Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supplementary Information

Substituted pyrrolyl-cyanopyridines on the platform of acylethynylpyrroles via their 1:2 annulation with acetonitrile under the action of lithium metal

Denis N. Tomilin, Lyubov N. Sobenina, Ivan V. Saliy, Igor A. Ushakov, Aleksandra M. Belogolova, Boris A. Trofimov*

A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Science, 1 Favorsky Str., 664033 Irkutsk, Russia, tel/fax: + 7(3952) 41-93-46;

*Corresponding author. E-mail: boris_trofimov@irioch.irk.ru

Contents

General Information	3
Synthesis of pyridines 2a-r . General procedure	4
Synthesis of alcohols 3a-c	9
Synthesis of (E)-3-(1-benzyl-4,5,6,7-tetrahydro-1 <i>H</i> -indol-2-yl)-N-(1-cyanoprop-1-en-2-yl)propiolamide (7)	1
¹ H NMR monitoring of 1a with MeCN reaction in the presence of 2 eq of Li (72 and 120h)	2
NMR Spectra of synthesized compounds 1	3

General Information

IR spectra were obtained on a "Bruker IFS-25" spectrometer (KBr pellets or films in 400-4000 cm⁻¹ region). ¹H (400.13 MHz), ¹³C (100.6 MHz) NMR spectra were recorded on a "Bruker Avance 400" instrument in CDCl₃. The assignment of signals in the ¹H NMR spectra was made using COSY and NOESY experiments. Resonance signals of carbon atoms were assigned based on ¹H-¹³C HSQC and ¹H-¹³C HMBC experiments. The ¹H chemical shifts (δ) were referenced to the residual solvent protons (7.26 ppm, CDCl₃), the ¹³C chemical shifts were expressed with respect to the deuterated solvent (77.16 ppm). Coupling constants in hertz (Hz) were measured from one-dimensional spectra and multiplicities were abbreviated as following: br (broad), s (singlet), d (doublet), t (triplet), m (multiplet). The chemical shifts were recorded in ppm. The (C, H, N) microanalyses were performed on a Flash EA 1112 CHNS-O/MAS (CHN Analyzer) instrument. Sulfur was determined by complexometric titration with Chlorasenazo III. Fluorine content was determined on a SPECOL 11 (Carl Zeiss Jena, Germany) spectrophotometer. High-resolution mass spectra were recorded from acetonitrile solution with 0.1% HFBA on HPLC Agilent 1200/Agilent 6210 TOF instrument equipped with an electrospray ionization (ESI) source. Melting points (uncorrected) were determined with SMP50 Stuart Automatic melting point (Stuart Scientific). Acetonitrile was distilled over calcium hydride and degassed by freeze-pump-thaw method before use.

Synthesis of pyridines 2a-r. General procedure.

Ethynylpyrrole **1a-p** or acetylenic ketone **1g,r** (1 mmol) was dissolved in dry MeCN (5 ml), and then piece of lithium (14 mg, 2 mmol) was added to reaction mixture. Reaction vessel was sealed and stirred for 5 days at room temperature. Lithium slowly dissolves in solution, forming white to orange suspension. Then reaction mixture was diluted with water (30 ml) and extracted by diethyl ether (3x10 ml). Combined extracts were washed with water and dried over CaCl₂. The residue after removing solvent was fractionated by column chromatography (SiO₂, n-hexane : diethyl ether, 10 : 1) to afford pyridines 2a-r.

6-(1-Benzyl-4,5,6,7-tetrahydro-1*H*-indol-2-yl)-2-methyl-4-(thiophen-2-yl)-

nicotinonitrile (2a). Yield: 315 mg (77%), yellow crystals, mp 207-208 °C. IR (film) 3087, 2921, 2846, 2211, 1585, 1563, 1528, 1487, 1440, 1383, 1356, 1293, 1236, 1184, 1146, 1118, 1067, 1028, 1002, 876, 821, 796, 731, 714, 655, 458 cm⁻¹.

¹H NMR (400.13 MHz, CDCl₃): δ 7.40–7.32 (m, 4H, H,m,p Ph, H-5, pyridine), 7.23-7.22 (m, 1H, H-5, thiophene), 7.12-7.05 (m, 1H, H-3, thiophene), 7.00-6.98 (m, 3H, Ho, Ph, H-4, thiophene), 6.70 (s, 1H, H-3, pyrrole), 5.12 (s, 2H, CH₂Ph), 2.82 (s, 3H, CH₃, pyridine), 2.65–2.59 (m, 2H, CH₂-7), 2.51–2.46 (m, 2H, CH₂-4), 1.87–1.75 (m, 4H, CH₂-5,6). ¹³C NMR (100.6 MHz, CDCl₃): δ 163.4, 153.3, 144.4, 143.5, 138.5, 134.6, 129.7, 129.2 (2C), 128.3, 127.5, 127.3, 126.5, 125.6 (2C), 119.7, 118.0, 114.6, 113.3, 104.4, 48.0, 24.4, 23.6, 23.2, 23.1, 22.5. Anal. Calcd for C₂₆H₂₃N₃S: C, 76.25; H, 5.66; N, 10.26; S, 7.83%. Found: C, 76.51; H, 5.81; N, 10.46; S, 7.51%.

