0,129.3,128.9,128.71,128.67,128.6,128.2,127.9,123.3,122.2$, 119.1, 89.0, 85.9, 82.1, 79.8, 40.0, 21.4; IR (Neat) $v_{\max }$ 1730, 1173, 1156, 1046, 1012, 682, $537 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{33} \mathrm{H}_{25} \mathrm{NNaO}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+}$: calcd 554.1403, found 554.1403.
(\boldsymbol{E})-2-(2-iodophenyl)-1-(4-methyl-N-(3-phenylprop-2-yn-1-yl)phenylsulfonamido)vinyl 3phenylpropiolate (4b):

Following the general procedure GP-4, compound $\mathbf{4 b}$ (183 mg) was obtained in 92% yield as colorless solid; $\mathrm{mp}=123-125^{\circ} \mathrm{C} ; R_{f}=0.49$ (3:2 hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.93-7.83 (m, 4H), 7.55-7.49 (m, 3H), 7.47-7.34 (m, 4H), 7.25-7.17 (m, 6H), 7.02-6.94 (m, 1H), $6.68(\mathrm{~s}, 1 \mathrm{H}), 4.39(\mathrm{~s}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 150.8,144.0,139.2,139.0$, 135.9, 133.0, 131.7, 131.1, 129.7, 129.4, 128.3, 127.9, 125.8, 122.2, 119.0, 100.2, 89.3, 85.9, 82.1,80.0, 40.2, 21.4; IR (Neat) $v_{\max } 1724,1348,1285,1151,1076,1053,761,580 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{33} \mathrm{H}_{24} \mathrm{INNaO}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+}$: calcd 680.0368, found 680.0366.

(E)-1-(4-methyl-N-(3-phenylprop-2-yn-1-yl)phenylsulfonamido)-2-(3-(trifluoromethyl)

 phenyl) vinyl 3-phenylpropiolate (4c):

Following the general procedure GP-4, compound $\mathbf{4 c}(169 \mathrm{mg})$ was obtained in 94% yield as colorless solid; $\mathrm{mp}=130-132{ }^{\circ} \mathrm{C} ; R_{f}=0.41$ (3:2 hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.93$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.27$ $(\mathrm{m}, 7 \mathrm{H}), 7.20(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H})$,
$4.46(\mathrm{~s}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.9,140.4,138.5,135.8,133.0,132.7$, $131.7,130.6,131.3,131.2,131.0,130.8,136.5,129.4,129.1,128.64,128.62,128.4,128.0,125.93$, $125.90,125.87,125.84,125.2,125.1,125.0,122.8,122.2,122.0,119.0,89.4,86.3,81.6,79.7$, $39.8,21.4 ;{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.8 \mathrm{ppm}$; IR (Neat) $v_{\max } 1737,1350,1156,1108,1013$, $756,687 \mathrm{~cm}^{-1} ;$ HRMS (ESI) for $\mathrm{C}_{34} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NNaO}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+}$: calcd 622.1276, found 622.1309.
(E)-2-(4-formylphenyl)-1-(4-methyl-N-(3-phenylprop-2-yn-1-yl)phenylsulfonamido)vinyl 3phenylpropiolate (4d):

Following the general procedure GP-4, compound $4 d$ (166 mg) was obtained in 99% yield as colorless solid; $\mathrm{mp}=138-140^{\circ} \mathrm{C} ; R_{f}=0.46(3: 2$ hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.97$ (s, $1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{q}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.49(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.44(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.07(\mathrm{~m}, 4 \mathrm{H}), 6.65$ $(\mathrm{s}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.6,150.7,144.4,139.2$, 138.0, 135.9, 135.8, 133.0, 131.5, 131.2, 129.8, 129.44, 129.38, 128.62, 128.57, 128.4, 128.0, $122.2,121.9,118.8,89.5,86.3,81.6,79.6,40.0,21.4$; IR (Neat) $v_{\max } 2126,1748,1351,1157,1114$, 1046, 754, $684 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{34} \mathrm{H}_{25} \mathrm{NNaO}_{5} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+}$: calcd 582.1351, found 582.1350.
(E)-2-(4-cyanophenyl)-1-(4-methyl-N-(3-phenylprop-2-yn-1-yl)phenylsulfonamido)vinyl 3phenylpropiolate (4e):
 Following the general procedure $\mathrm{GP}-4$, compound $\mathbf{4 e}(159 \mathrm{mg})$ was obtained in 95% yield as colorless solid; $\mathrm{mp}=133-135^{\circ} \mathrm{C} ; R_{f}=0.38(3: 2$ hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.87$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, 7.53-7.48 (m, 1H), 7.47-7.43 (m, 2H), 7.42-7.36 (m, 2H), 7.25-7.19 (m, $3 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 150.6,144.6,139.4,136.7,135.6,133.0,132.2,131.5,131.3,129.5,129.4$, 128.7, 128.6, 128.0, 121.8, 118.8, 118.6, 111.8, 89.6, 86.4, 81.4, 79.5, 39.9, 21.4; IR (Neat) $v_{\max }$ $2121,1724,1343,1160,1114,997,752,690 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{34} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+}$: calcd 579.1354, found 579.1360.
(E)-1-(N-(3-(4-chlorophenyl)prop-2-yn-1-yl)-4-methylphenylsulfonamido)-2-phenylvinyl 3phenylpropiolate (4f):

Following the general procedure GP-4, compound $4 f(165 \mathrm{mg})$ was obtained in 97% yield as colorless solid; $\mathrm{mp}=128-130^{\circ} \mathrm{C} ; R_{f}=0.4(3: 2$ hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.93$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.34$
$(\mathrm{m}, 6 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.09-7.05(\mathrm{~m}, 2 \mathrm{H}), 7.03-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.56$ $(\mathrm{s}, 1 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.2,144.1,137.2,136.3$, $134.3,132.9,132.8,131.5,131.1,129.3,128.9,128.8,128.71,128.65,128.6,128.2,123.5,120.7$, $119.0,89.1,84.8,83.3,79.8,39.9,21.4$; IR (Neat) $v_{\max } 2923,1738,1366,1324,1216,1155,812$, $760 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{33} \mathrm{H}_{24} \mathrm{ClNNaO}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+}$: calcd 588.1012, found 588.1012.
(E)-1-(N-(3-(2-methoxynaphthalen-1-yl)prop-2-yn-1-yl)-4-methylphenylsulfonamido)-2phenylvinyl 3-phenylpropiolate (4g):

Following the general procedure GP-4, compound $\mathbf{4 g}$ (172 mg) was obtained in 94% yield as pale yellow solid; $\mathrm{mp}=140-142{ }^{\circ} \mathrm{C} ; R_{f}=0.4(3: 2$ hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.04$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{dd}, J=21,9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, 7.54-7.46 (m, 4H), 7.42-7.34 (m, 3H), $7.26(\mathrm{~d}, ~ J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.19$
$(\mathrm{m}, 1 \mathrm{H}), 7.17-7.11(\mathrm{~m}, 4 \mathrm{H}), 6.97(\mathrm{~d}, J=8.4,2 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 4.34(\mathrm{~s}, 2 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.2,151.6,143.4,140.3,136.8,133.0,132.6,131.6,130.9$, $130.1,129.0,128.6,128.1,128.03,127.96,127.85,126.9,124.6,123.8,122.6,119.2,114.9,114.2$, $112.9,89.2,84.8,83.4,80.1,56.3,39.6,21.3$; IR (Neat) $v_{\max } 1745,1350,1273,1159,1100,1017$, $813,688 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{38} \mathrm{H}_{29} \mathrm{NNaO}_{5} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+}$: calcd 634.1664, found 634.1654.

