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Fig. S2 Powder X-ray diffraction patterns of MOF 2.
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Fig. S3 Powder X-ray diffraction patterns of MOF 3.
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Fig. S4 FT-IR spectra of MOF 1 (a), MOF 2 (b) and MOF 3 (c).



Fig. S5 SEM images of MOF 1 (a), MOF 2 (b) and MOF 3 (c).
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Fig. S6 TGA curves of MOFs 1-3 measured in air atmosphere.
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Fig. S7 Relative peroxidase activity of MOFs 1-3 at different temperatures (a), pH
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Fig. S8 UV-vis absorbance spectra at different pH values for 1 (a), 2 (b), 3 (¢).
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Fig. S9 UV-vis absorbance spectra at different temperature for 1 (a), 2 (b), 3 (¢).
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Fig. S10 UV-vis absorbance spectra at different concentrations of MOFs for 1 (a), 2
(b), 3 (c).
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Fig. S11 Kinetic data obtained by varying H,O, concentrations while keeping the

concentration of ABTS constant (0.5 mmol L), for 1 (a), for 2 (¢), for 3 (¢) and the

Lineweaver-Burk plots of the double reciprocal of the Michaelis-Menten equation for
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Fig. S12 Kinetic data obtained by varying ABTS concentrations while keeping the
concentration of H,O, constant (0.5 mmol L) for 1 (a), for 2 (¢), for 3 (¢) and the

Lineweaver-Burk plots of the double reciprocal of the Michaelis-Menten equation
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Fig. S13 UV-vis absorbance spectra of kinetic data obtained by varying H,0,
concentrations while keeping the concentration of ABTS constant (0.5 mmol L), for

1 (a), for 2 (b), for 3 (c).
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Fig. S14 UV-vis absorbance spectra of kinetic data obtained by varying ABTS
concentrations while keeping the concentration of H,O, constant (0.5 mmol L), for 1
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Fig. S15 The corresponding linear calibration plots for H,O, detection of 1 with linear

ranges of 0.5 to 200 uM (a), 200 to 500 uM (b).
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Fig. S17 The corresponding linear calibration plots for H,O, detection of 2 with linear

ranges of 0.5 to 100 uM (a), 100 to 500 uM (b).
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Fig. S22 Photographs of selectivity of MOFs 1-3 for H,0,. From left to right:
isopropyl alcohol (IPA), ethanol (EA), acetone(AC), tetrahydrofuran (THF), ethyl
acetate (EAC), DMF, NaCl, KClI, aspartic acid (Asp), glucose (Glu), ascorbic acid
(AA), citric acid (CA), salicylic acid (SA) and H,0,.
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Fig. S23 The XPS spectra of MOFs 1-3.
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Table S1 Crystal and structure refinement data for MOFs 1-3

MOFs
chemical
formula
fw
cryst system

space grow

a/A
b/A
c/A
o/deg
B/deg
v/deg
V) A3
T/K
Z
D./g cm?3
wmm'!

F(000)

index ranges

Rint
GOF on F?
Ry[1>20(])]
WR[I>26(1)]

CCDC No.

1

CsoHysCugNsO3,

1717.24
triclinic
P-1
8.4291(15)
16.414(3)
16.973(3)
72.135(7)
80.514(7)
89.314(9)
2202.7(7)
170
1
1.295
1.495
864.0
-10<h<10
-21<k=21
-22<121
0.1044
1.081
0.0499
0.1451

2129142

2

Cs,H30CusNGO13

1137.44
triclinic
P-1
9.2608(3)
10.6337(4)
13.1879(5)
82.385(1)
85.159(1)
70.816(1)
1214.6(1)
296
1
1.655
1.372
615.0
-12<h<12
-13<k<13
-17<1<17
0.0707
1.039
0.0367
0.1008

2129147

3

Cs6Hs,CugNsOsg

1901.334
monoclinic
C2/e
27.4616(7)
23.3296(6)
14.1872(4)
90
105.775(1)
90
8747.0(4)
289
4
1.711
3.073
4576
-33<h<33
-28<h<28
-16<h<17
0.0502
1.054
0.0377
0.1058

2129156

@ Ry =Z|F,| - |FJ/Z|Fo|. ? wRy = Z[W(F 2 - F2)X/Z[w(F,,? )*]"?