(E)-1-(N-(3-(2-Methoxyphenyl)prop-2-yn-1-yl)-4-methylphenylsulfonamido)-2-phenylvinyl 3-phenylpropiolate (4h):

Following the general procedure GP-4, compound $\mathbf{4 h}(161 \mathrm{mg})$ was obtained in 96% yield as colorless solid; $\mathrm{mp}=124-126^{\circ} \mathrm{C} ; R_{f}=0.42(3: 2$ hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.91$ (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.45$
(d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.20-7.15(\mathrm{~m}, 3 \mathrm{H}), 6.95(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 4.54(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.9$, $151.0,143.9,137.4,136.2,133.9,133.6,132.98,132.96,131.7,131.0,129.9,129.6,129.4,129.1$, $128.9,128.7,128.5,123.0,122.97,120.0,119.8,119.2,111.4,110.3,88.8,85.9,82.5,79.9,55.5$, 40.2, 21.4; IR (Neat) $v_{\max } 2235,1738,1488,1349,1154,1110,1017,687,660 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{NO}_{5} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$: calcd 562.1688, found 562.1691.
(E)-1-(4-Methyl-N-(3-(3-(trifluoromethyl)phenyl)prop-2-yn-1-yl)phenylsulfonamido)-2phenylvinyl 3-phenylpropiolate (4i):

Following the general procedure GP-4, compound $\mathbf{4 i}(173 \mathrm{mg})$ was obtained in 96% yield as colorless solid; $\mathrm{mp}=120-122^{\circ} \mathrm{C} ; R_{f}=0.46$ ($3: 2$ hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.66(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.42-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.11-7.07(\mathrm{~m}, 1 \mathrm{H}), 7.00-6.87(\mathrm{~d}$, $J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.7,161.1,151.2,144.2,137.2,136.2,132.9,131.5,131.1,129.7,129.51$, $129.46,129.3,129.2,128.85,128.81,128.7,128.64,128.61,128.2,127.4,124.0,123.9,123.4$, $118.9,118.4,118.3,115.6,115.5,89.2,84.6,83.2,79.7,39.9,21.3 ;{ }^{19} \mathrm{~F}$ NMR (471 MHz, CDCl_{3}) $\delta-62.96 \mathrm{ppm} ;$ IR (Neat) $v_{\max } 172,1698,1351,1156,1109,1085,813,741 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{34} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NNaO}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+}$: calcd 622.1276, found 622.1279.
(E)-1-(4-methyl-N-(3-(p-tolyl)prop-2-yn-1-yl)phenylsulfonamido)-2-phenylvinyl

Following the general procedure GP-4, compound $\mathbf{4 j}(160 \mathrm{mg})$ was obtained in 98% yield as colorless solid; $\mathrm{mp}=124-126^{\circ} \mathrm{C} ; \quad R_{f}=0.42 \quad(3: 2$ hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.95$ (d, J $=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.33$ $(\mathrm{m}, 7 \mathrm{H}), 7.22(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.1,144.0,138.3$,
$137.4,136.3,132.9,131.6,131.5,130.9,129.3,128.9,128.7,128.62,128.58,128.5,123.3,119.2$, $119.1,88.9,86.1,81.4,79.9,40.0,21.4,21.3$; IR (Neat) $v_{\max } 1735,1602,1508,1348,1254,1162$, $1051,754 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{34} \mathrm{H}_{27} \mathrm{NNaO}_{5} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+}$: calcd 568.1558, found 568.1551.

(E)-1-(N-(3-(4-methoxyphenyl)prop-2-yn-1-yl)-4-methylphenylsulfonamido)-2-phenylvinyl

 3-phenylpropiolate (4k):

Following the general procedure GP-4, compound $\mathbf{4 k}$ (167 mg) was obtained in 99% yield as colorless solid; $\mathrm{mp}=136-138{ }^{\circ} \mathrm{C} ; \quad R_{f}=0.42 \quad(3: 2$ hexane/EtOAc); [Silica, UV and I2]; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.92$ (d, J $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.28(\mathrm{~m}, 7 \mathrm{H})$,
$7.19(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.55$ $(\mathrm{s}, 1 \mathrm{H}), 4.46(\mathrm{~s}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.4,151.1,144.0$, $137.3,136.2,133.0,132.9,131.6,131.0,129.3,128.9,128.7,128.6,123.3,119.1,114.3,113.5$, 88.9, 85.9, 80.6, 79.8, 55.1, 40.1, 21.4; IR (Neat) $v_{\max } 2228,1724,1504,1350,1287,1152,1052$, 832, $693 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{NO}_{5} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$: calcd 562.1688, found 562.1678.
(\boldsymbol{E})-1-(N-(3-(4-fluorophenyl)prop-2-yn-1-yl)-4-methylphenylsulfonamido)-2-phenylvinyl 3phenylpropiolate (4I):

Following the general procedure GP-4, compound $\mathbf{4 l}(106 \mathrm{mg})$ was obtained in 95% yield as colorless solid; $\mathrm{mp}=127-129^{\circ} \mathrm{C} ; R_{f}=0.43$ (3:2 hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.65$ $(\mathrm{d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.27(\mathrm{~m}, 7 \mathrm{H}), 7.20(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.06$ (bt, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 4.46(\mathrm{~s}$, 2H), 2.25 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.3$ (d, $J=250 \mathrm{~Hz}, 1 \mathrm{C}$), 151.2, 144.1, 137.2, $136.2,133.5(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{C}), 132.9,131.5,131.1,129.3,128.9,128.8,128.71,128.66,128.6$, $123.5,115.2(\mathrm{~d}, J=23.1 \mathrm{~Hz}, 1 \mathrm{C}), 89.1,84.9,81.9,79.8,40.0,21.4 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-110.18$; IR (Neat) $v_{\max } 2128,1732,1353,1160,1116,1087,1018,752,660 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{33} \mathrm{H}_{24} \mathrm{FNNaO} 4 \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+}$: calcd 572.1308, found 572.1302.

(E)-1-(N-(3-(4-bromophenyl)prop-2-yn-1-yl)-4-methylphenylsulfonamido)

- 2-phenylvinyl 3-phenylpropiolate (4m):

Following the general procedure GP-4, compound $\mathbf{4 m}(181 \mathrm{mg})$ was obtained in 99% yield as
 colorless solid; $\mathrm{mp}=133-135^{\circ} \mathrm{C} ; R_{f}=0.43$ (3:2 hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.92(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.53-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.39(\mathrm{~m}, 4 \mathrm{H}), 7.38-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.28$ (m, 1H), 7.25-7.18 (m, 4H), 6.96-6.90 (m, 2H), $6.55(\mathrm{~s}, 1 \mathrm{H}), 4.46(\mathrm{~s}, 2 \mathrm{H}), 2.25$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.2,144.1,137.1,136.2,133.0,132.9,131.5,131.2$, $129.3,128.9,128.8,128.72,128.67$, 123.6, 122.6, 121.1, 119.0, 89.1, 84.8, 83.4, 79.8, 39.9, 21.4;IR (Neat) $v_{\max } 1724,1406,1154,1088,820,661,549 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{33} \mathrm{H}_{24} \mathrm{BrNNaO}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+}$: calcd 632.0507, found 632.0508.

(\boldsymbol{E})-1-(4-methyl-N-(3-phenylprop-2-yn-1-yl)phenylsulfonamido)-2-(4-

 (trifluoromethyl)phenyl)vinyl 3-phenylpropiolate (4n):

Following the general procedure GP-4, compound $\mathbf{4 n}(171 \mathrm{mg})$ was obtained in 94% yield as colorless solid; $\mathrm{mp}=128-130^{\circ} \mathrm{C} ; R_{f}=0.39$ (3:2 hexane/EtOAc); [Silica, UV and I I_{2}], ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.94(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.65 (d, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{bt}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.29(\mathrm{~m}, 9 \mathrm{H}), 7.22(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.2,144.2,137.2,136.3,132.9,131.8,131.5,130.0(\mathrm{q}, J=32 \mathrm{~Hz}$, 1C), 129.4, 128.9, 128.8, 128.72, 128.66, 127.0, 124.7 (q, $J=3.8 \mathrm{~Hz}, 1 \mathrm{C}), 124.3$ (q, $J=212 \mathrm{~Hz}$, 1C), 123.6, 118.9, 89.2, 84.9, 84.5, 79.8, 39.9, 21.3; ${ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.94$; IR (Neat) $v_{\max } 2228,1724,1504,1350,1287,1102,1052,760,542 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{34} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NNaO}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+}$: calcd 622.1276, found 622.1270.
(E)-1-(4-methyl-N-(3-(thiophen-2-yl)prop-2-yn-1-yl)phenylsulfonamido)-2-phenylvinyl 3phenylpropiolate (40):

Following the general procedure GP-4, compound $\mathbf{4 0}(156 \mathrm{mg})$ was obtained in 97% yield as colorless solid; $\mathrm{mp}=139-141^{\circ} \mathrm{C} ; R_{f}=0.37 \quad(3: 2$ hexane/EtOAc); [Silica, UV and $\left.\mathrm{I}_{2}\right] ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.92$ (d, J $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.41-7.28(\mathrm{~m}, 5 \mathrm{H})$,
7.21 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.12(\mathrm{bd}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{bd}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.84-6.78(\mathrm{~m}, 1 \mathrm{H})$, $6.55(\mathrm{~s}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.1,144.2,137.4,136.2$, $133.0,132.5,131.5,131.0,129.4,128.9,128.7,128.6,127.2,126.6,123.2,122.1,119.2,89.1$, 86.1, 79.8, 79.3, 40.2, 21.4; IR (Neat) $v_{\max } 2209,1721,1340,1150,1081,790,754,730 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{31} \mathrm{H}_{23} \mathrm{NNaO}_{4} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{Na})^{+}$: calcd 560.0966, found 560.0966 .
(E)-2-phenyl-1-(N-(3-phenylprop-2-yn-1-yl)phenylsulfonamido)vinyl 3-phenylpropiolate (4p):

Following the general procedure GP-4, compound $\mathbf{4 p}$ (154 mg) was obtained in 99% yield as colorless solid; $\mathrm{mp}=123-125^{\circ} \mathrm{C} ; R_{f}=0.41(3: 2$ hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.98$ (d, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.57 ($\mathrm{d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.43-7.20 (m, 12H), 7.06-7.00
$(\mathrm{m}, 4 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.1,139.3,137.2,133.1$, $133.0,131.6,131.5,131.0,128.9,128.8,128.7,128.64,128.60,128.58,128.3,127.9,123.3,122.1$, 119.1, 89.1, 86.0, 82.0, 79.7, 40.1; IR (Neat) $v_{\max } 2205,1713,1352,1162,1052,890,751,667$ cm^{-1}; HRMS (ESI) for $\mathrm{C}_{32} \mathrm{H}_{23} \mathrm{NNaO}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+}$: calcd 540.1245, found 540.1240.
(E)-2-Phenyl-1-(N-(3-(p-tolyl)prop-2-yn-1-yl)phenylsulfonamido)vinyl 3-phenylpropiolate (4q):

Following the general procedure GP-4, compound $\mathbf{4 q}(152 \mathrm{mg})$ was obtained in 95% yield as colorless solid; $\mathrm{mp}=126-128^{\circ} \mathrm{C} ; \quad R_{f}=0.42 \quad(3: 2$ hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.06$ (d, $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.40(\mathrm{~m}, 4 \mathrm{H})$, $7.40-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.1,139.3,138.4,137.2,133.1,133.0,131.5,131.0,128.9,128.8,128.7,128.6,123.4$, $119.09,119.05,89.0,86.2,81.2,79.8,40.2,21.4$; IR (Neat) $v_{\max } 2121,1724,1344,1160,1088,887$, $752,690 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{33} \mathrm{H}_{25} \mathrm{NNaO}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+}$: calcd 554.1402, found 554.1404.

Following the general procedure GP-4, compound $\mathbf{4 r}(135 \mathrm{mg})$ was obtained in 99% yield as colorless solid; $\mathrm{mp}=127-129{ }^{\circ} \mathrm{C} ; \quad R_{f}=0.42 \quad(3: 2$ hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.61$ (d, J $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{bt}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.41(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.28(\mathrm{~m}$, $5 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.4,137.4,133.1,131.7,131.4,131.2,128.9,128.8,128.7,128.6,128.2$, 122.7, 121.8, 118.8, 89.8, 86.5, 82.4, 79.7, 42.0, 40.1; IR (Neat) $v_{\max } 1721,1340,1282,1149,1112$, 1282, 1149, 1057, 961, $753 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{NNaO}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+}$: calcd 478.1089, found 478.1113.
(E)-1-(4-Chloro-N-(3-phenylprop-2-yn-1-yl)phenylsulfonamido)-2-phenylvinyl phenylpropiolate (4s):

Following the general procedure GP-4, compound $4 s(157 \mathrm{mg})$ was obtained in 95% yield as colorless solid; $\mathrm{mp}=132-134{ }^{\circ} \mathrm{C} ; R_{f}=0.39$ (3:2 hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.99(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.65-7.60 (m, 2H), 7.52-7.47 (m, 1H), 7.46-7.42 (m, 2H), 7.41-7.37 (m, 2H), $7.38-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.09(\mathrm{~m}, 4 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 4.52(\mathrm{~s}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.0,139.8,137.8,137.0,133.0,131.6$, $131.4,131.1,130.2,128.90,128.85,128.71,128.66,128.5,128.1,123.6,121.9,118.9,89.4,86.4$, 81.8, 79.7, 40.3; IR (Neat) $v_{\max } 2225,1731,1358,1164,1107,1050,757 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{32} \mathrm{H}_{22} \mathrm{ClNNaO}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+}$: calcd 574.0856, found 574.0857.
(E)-1-(4-methyl-N-(3-phenylprop-2-yn-1-yl)phenylsulfonamido)-2-phenylvinyl 3-(thiophen-2-yl)propiolate (4t):

Following the general procedure GP-4, compound $\mathbf{4 t}(150 \mathrm{mg})$ was obtained in 91% yield as colorless solid; $\mathrm{mp}=138-140^{\circ} \mathrm{C} ; R_{f}=0.38$ (3:2 hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.93$ (d, $J=5.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.65(\mathrm{bs}, 2 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 7.47-6.98(\mathrm{~m}, 12 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 2.27$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 151.0,144.1,137.3,137.0,136.2,131.8,131.5,129.3$,
$128.9,128.63,128.59,128.2,127.8,127.7,123.2,122.1,118.8,86.0,84.2,83.1,82.0,40.0,21.4 ;$ IR (Neat) $v_{\max } 1678,1414,1299,1260,849,747,547 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{31} \mathrm{H}_{23} \mathrm{NNaO}_{4} \mathrm{~S}_{2}$ $(\mathrm{M}+\mathrm{Na})^{+}$: calcd 560.0966, found 560.0966.

(E)-1-(N-Allyl-4-methylphenylsulfonamido)-2-phenylvinyl propiolate (6a):

Following the general procedure GP-3, compound $\mathbf{6 a}(101 \mathrm{mg})$ was obtained
 in 89% yield as colorless solid; $\mathrm{mp}=121-123{ }^{\circ} \mathrm{C} ; R_{f}=0.39$ (3:2 hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.80(\mathrm{~d}, J$ $=10.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{bs}, 5 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 5.59(\mathrm{~s}$, $1 \mathrm{H}), 5.08-4.90(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 2 \mathrm{H}), 3.04(\mathrm{~s}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $149.9,144.2,137.0,136.1,131.5,131.3,129.6,128.9,128.7,128.5,128.2,122.8,120.0,77.3$, 73.8, 52.2, 21.6; IR (Neat) $v_{\max } 2118,1729,1347,1189,1157,1015,935,758,687 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{NO}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$: calcd 382.1113, found 382.1110.