Table S2 Selected bond lengths [A] and angles [°] for MOFs 1-3

1
Cu(2)-0(4) 1.946(3) O(1)- Cu(1) 1.955(3)
Cu(2)-0(10)#1 1.959(3) Cu(1)-0(5) 1.956(3)
Cu(2)-0(2) 1.951(3) Cu(1)-0(9)#1 1.990(3)
Cu(2)-0(11)#1 1.956(3) Cu(1)-0(12)#1 1.955(3)
Cu(2)-0(3) 2.146(4) Cu(3)-0(14)#2 1.9713)
Cu(3)-0(7) 1.960(3) Cu(3)-N(2)#3 2.034(3)
Cu(3)-N(1)#4 2.032(3) Cu(3)-0(6) 2.323(4)
O(4)-Cu(2)-O(10)#1 88.24(14) 0(4)-Cu(2)-0(2) 91.21(14)
0(4)-Cu(2)-0(3) 99.08(16) O(10)#1-Cu(2)-0(3) 99.40(15)
0(2)-Cu(2)-O(10)#1 169.06(12) 0(2)-Cu(2)-0(3) 91.48(15)
O(11)#1-Cu(2)-O(4) 166.87(13) O(11)#1-Cu(2)-O(10%#1  90.11(14)
O(11)#1-Cu(2)-0(2) 87.95(14) O(11)#1-Cu(2)-0(3) 94.04(16)
0(5)-Cu(1)-0(1) 89.43(13) 0(5)-Cu(1)-O(9)#1 88.69(13)
O(9)#1-Cu(1)-0(1) 166.40(12) O(12)#1-Cu(1)-0(1) 88.28(14)
O(12)#1-Cu(1)-0(5) 168.57(12) O(12)#1-Cu(1)-09)#1 90.91(13)
O(14)#2-Cu(3)-NQ2)#3  90.95(12) O(14)#2-Cu3)-N(1)#4  88.24(12)
O(14)#2-Cu(3)-0(6) 88.81(17) O(7)-Cu(3)-O(14)#2 177.20(11)
O(7)-Cu(3)-0(2)#3 91.37(12) O(7)-Cu(3)-N(1)#4 89.67(12)
0(7)-Cu(3)-0(6) 89.43(17) N(2)#3-Cu(3)-0(6) 94.84(15)
N(D)#4-Cu@3)-NQ)#3  172.45(13) N(1)#4-Cu(3)-0(6) 92.64(14)

Symmetry transformations used to generate equivalent atoms:
#1 1+X, +Y, +Z; #2 +X, -1+Y, +Z; #3 1-X, 1-Y, -Z; #4 1-X, 1-Y, 1-Z #5 +X, 1+Y, +Z; #6 -1+X, +Y,

+Z
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Cu(1)-0(3)#1 1.9354(17) Cu(1)-O(4) 1.9357(18)
Cu(1)-0(5)#2 2.2741(18) Cu(1)-N(1) 2.030(2)
Cu(1)-N(3) 2.046(2) 0(6)-Cu(3)#3 1.9665(17)
0(6)-Cu(2)4 1.9676(18) 0(6)-Cu(2)#3 2.055(2)
N(2)-Cu(3) 2.0182(18) N(2)-Cu(2)#5 2.118(3)
N(2)-Cu(2) 2.020(2) O(3)#1-Cu(1)-O(4) 96.90(7)
OG#1-Cu(1)-O(5/2  110.94(7) O(3)#1-Cu(1)-N(1) 90.24(7)
OB)#1-Cu(1)-N(3) 163.27(7) O(4)-Cu(1)-0(5)#2 94.01(7)
O(4)-Cu(1)-N(1) 171.44(7) O(4)-Cu(1)-N(3) 90.98(7)
N(1)-Cu(1)-O(5)#2 87.79(7) N(1)-Cu(1)-N(3) 80.92(7)
N@3)-Cu(1)-0(5)#2 83.06(7) O(6)#5-Cu(3)-O(6)#7 180.0
O(6)#7-Cu(3)-NQ#6  89.14(7) O(6)#5-Cu(3)-N(2)#6 90.86(7)
O(6)#5-Cu(3)-N(2) 89.14(7) N(2)#6-Cu(3)-N(2) 180.0
O(6)#5-Cu(2)-O(6}#7  160.8(3) O(6)#5-Cu(2)-N(2) 91.46(8)
O(6)#5-Cu(2)-NQQ#6  88.84(9) O(6)#7-Cu(2)-N(2)#6 84.14(11)
N(2)-Cu(2)-N(2)#6 161.4(31)

Symmetry transformations used to generate equivalent atoms:
#1 -1+X, +Y, +Z; #2 1-X, 1-Y, 1-Z; #3 +X,1+Y, +Z; #4 1+X, +Y, +7Z; #5 1-X,1-Y, 2-Z; #6 X, -1+Y, Z;

#71-X,-Y,2-Z
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Cu(1)-0(12)
Cu(1)-O(19)#2
Cu(1)-0(17) #4
Cu(3)-0(6)

Cu(3)-N(3)
Cu(2)-0(14) #6
Cu(2)-0(12)
Cu(4)-0(2)

Cu(4)-0(3)
0(12)-Cu(1)-O(12)#1
0(12)-Cu(1)-O(15)43
O(19)#2-Cu(1)-O(12)#1
O(15)#3-Cu(1)-0(12)#1
O(17)#4-Cu(1)-O(19)#2
0(10)-Cu(3)-0(6)
0(10)-Cu(3)-N(3)
0(6)-Cu(3)-N(3)
0(11)-Cu(2)-O(16)#4
0(12)-Cu(2)-0(11)
O(16)#4-Cu(2)-O(14)#6
O(9)#5-Cu(4)-0(5)
O(9)#5-Cu(4)-0(4)
0(2)-Cu(4)-0(3)
O(4)-Cu(4)-0(2)
O(4)-Cu(4)-0(3)