(E)-1-(N-Allyl-4-methylphenylsulfonamido)-2-phenylvinyl 3-phenylpropiolate (6b):

Following the general procedure GP-4, compound $\mathbf{6 b}(125 \mathrm{mg})$ was obtained in 91% yield as pale yellow solid; $\mathrm{mp}=141-143{ }^{\circ} \mathrm{C} ; R_{f}=0.40$ (3:2 hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.85$ (d, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.62-7.56 (m, 4H), 7.54-7.50 (m, 1H), 7.45-7.41 (m, 2H), 7.38-7.34 (m, 2H), $7.32-7.26(\mathrm{~m}, 3 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 5.70-5.60(\mathrm{~m}, 1 \mathrm{H}), 5.10(\mathrm{dd}, J=16.8,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=$ $9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.2,144.0$, $137.3,136.3,133.1,131.7,131.5,131.2,129.63,129.56,129.47,129.40,128.9,128.8,128.7$, $128.5,128.2,122.3,119.1,89.0,79.7,52.4,21.5$; IR (Neat) $v_{\max } 1704,1337,1159,1121,1055$, 811, 752, $589 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{NNaO}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+}$: calcd 480.1245, found 480.1246 .
(E)-1-(4-methyl-N-(3-methylbut-2-en-1-yl)phenylsulfonamido)-2-phenylvinyl 3phenylpropiolate (6c):

Following the general procedure GP-4, compound $\mathbf{6 c}(127 \mathrm{mg})$ was obtained in 87% yield as colorless solid; $\mathrm{mp}=140-142{ }^{\circ} \mathrm{C} ; R_{f}=0.43 \quad(3: 2$ hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.84$ (d, J $=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.62-7.54(\mathrm{~m}, 4 \mathrm{H}), 7.53-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.40(\mathrm{~m}, 2 \mathrm{H})$,
$7.37-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.24(\mathrm{~m}, 3 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 5.10-4.90(\mathrm{~m}, 1 \mathrm{H}), 3.96(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $2.32(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.2,143.8,138.4,137.6$, $136.5,133.1,132.1,131.1,129.4,128.9,128.7,128.4,128.2,122.5,119.2,117.5,88.9,79.8,47.2$, 25.6, 21.5, 17.7; IR (Neat) $v_{\max } 1753,1490,1397,1221,1198,1030,756,691 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{NO}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$: calcd 486.1739, found 486.1738.
(E)-1-(4-methyl-N-(4-phenylbut-3-yn-1-yl)phenylsulfonamido)-2-phenylvinyl phenylpropiolate (6d):

Following the general procedure GP-4, compound $\mathbf{6 d}(153 \mathrm{mg})$ was obtained in 93% yield as colorless solid; $\mathrm{mp}=136-138^{\circ} \mathrm{C} ; R_{f}=0.49(3: 2$ hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.93$ (d, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{bd}, J=3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.22(\mathrm{~m}, 10 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 2 \mathrm{H}), 2.65(\mathrm{~s}$, $2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.4,144.2,136.6,136.0,133.1,131.6,131.5$, $131.2,129.6,129.0,128.8,128.7,128.6,128.2,128.1,127.8,123.6,123.2,119.0,89.3,85.9,82.3$, 79.6, 48.0, 21.4, 19.3; IR (Neat) $v_{\max } 1721,1358,1144,1103,1012,755,684 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{NO}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$: calcd 546.1739, found 546.1739.
(E)-1-(4-Methyl-N-(4-(pyrazin-2-yl)but-3-yn-1-yl)phenylsulfonamido)-2-phenylvinyl 3phenylpropiolate (6e):

Following the general procedure GP-4, compound $\mathbf{6 e}(153 \mathrm{mg})$ was obtained in 93% yield as colorless solid; $\mathrm{mp}=149-151^{\circ} \mathrm{C} ; R_{f}=0.32$ (3:2 hexane/EtOAc); [Silica, UV and $\left.\mathrm{I}_{2}\right] ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.54-8.39(\mathrm{~m}, 3 \mathrm{H}), 7.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.68-7.27$ (m, 12H), 6.58
$(\mathrm{s}, 1 \mathrm{H}), 3.57(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.67(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.4,147.6,144.3,144.1,142.7,140.0,136.5,135.7,133.1,131.28,131.25,129.7,129.0$, 128.9, 128.7, 128.6, 128.2, 123.8, 118.9, 90.9, 89.4, 79.5, 79.1, 47.5, 21.5, 19.4; IR (Neat) $v_{\max }$ 2220, 1731, 1353, 1142, 1086, 1013, 687, $544 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$: calcd 548.1644, found 548.1648.
(E)-1-(4-methyl-N-(4-phenylbut-3-yn-1-yl)phenylsulfonamido)-2-phenylvinyl 3-(thiophen-2yl)propiolate(6f):

Following the general procedure GP-4, compound $\mathbf{6 f}$ (141 mg) was obtained in 85% yield as colorless solid; $\mathrm{mp}=138-140{ }^{\circ} \mathrm{C} ; R_{f}=0.38(3: 2$ hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.92$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{dd}, J=16.0,5.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.40-7.25(\mathrm{~m}, 10 \mathrm{H}), 7.12(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 3.59(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.2,144.2,137.2,136.4,135.8$, $132.1,131.5,131.3,129.6,128.9,128.7,128.5,128.1,128.0$, $127.8,123.6,123.1,118.6,85.8$, 83.9, 83.4, 82.2, 47.9, 21.4, 19.2; IR (Neat) $v_{\max } 1739,1491,1324,1154,1089,1047,814,717,663$ cm^{-1}; HRMS (ESI) for $\mathrm{C}_{32} \mathrm{H}_{25} \mathrm{NNaO}_{4} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{Na})^{+}$: calcd 574.1123, found574.1113.

(E)-1-(N,4-Dimethylphenylsulfonamido)-2-phenylvinyl 3-phenylpropiolate ($\mathbf{6 g}$):

Following the general procedure GP-3, compound $\mathbf{6 g}(109 \mathrm{mg})$ was obtained in 96% yield as colorless solid; $\mathrm{mp}=120-122^{\circ} \mathrm{C} ; R_{f}=0.4$ (3:2 hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.79$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.52(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 3 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 3.03(\mathrm{~s}, 1 \mathrm{H})$, $2.99(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.5,144.2,139.0,135.4,131.2,129.8$, 128.7, 128.6, 127.8, 120.3, 77.4, 73.6, 36.3, 21.6; IR (Neat) $v_{\max } 1730,1349,1320,1158,1105$, 1012, 849, $682 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NNaO}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+}$: calcd 378.0776, found378.0779.

(E)-1-(N-Methyl-4-nitrophenylsulfonamido)-2-phenylvinyl propiolate (6 h):

Following the general procedure GP-3, compound $\mathbf{6 h}(112 \mathrm{mg})$ was obtained in 96% yield as colorless solid; $\mathrm{mp}=132-134^{\circ} \mathrm{C} ; \quad R_{f}=0.38 \quad(3: 2$ hexane/EtOAc); [Silica, UV and I2]; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.33$ (d, J $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.07(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=6.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{~s}, 1 \mathrm{H}), 3.08(\mathrm{~s}, 3 \mathrm{H}), 3.07(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 150.3,150.1,144.0,137.9,130.7,129.1,128.8,128.5,124.3,121.3$, 78.1, 73.1, 36.6; IR (Neat) $v_{\max } 1742,1693,1527,1347,1308,1104,1080,1014,854,683,605$ cm^{-1}; HRMS (ESI) for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$: calcd 387.0651, found 387.0647.

(E)-2-(4-Chlorophenyl)-1-(N,4-dimethylphenylsulfonamido)vinyl propiolate (6i):

Following the general procedure GP-3, compound $\mathbf{6 i}(108 \mathrm{mg})$ was obtained in 93% yield as colorless solid; $\mathrm{mp}=122-124{ }^{\circ} \mathrm{C} ; R_{f}=0.4$ (3:2 hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.46$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 4 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}), 3.02(\mathrm{~s}, 1 \mathrm{H}), 2.98(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 150.4,144.3,139.4,135.2,134.5,129.84,129.80,128.94,127.86$, $119.4,77.5,73.5,36.2,21.6$; IR (Neat) $v_{\max } 2912,1713,1570,1445,1337,1235,1162,888,694$ cm^{-1}; HRMS (ESI) for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{ClNNaO}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+}$: calcd 412.0386, found 412.0381.
(E)-2-([1,1'-Biphenyl]-4-yl)-1-(N,4-dimethylphenylsulfonamido)vinyl 3-phenylpropiolate (6j):

Following the general procedure GP-4, compound $\mathbf{6 j}$ (143 mg) was obtained in 94% yield as colorless solid; $\mathrm{mp}=124-126{ }^{\circ} \mathrm{C} ; R_{f}=0.48(3: 2$ hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.85$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.67-7.58(\mathrm{~m}, 8 \mathrm{H}), 7.53(\mathrm{bt}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.42(\mathrm{~m}$, $4 \mathrm{H}), 7.37(\mathrm{bt}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 1 \mathrm{H}), 6.38(\mathrm{~s}, 1 \mathrm{H}), 3.10(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.8,144.0,141.2,140.3,139.3,135.6,133.1,131.3,130.4,129.7$, $129.1,128.83,128.77,127.9,127.6,127.3,127.0,119.7,119.0,89.2,79.6,36.6,21.5$; IR (Neat) $v_{\max } 1709,1594,1349,1159,1085,1017,813,692,582 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{31} \mathrm{H}_{25} \mathrm{NNaO}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+}$: calcd 530.1402, found 530.1407.
(E)-2-(4-Chlorophenyl)-1-(N,4-dimethylphenylsulfonamido)vinyl 3-phenylpropiolate (6 k):

Following the general procedure GP-4, compound $\mathbf{6 k}(130 \mathrm{mg})$ was obtained in 93% yield as colorless solid; $\mathrm{mp}=128-130^{\circ} \mathrm{C} ; R_{f}=0.43 \quad(3: 2$ hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.82(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.55-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.44(\mathrm{t}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.36-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 3.03(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 151.7,144.2,139.7,135.4,134.4,133.2,131.3,130.0,129.9,129.7$, 128.9, 128.8, 127.9, 118.9, 89.4, 79.4, 36.4, 21.5; IR (Neat) $v_{\max } 1727,1355,1157,1111,1086$, 812, 750, $653588 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{ClNNaO}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+}$: calcd 488.0699, found 488.0694.

Following the general procedure GP-4, compound $61(155 \mathrm{mg})$ was obtained in 92% yield as colorless solid; $\mathrm{mp}=130-132{ }^{\circ} \mathrm{C} ; R_{f}=0.4 \quad(3: 2$ hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.83$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.61-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.46-7.37(\mathrm{~m}$, $4 \mathrm{H}), 7.29(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.06(\mathrm{~m}, 5 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 4.40(\mathrm{~s}, 2 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.6,150.9,144.2,138.3,136.6,136.3,135.9,133.6,133.1$, $131.3,129.7,129.6,128.80,128.75,128.3,128.2,128.1,122.4,119.0,89.5,79.5,52.6,26.6,21.5$; IR (Neat) $v_{\max } 2219,1728,1701,1348,1161,1103,1044,810,709,683 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{33} \mathrm{H}_{27} \mathrm{NNaO}_{5} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+}$: calcd 572.1508, found 572.1506.
(E)-1-(N-Benzyl-4-methylphenylsulfonamido)-2-(thiophen-3-yl)vinyl 3-phenylpropiolate (6m):

Following the general procedure GP-4, compound $\mathbf{6 m}(134 \mathrm{mg})$ was obtained in 87% yield as colorless solid; $\mathrm{mp}=131-133{ }^{\circ} \mathrm{C} ; R_{f}=0.36(3: 2$ hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.87$ (d, J $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.43(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 3 \mathrm{H})$, $7.23-7.09(\mathrm{~m}, 7 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.0$, $144.0,136.0,133.9,133.1,132.5,131.2,129.6,128.7,128.3,128.1,127.7,126.0,125.1,119.1$, $118.8,89.0,79.6,52.4,21.5$; IR (Neat) $v_{\max } 2226,1717,1350,1277,1165,1150,1106,1077,785$, $685,661 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{NNaO}_{4} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{Na})^{+}$: calcd 536.0966, found 536.0960.

(E)-1-(2-Oxooxazolidin-3-yl)-2-phenylvinyl 3-phenylpropiolate (6n):

Following the general procedure GP-4, compound $\mathbf{6 n}(106 \mathrm{mg})$ was obtained in 94% yield as pale yellow solid; $\mathrm{mp}=126-128{ }^{\circ} \mathrm{C} ; R_{f}=0.42(3: 2$ hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.63$ (dd, $J=8.4,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.29(\mathrm{~m}, 7 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H})$, 4.43-4.35 (m, 2H), 3.80-3.70 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.4,152.0,136.6,133.3$, $131.6,131.2,128.8,128.7,128.5,128.2,118.9,117.4,89.8,79.5,63.2,44.3$; IR (Neat) $v_{\max } 2228$,

1724, 1667, 1605, 1349, 1285, 1090, 1052, 653, $543 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{NNaO}_{4} \mathrm{~S}$ $(\mathrm{M}+\mathrm{Na})^{+}$: calcd 356.0899, found 356.0896.

Au(I)-Catalyzed Spiro-Heterobicyclization; synthesis of 7 /8: General Procedure 5

General Procedure 5A: A solution of $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right] \mathrm{SbF}_{6}$ in 1,2-DCE was prepared as following: $\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)$ ($3 \mathrm{~mol} \%$) was dissolved in 1,2-DCE (3 mL). The solution was treated with AgSbF_{6} ($5 \mathrm{~mol} \%$) and stirred for $10 \mathrm{~min} . \mathrm{AgCl}$ precipitation formed gradually and the supernatant was used for the following reactions.

General Procedure 5B: To a solution of $\mathbf{3 a} / \mathbf{4 l}$ (1 equiv.) in 1,2-DCE was added water (2.5 equiv.) followed by $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right] \mathrm{SbF}_{6}$ ($3 \mathrm{~mol} \%$) (obtained from general procedure 5 A). The resulting mixture was left to stir at $60^{\circ} \mathrm{C}$. The reaction mixture was monitored until TLC analysis indicated consumption of the starting material. The solution was filtered through a silica gel plug (1:1 hexanes:EtOAc), and the filtrate concentrated. The resulting residue was purified by flash column chromatography to afford the desired cyclized product 7/8.
(5S,Z)-2-benzylidene-8-methylene-9-phenyl-4-tosyl-1,6-dioxa-4-azaspiro[4.4]nonan-7-one (7):

Compound 7 ($94 \mathrm{mg}, 47 \%$) was obtained as colorless crystalline solid. Mp $=158-162{ }^{\circ} \mathrm{C} ; R_{f}=0.43$ (3:2 hexane/EtOAc); [Silica, UV and $\left.\mathrm{I}_{2}\right] ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $7.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.33-7.26$
$(\mathrm{m}, 4 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.09(\mathrm{~m}, 1 \mathrm{H}), 7.08-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.62(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.70$ $(\mathrm{d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{t}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 1 \mathrm{H}), 4.27(\mathrm{dd}, J=12.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dd}$, $J=12.4,2 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.8,145.3,143.6,136.5$, 133.4, 133.3, 133.1, 130.2, 129.9, 128.8, 128.6, 128.4, 128.0, 127.8, 126.4, 125.3, 117.6, 101.0, 54.0, 49.4, 29.7, 21.6; IR (Neat) $v_{\max } 1723,1597,1503,1151,1052,832,613 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{NO}_{5} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$: calcd 474.1370, found 474.1334.
(5S,Z)-2-(4-fluorobenzylidene)-9,10-diphenyl-4-tosyl-1,6-dioxa-4-azaspiro[4.5]dec-8-en-7one (8):