1.9200(18)
1.9693(18)
1.9739(18)
1.945(2)
1.977(2)
1.9699(18)
1.8839(18)
1.955(3)
2.222(3)
84.15(8)
173.23(9)
89.58(9)
90.27(8)
173.61(10)
172.30(8)
93.55(10)
87.06(10)
83.69(8)
178.90(9)
174.11(9)
84.80(9)
167.74(13)
102.88(17)
89.67(12)

98.43(15)

O(1)-Cu(12) #1
Cu(1)-0(15) #3
Cu(3)-0(10)
Cu(3)-N(2)
0(9)-Cu(4)#5
Cu(2)-0(11)
Cu(2)-0(16) #4
Cu(4)-0(5)

Cu(4)-0(4)
0(12)-Cu(1)-O(19)#2
0(12) -Cu(1)-O(17)#4
O(19)#2-Cu(1)-0(15) #3
O(17)#4-Cu(1)-O(12)#1
O(17)#4-Cu(1)-O(15)#3
0(10)-Cu(3)-N(2)
0(6)-Cu(3)-N(2)
O(11)-Cu(2)-O(14)#6
0(12)-Cu(2)-O(14)#6
0(12)-Cu(2)-O(16)#4
O(9)#5-Cu(4)-0(2)
O(9)#5-Cu(4)-0(3)
0(2)-Cu(4)-0(5)
0(5)-Cu(4)-0(3)
O(4)-Cu(4)-0(5)

2.368(2)
1.9959(18)
1.943(2)
2.000(2)
1.938(2)
1.9454(18)
1.9546(18)
1.976(2)
1.948(2)
92.00(8)
92.69(8)
91.80(8)
95.21(9)
83.98(8)
90.89(9)
91.55(9)
92.55(8)
88.48(8)
95.32(8)
92.80(11)
92.73(15)
171.37(15)
85.54(11)

90.99(10)

Symmetry transformations used to generate equivalent atoms:

#1 1.5-X, 0.5+Y, 0.5-Z; #2 X, 1-Y, -0.5+Z; #3 +X, +Y,-1+Z; #4 1.5-X, 1.5-Y, -Z; #5 1-X, +Y, 1.5-Z;

#6 1.5-X, 1.5-Y, 1-Z; #7 1-X, Y, 0.5-Z; #8 +X,+Y,1+Z; #9 +X,1-Y, 0.5+Z; #10 1.5-X, -0.5+Y, 0.5-Z

21



Table S3 Mild oxidation of cycloalkanes (C6 and C8) in the presence of catalysts 1-3?

hydrocarbon

1 cyclohexane

cyclooctane

2 cyclohexane

cyclooctane

3 cyclohexane

cyclooctane

20°C 40 °C 60 °C
Cyclic  Cyclic  totalc  Cyclic Cyclic total® Cyclic Cyclic total®
alcohol  ketone alcohol  ketone alcohol  ketone
0.05 0.27 0.31 8.04 6.21 14.25 11.08 8.63 19.71
trace 0.89 0.89 1.07 5.25 6.32 1.14 433 5.47
trace 0.66 0.66 10.07 11.16 21.23 13.06 12.25 25.31
trace 1.05 1.05 1.90 7.09 8.99 3.08 7.26 10.34
trace 1.23 1.23 11.21 7.09 18.30 14.72 11.24 25.96
trace 0.21 0.21 3.12 8.53 11.65 2.04 7.04 9.08

2Conditions of the reactions: cycloalkane, 1 mmol; catalysts 1-3, 10 pmol; H,O,, 5 mmol; MeCN, 2.5 mL; time, 6

h. PYields were calculated as (moles of product per mole of cycloalkane) x 100% ; typically determined by GC

after the treatment with PPh;. °“Sum of the alcohol and ketone yields.
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012iii

Fig. S24 The ORTEP diagrams of MOF 1 (a), 2 (b), 3 (c) (probability level
50%).Symmetry equivalent positions are (i) 1+x, y, z; (ii) x, -1+y, z, (iii) 1-x, 1-y, 1-z; (iv) 1-
X, 1-y, -z for MOF 1; (i) -1+x, y, z; (i1) 1-x, l-y, 1-z, (iii) 1-x, 1-y, 2-z; (iv) x, -1+y, z for
MOF 2; (i) 1-x, y,1.5-z; (i) 1-x, y, 0.5-z, (iii) 1.5-x, 1.5-y, -z; (iv) 1.5-x, 1-y, 1-z, (V) X, y, -

1+z; (vi) X, 1-y, -0.5+z for MOF 3.
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