Compound 8 ($113 \mathrm{mg}, 54 \%$) was obtained as colorless crystalline solid. $\mathrm{Mp}=146-150{ }^{\circ} \mathrm{C} ; R_{f}=0.48$ (3:2 hexane/EtOAc); [Silica, UV and I_{2}]; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 7.91 (d, $J=8.5,2 \mathrm{H}$), 7.41 (d, $J=8.0,2 \mathrm{H}$), 7.31-7.28 (m, 2H), 7.27-7.23 (m, 5H), 7.22-7.18 (m, 2H), 7.15-7.05 (m, $3 \mathrm{H}), 6.95(\mathrm{brt}, J=8.8,2 \mathrm{H}), 6.51(\mathrm{~d}, J=2.0,1 \mathrm{H}), 5.79(\mathrm{~d}, J=2.5,1 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}), 4.11(\mathrm{dd}, J=$ $12.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J=12.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 160.1(\mathrm{~d}, J=291 \mathrm{~Hz}, 1 \mathrm{C}), 145.1,143.9(\mathrm{~d}, J=9.05 \mathrm{~Hz}, 1 \mathrm{C}), 136.2,134.1,133.4,131.5,129.8$, 129.7, 129.23, 129.17, 128.9, 128.5, 128.0, 127.6, 127.4, 127.1, 116.5, 116.4, 115.1 (d, $J=85.1$ $\mathrm{Hz}, 1 \mathrm{C}), 99.4,51.0,49.3,21.6 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-110.48$; IR (Neat) $v_{\max } 1731,1504$, 1360, 1107, 743, 724, $633 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{33} \mathrm{H}_{27} \mathrm{FNO}_{5} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$: calcd 568.1594, found 568.1594.

X-ray crystallography:

1. Single crystal X-ray data for the compound $\mathbf{3 g}$ were collected using the 'Bruker D8 VENTURE Photon III detector' system [Mo-K α fine focus sealed tube $\lambda=0.71073 \AA$] at $296 \mathrm{~K}, 298 \mathrm{~K}$, and

294 K graphite monochromator with a ω scan. Data reduction was performed using Bruker SAINT software. Intensities for absorption were corrected using SADABS 2014/5.Structure solution and refinement were carried out using Bruker SHELX-TL.

Figure S1. Molecular structure of compound $\mathbf{3 g}$ (Oxygen (red), nitrogen (blue), and sulphur (yellow)

Compound	$\mathbf{3 g}$
formula	$\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}$
Formula weight	419.50
crystal system	Monoclinic
space group	$\mathrm{P} 121 / \mathrm{n} 1$
$\mathrm{~T}[\mathrm{~K}]$	293 K
$\mathrm{a}[\AA]$	$8.2335(3)$
$\mathrm{b}[\AA]$	$18.3922(8)$
$\mathrm{c}[\AA]$	$14.6378(6)$
$\alpha\left[{ }^{\circ}\right]$	90
$\beta\left[{ }^{\circ}\right]$	$104.229(1)$
$\gamma\left[{ }^{\circ}\right]$	90
$V\left[\AA^{3}\right]$	$2148.63(15)$
Z	4

$\rho_{\text {calcd }}\left[\mathrm{g} \mathrm{cm}^{-3}\right]$	1.297
$\mu\left[\mathrm{~mm}^{-1}\right]$	0.181
total reflns	5329
unique reflns	5318
observed	3710
$\mathrm{R}_{1}[\mathrm{I}>2 \sigma(\mathrm{I})]$	0.0476
wR2 [all $]$	0.1404
GOF	1.056
Diffractometer	Bruker D8 VENTURE Photon IIIdetector
CCDC Number	2120261

Table S2. Crystallographic data for compound 3g
2. Single crystal X-ray data for the compound $\mathbf{6 b}$ were collected using the 'Bruker D8 VENTURE Photon III detector' system [Mo-K α fine focus sealed tube $\lambda=0.71073 \AA$] at $296 \mathrm{~K}, 298 \mathrm{~K}$, and 294 K graphite monochromator with a ω scan. Data reduction was performed using Bruker SAINT software. Intensities for absorption were corrected using SADABS 2014/5.Structure solution and refinement were carried out using Bruker SHELX-TL.

Figure S2. Molecular structure of compound $\mathbf{6 b}$ (Oxygen (red), nitrogen (blue), and sulphur (yellow)

Compound	$\mathbf{6 b}$
formula	$\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~S}$
Formula weight	457.52
crystal system	Orthorhombic
space group	P 212121
$\mathrm{~T}[\mathrm{~K}]$	296 K
$\mathrm{a}[\AA]$	$8.793(3)$
$\mathrm{b}[\AA]$	$15.899(5)$
$\mathrm{c}[\AA]$	$17.594(6)$
$\alpha\left[{ }^{\circ}\right]$	90
$\beta\left[^{\circ}\right]$	90
$\gamma\left[{ }^{\circ}\right]$	90
$V\left[\AA^{3}\right]$	$2459.6(14)$
Z	4
$\rho_{\text {calcd }}\left[\mathrm{g} \mathrm{cm}^{-3}\right]$	1.236

$\mu\left[\mathrm{mm}^{-1}\right]$	0.164
total reflns	6130
unique reflns	6113
observed	3288
$\mathrm{R}_{1}[\mathrm{I}>2 \sigma(\mathrm{I})]$	0.0462
wR2 [all $]$	0.1349
GOF	Bruker D8 VENTURE Photon IIIdetector
Diffractometer	2120262
CCDC Number	

Table S3. Crystallographic data for compound $\mathbf{6 b}$

Hirshfeld Surface Analysis ${ }^{3}$

The Hirshfeld surface images (Fig. 1a \& Fig. 1b) in which, the red spots signify the high contact populations, while blue and white spots are for low contact populations. This suggests that the negative (red) or positive value (blue and white) of $\mathrm{d}_{\text {norm }}$ depends on the intermolecular contacts being shorter (red) or longer (blue and white) than the van der Waals separations. For each point on the Hirshfeld surface, the normalized contact distance ($\mathrm{d}_{\text {norm }}$) was determined by the equation as shown below.

$$
\left[\mathrm{d}_{\text {norm }}=\left(\mathrm{d}_{\mathrm{i}}-\mathrm{d}_{\mathrm{i}}^{\mathrm{vdW}}\right) / \mathrm{r}_{\mathrm{i}}^{\mathrm{vdW}}+\left(\mathrm{d}_{\mathrm{e}}-\mathrm{d}_{\mathrm{e}} \mathrm{vdW}^{\mathrm{vd}} \mathrm{re}^{\mathrm{vdW}}\right]\right.
$$

In which d_{i} is measured from the surface to the nearest atom interior to the surface interior, while d_{e} is measured from the surface to the nearest atom exterior to the surface interior, where $r_{i}{ }^{\mathrm{vdW}}$ and $\mathrm{r}_{\mathrm{e}}{ }^{\mathrm{vdW}}$ are the van der Waals radii of the atoms. Hirshfeld surface graphs and two-dimensional
fingerprint plots of $\mathbf{3 g}$ and $\mathbf{6 b}$ (Fig. S3 \& Fig. S4) were analyzed using Crystalexplorer 17.5 software.

Figure S3: Hirshfeld surface calculations and 2D-fingerprint plots of compounds $\mathbf{3 g}$

Hirshfeld surface analysis indicated that $\mathrm{H}^{\cdots} \mathrm{H}, \mathrm{H}^{\cdots} \mathrm{C}$ and $\mathrm{H}^{\cdots} \mathrm{O}$ bond interactions are the primary contributors to the intermolecular stabilization in the crystal. The Hirshfeld surface and subsequent fingerprint plots were calculated for $\mathbf{3 g}$ and $\mathbf{6 b}$ individually, to quantify the intermolecular contacts present within the crystal structures of these compounds (Fig. S3 \& Fig. S4). The X-ray singlecrystal crystallographic information file of $\mathbf{3 g}$ and $\mathbf{6 b}$ were used as input files.

Significant intermolecular interactions are mapped in Fig. S3 \& Fig. S4. On the Hirshfeld surfaces the H...H interactions appear as the largest region 40.7% for $\mathbf{3 g}$ (Fig. S3) and 46.1% for $\mathbf{6 b}$ (Fig. S4) of the fingerprint plot. Two sharp spikes on the fingerprint plot were observed for the $\mathrm{O} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{O}$ contacts, corresponding to the $\mathrm{C} \cdots \mathrm{H} \cdots \mathrm{O}$ interactions. These spikes are indicative of a strong hydrogen-bond interaction. The $\mathrm{C} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{C}$ contacts contribute to 29.0% for $\mathbf{3 a}$ (Fig. S3) and 31.13% for $\mathbf{6 b}$ (Fig. S4) of the Hirshfeld surface area.

All other contacts observed were found to contribute less than $6.7 \%(\mathbf{3 g})$ and 1.2% ($\mathbf{6 b}$). It is therefore clear that the $\mathrm{C} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{C}, \mathrm{O} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{O}$ and especially $\mathrm{H} \cdots \mathrm{H}$ contacts, were the most significant contributors among the interacting atoms. This finding therefore indicates the significance of these contacts in the packing arrangement of the crystal structure. Based on these findings a detailed model was constructed showing the most prominent short range intermolecular contacts that are responsible for the packing arrangement and formation of the three-dimensional network structure of $\mathbf{3 g}$ and $\mathbf{6 b}$ respectively (Fig. S3 \& Fig. S4). 2-D column graphs (i) and (r) for $\mathbf{3 g}$ and $\mathbf{6 b}$ show the percentage contributions of the individual atomic contacts to the Hirshfeld surface.

Figure S4: Hirshfeld surface calculations and 2D-fingerprint plots of compounds 6b.

References

(1) (a) S. Dutta, R. K. Mallick, R. Prasad, V. Gandon, and A. K. Sahoo, Angew. Chem. Int. Ed., 2019, 58, 2289 -2294; (b) B. Prabagar, S. Nayak, R. K. Mallick, R. Prasad and A. K. Sahoo, Org. Chem. Front., 2016, 3, 110-115.
(2) (a) Hyun-Suk Yeom, Jaeyoung Koo, Hyun-Sub Park, Yi Wang, Yong Liang, Zhi-Xiang Yu, and Seunghoon Shin, J. Am. Chem. Soc., 2012, 134, 208-211; (b) Xia, Xiao-Feng; Zhao, Mingming; He, Wei; Zou, Lianghua; San, Xinxin; Wang, Dawei, Advanced Synthesis \& Catalysis, 2020 362, 3621-3626.
(3) (a) M. A. Spackman, J. J. McKinnon, CrystEngComm., 2002, 4, 378-392; (b) M. A. Spackman, D. Jayatilake, Hirshfeld surface analysis, CrystEngComm. 2009, 11, 19-32; (c) C. Zhang, X. Xue, Y. Cao, Y. Zhou, H. Li, J. Zhou, T. Gao, Intermolecular friction symbol derived from crystal information, CrystEngComm. 2013, 15, 6837-6844; (d) M.J. Turner, J.J. McKinnon, S.K. Wolff, D.J. Grimwood, P.R. Spackman, D. Jayatilaka, M.A. Spackman, Crystal Explorer 17; University of Western Australia: Pert, Australia, 2017.

X : parts per Million : Proton

X: parts per Million : Proton

－6ை○にの	N	6	1	6	6	\checkmark
にサNON下	6	N	or	∞	や	N
－•••••			－			
$n \sim \wedge-6 \mathrm{~m}$	$\stackrel{-}{1}$	\bigcirc	\bigcirc	$\stackrel{\square}{\square}$	－	1∞
$\infty \times \sim$ rrr	6	\downarrow	m	\sim	\sim	

にレレの
 $\infty \quad$ m $\sim \sim \sim \sim N$人 へ－

10 （ 96

Current NAME PROCNO	Data Parameters Z RP UPDATED 29 1
F2- Acqu	quisition Parameters
Date_	20210122
Time	16.43
${ }_{\text {In }}^{\text {INSTRUM }}$	
${ }^{\text {PROBHD }}$	2108618_0098 ${ }^{1}$
PULPROG	- 2930
	65536
Solvent	CDC13
NS	16
DS	
SWH	${ }_{8012.820 ~}^{80}$
${ }_{\text {AT }}$	${ }^{0.244532 ~ H z}$
${ }_{\text {AO }}^{\text {AO }}$	4.0894465 sec
${ }_{\text {DE }}$	62.460 usec 16.93 usec
TE	367.1 K
${ }_{\text {TD }}$	1.00000000 sec
SFO1	400.0934706 MHz
${ }^{\mathrm{P} 0}$	${ }^{4.97}$ usec
${ }_{\text {PLW1 }}$	15.18599987
F2-Proc	cessing paramete
	Sesing 6 aram
SF	400.0910000
WDW	EM
SSB	
LB	0.30 Hz
${ }^{\text {GB }}$	
PC	1.00

$\dot{\circ} \dot{\sim} \dot{\sim} \dot{\operatorname{rin}} \dot{\infty} \infty \infty \dot{\sim}$

ค N M.o o e o


```
<\dot{O}
```


 $\xrightarrow{2}$

 ○ （

cu NAME EXPNO PROCNO	Data Parameters K SURESH UPDATED 121 1
F2- Acqu	uisition Parameters
Date_	20210728
	9.49
${ }_{\text {PROBHD }}$	2109128_0042
${ }_{T D}^{\text {PULPROG }}$	29530 6536
Solve	cDC 13
Ns	
SWH	10000.000 Hz
	${ }_{3.2767999}$
${ }^{\text {RG }}$	
DW	50.000
DE	13.04
TE	296.
	0000
${ }_{\text {SFOL }}$	500.1830886 mHz
NuC1	
${ }^{\text {PO}}$	5.00 usec
${ }_{\text {P1 }}^{\text {P1 }}$ 1	4.84679985 w
Pro	cessing parame
SI	
$\stackrel{\text { WFw }}{\text { WF }}$	0.1800096
LB	
SB	

h

人

 Th Thl
\square

 ம ウ m m m m m m m v N N N N N H H ন

 －ம ウか～～••
人

 -••••••

Current	Data Parameters
NAME	RP UPDATED 500
EXPNO	44
PROCNO	1
F2 - Acquisition Parameter	
Date_	20210803
Time	9.48
instrum	spect
PROBHD	2109128_0042 (
PULPROG	zg30
TD	65536
Solvent	CDC13
NS	16
DS	2
SWH	10000.000 Hz
FIDRES	0.305176 Hz
AQ	3.2767999
RG	90.5
DW	50.000 use
DE	13.04 use
TE	297.6
D1	1.00000000
TDO	- 1
SFO1	500.1830886
NUC1	$1{ }^{\text {H }}$
po	5.00 use
P1	15.00 use
PLW1	4.84679985 W
F2 - Processing paramete	
SI	65536
SF	500.1800109 MHz
WDW	EM
SSB	0
LB	0.30 Hz
GB	
PC	1.00

$\dot{\circ} \dot{\sim} \dot{\sim} \dot{\sim}$

亗

 の \quad N ○ ト

Current Data Parameters NAME K SURESH UPDATED 500	
EXPNO	135
PROCNO	1
F2 - Acquisition Parameters	
Date_	20210812
Time	16.13
InSTRUM	spect
PROBHD	Z109128_0042
PULPROG	zg 30
TD	65536
SOLVENT	CDC13
NS	16
DS	2
SWH	10000.000 Hz
FIDRES	0.305176 Hz
AQ	3.2767999 sec
RG	90.5
DW	50.000 usec
DE	13.04 usec
TE	298.3
D1	1.00000000
TDO	1
SFO1	500.1830886 MHz
NUC1	
P0	5.00 usec
P1	15.00 usec
PLW1	4.84679985 W
F2 - Processing parameters	
SI	65536
SF	500.1800103 MHz
WDW	EM
SSB	0
LB	0.30 Hz
GB	
PC	1.00

 $\stackrel{\uparrow}{6}$ $\stackrel{\rightharpoonup}{\sim}$ $\stackrel{\sim}{i}$

\qquad
\qquad 1

$\infty \dot{\infty} \dot{0} \times \dot{r}$

$1 \mid$
$6 m$
m.
+i

(

 のウウヲ

のトゥ ゥ

 のরু

 ค ，」 ，，

のமゥのト ト
$\infty \infty \infty \times r \times r$
11

 ○○6
 L


```
-1
ib~\dot{~}
```



```
* +
```


180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

$\begin{array}{ll}\text { Current } \\ \text { NAME } & K \\ \text { K SURESH UPDATED } \\ 500\end{array}$ EXPNO EXPNO

F2 - Acquisition Parameters
20210730

$$
16.53
$$

$$
\begin{array}{lr}
\text { INme } \\
\text { INSTRUM } & \text { spect } \\
\text { PROBHD } & \text { z109128_0042 (}
\end{array}
$$

$$
\begin{array}{lr}
\text { PROBHD } & \text { Z109128_0042 } 1 \\
\text { PULPROG } & 2930 \\
\text { TD } & 65536
\end{array}
$$

$$
\begin{array}{lr}
\text { TD } & 65536 \\
\text { SOLVENT } & \text { CDC13 } \\
\text { NS } & 16
\end{array}
$$

$$
\begin{aligned}
& \text { DS } \\
& \text { SWH } \\
& \text { FIDRE }
\end{aligned}
$$

$10000.000^{2} \mathrm{~Hz}$
0.305176 Hz 3.2767999 sec

181
50.000 usec
50.000 usec
13.04 usec 13.04 usec
295.9 K 1.00000000 sec 500.1830886 MHz

1H
5.00 usec
15.00

| | |
| :--- | :--- | 4.84679985 W

2 - Processing parameters
SI Processing paramete

0
0.30 Hz
0
1.00

- ~ 60 o
$\stackrel{\infty}{\square}$
$m \sim 0 \infty r$
$\stackrel{\rightharpoonup}{\square}$

$\dot{\sim}$
$\stackrel{\rightharpoonup}{\mathrm{N}}$
$\stackrel{1}{2}$

(2.

170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	ppm

\qquad

$c^{\top} \mathrm{S}$

Current Data Parameters	
name	Rangu Prasad
EXPNo	39
Procno	1
F2 - Acquisition Parameters	
	20210729
Time	17.00
InSTRUM	spect
PROBHD	2108618_0098
PULPROG	zgpg 30
TD	65536
Solvent	CDC13
NS	868
DS	
SWH	24038.461 Hz
FIDRES	0.733596 Hz
${ }^{\text {a }}$ O	1.3631488 sec
RG	724
DW	20.800
DE	6.50
TE	876.9 K
D1	2.00000000 sec
D11	0.03000000 sec
TD0	
SFO1	100.6130223
NuC1	
P0	3.33 us
P1	
PL.W1	49.43999863
SFO2	400.0926004
NuC2	${ }^{1 H}$
CPDPRG[2	waltz65
PCPD2	90.00
PLW2	15.18599987
PLW12	0.41622999
PLW13	0.20936000
F2 - Processing parameter	
SI	32768
SF	100.6029701 MH
WDW	
SSB	0
LB	1.00 Hz
GB	0

∞	-
∞	\checkmark
\bigcirc	6
	-
m	N

$$
\begin{aligned}
& \begin{array}{l}
\text { Current Data Parameters } \\
\text { KAME } \\
\text { KURESH UPDATED } \\
50
\end{array} \\
& \begin{array}{l}
\text { EXPNO } \\
\text { PROCNO }
\end{array} \\
& 2 \text { - Acquisition Parameters } \\
& \begin{array}{l}
\text { Date_ } \quad 20210728 \\
\text { Time }
\end{array} \\
& \begin{array}{cc}
\text { INSTRUM } & 16.28 \mathrm{~h} \\
\text { spect }
\end{array} \\
& \begin{array}{l}
\text { PROBHD } \\
\text { Z109128_0042 } \\
\text { spect } \\
\text { RUPROG }
\end{array} \\
& \begin{array}{lr}
\text { PUPROG } & \text { zg } 300 \\
\text { TD } & 6556 \\
\text { SOLVENT } & \text { CDC13 } \\
\text { NS } & 16 \\
\text { DS } & 2000 \\
\text { SWH } & 1000.000
\end{array} \\
& \begin{array}{l}
10000.000 \mathrm{~Hz} \\
0.30517 \mathrm{~Hz}
\end{array} \\
& \begin{array}{l}
3.2767999 \mathrm{gec} \\
71.8
\end{array} \\
& \begin{array}{l}
13.04 \text { usec } \\
298.6 \mathrm{~K} \\
\text { Kec }
\end{array} \\
& \begin{array}{r}
23.04 \\
28.6 \\
1.00000000 \mathrm{~K}
\end{array} \\
& 500.1830886 \mathrm{MHz} \\
& \begin{array}{r}
5.00 \mathrm{usec} \\
15.00 \mathrm{usec} \\
\hline 10985
\end{array} \\
& 4.84679985 \mathrm{w} \\
& \text { - Processing parameter } \\
& \begin{array}{c}
\text { SI } \\
\text { SE } \\
\text { NDW } \\
\hline
\end{array} \\
& 500.1800000 \mathrm{MHz} \\
& \begin{array}{r}
\text { EM } \\
0 \\
0.30 \mathrm{~Hz}
\end{array} \\
& 1.00
\end{aligned}
$$


```
न サ
```



```
m lll
\infty

\begin{tabular}{|c|c|}
\hline rent & Parameters \\
\hline NAME
EPRNO
PRPC & \(K\) SURESH UPDATED \\
\hline Procno & \\
\hline \multicolumn{2}{|l|}{F2-Acquisition Par} \\
\hline Date & 202107 \\
\hline Time & 16 \\
\hline PROBHD & 209128 \\
\hline \({ }_{\text {PULPROG }}\) & 2gpg 30 \\
\hline \({ }^{\text {TD }}\) & 65536 \\
\hline Ent & \\
\hline NS & \\
\hline \({ }_{\text {ds }}\) & 2976 \\
\hline Swhre & 29761.9826 \\
\hline AO & 1.1010048 se \\
\hline RG & 203 \\
\hline DW & 16.8 \\
\hline DE & 6.5 \\
\hline TE & \\
\hline D1 & 2.000000 \\
\hline D11 & 0.0300000 \\
\hline SFO1 & 125.7829381 MHz \\
\hline & \({ }^{13 \mathrm{C}}\) \\
\hline \({ }^{\text {Po }}\) & 3.33 \\
\hline \({ }_{\text {PLIW1 }}\) & 64.00399780 W \\
\hline & 500.1820007 MHz \\
\hline & 1 H \\
\hline CPDPRG [2 & waltz65 \\
\hline \({ }^{\text {PCPD2 }}\) & 80.0 \\
\hline \({ }^{\text {PLW2 }}\) & 4.8467998 \\
\hline \({ }_{\text {PLW1 }}^{\text {PLW }}\) & \({ }^{0} .08570800\) \\
\hline & \\
\hline \({ }_{\text {si }}{ }_{\text {F2 }}\) - Proc & cessing parametes \\
\hline SF & 125.7703709 MHz \\
\hline WDW & EM \\
\hline SSB & \\
\hline \({ }^{\text {LB }}\) & 1.00 Hz \\
\hline \({ }_{\text {PC }}^{\text {GB }}\) & 1.40 \\
\hline
\end{tabular}





\(\rightarrow\) \(\uparrow\) \(\qquad\)

\[
\begin{aligned}
& \text { + }
\end{aligned}
\]

ónoinr~
に
\(\stackrel{N}{\sim}\)
n
.
\(\begin{array}{ll}\cdots \\ \cdots & \pi \\ \sim\end{array}\)
11








 ウみゥ のみm m m m m m N N N N N N N N N ন


\(\infty\) Nゥ \(\infty\) N No \(\dot{\sim} \dot{m} \dot{\sim} \dot{r} \dot{r}\) \(\infty \infty \infty\) ＋





X : parts per Million : Proton







X : parts per Million : Proton























\(\stackrel{\nabla}{6}\)
人上「下「 \(\underbrace{\sim}\) \(\downarrow\)



```