2-Methyl-6-(1-methyl-1H-pyrrol-2-yl)-4-phenylnicotinonitrile (2b). Yield: 175 mg (64%), yellow crystals, mp 117-118 °C. IR (film) 3128, 3095, 3040, 2923, 2220, 1581, Ме 1542, 1473, 1282, 1093, 1059, 1031, 881, 781, 748, 717, 688, 597, 526 cm⁻¹. ¹H NMR (400.13 MHz, CDCl₃): δ 8.06–8.04 (m, 2H, Ho, Ph), 7.57 (s, 1H, H-5, pyridine), 7.55–7.47 (m, 3H, Hm,p, Ph), 6.89-6.87 (m, 1H, H-5, pyrrole), 6.65-6.64 (m, 1H, H-3, pyrrole), 6.32-6.30 (m, 1H, H-4, pyrrole), 3.73 (s, 3H, NCH₃), 2.91 (s, 3H, CH₃, pyridine). ¹³C NMR (100.6 MHz, CDCl₃): δ 162.9, 158.7, 144.8, 137.8, 130.3, 129.0 (2C), 128.5, 127.4 (2C), 126.9, 117.7, 117.6, 113.4, 109.1, 106.0, 35.3, 24.5; Anal. Calcd for C₁₈H₁₅N₃: C, 79.10; H, 5.53; N, 15.37%. Found: C, 79.34; H, 5.77; N, 15.58%.

6-(1-Benzyl-1H-pyrrol-2-yl)-2-methyl-4-phenylnicotinonitrile (2c). Yield: 230 mg (66%), yellow crystals, mp 111-112 °C. IR (film) 3063, 3031, 2925, 2219, 1583, 1541, 1495, 1470, 1454, 1287, 1162, 1077, 1028, 912, 782, 729, 693, 526 cm⁻¹. IR (film) 3063, 3031, 2925, 2219, 1583, 1541, 1495, 1470, 1454, 1287, 1162, 1077, 1028, 912, 782, 729, 693, 526 cm⁻¹. ¹H NMR (400.13 MHz, CDCl₃): δ 7.75–7.73 (m, 2H, Ho, Ph), 7.45–7.36 (m, 4H, Hm,p Ph, H-5, pyridine), 7.36–7.28 (m, 3H, H*m*,*p*, Bn), 7.01–6.99 (m, 2H, H*o*, Bn), 6.97–6.94 (m, 1H, H-5, pyrrole), 6.76–6.71 (m, 1H, H-4, pyrrole), 6.41–6.38 (m, 1H, H-3, pyrrole), 5.21 (s, 2H, CH₂-Ph), 2.85 (s, 3H, CH₃, pyridine). ¹³C NMR (100.6 MHz, CDCl₃): δ 163.0, 158.5, 144.8, 138.3, 137.6, 130.3, 129.1 (2C), 128.9 (2C), 128.7, 127.8, 127.4 (2C), 126.7, 126.2 (2C), 117.5, 117.4, 113.9 (2C), 109.7, 51.6, 24.6. Anal. Calcd for C₂₄H₁₉N₃: C, 82.49; H, 5.48; N, 12.03%. Found: C, 82.22; H, 5.69; N, 12.29%.

Ph2-Methyl-6-(1-methyl-5-phenyl-1*H*-pyrrol-2-yl)-4-phenylnicotinonitrile(2d).Yield: 255 mg (73%), yellow crystals, mp 145-146 °C. IR (film) 3048, 2211, 1576,
1533, 1455, 1302, 1241, 1192, 1072, 1059, 1032, 886, 810, 777, 752, 723, 687, 622,523, 473 cm⁻¹. ¹H NMR (400.13 MHz, CDCl₃): δ 8.09–8.06 (m, 2H, Ho, Ph), 7.65 (s, 1H, H-5, pyridine),
7.57–7.49 (m, 5H, Ph), 7.49–7.43 (m, 2H, Ph), 7.42–7.34 (m, 1H, Hp, Ph), 6.76 (d, J = 3.8 Hz, 1H, H-3,
pyrrole), 6.42 (d, J = 3.8 Hz, 1H, H-4, pyrrole), 3.66 (s, 3H, NCH₃), 2.92 (s, 3H, CH₃, pyridine).1³C NMR
(100.6 MHz, CDCl₃): δ 163.1, 158.8, 144.8, 140.5, 138.0, 132.6, 131.0, 130.3, 129.1 (2C), 129.0 (2C), 128.7
(2C), 127.8, 127.5 (2C), 117.9, 117.7, 113.7, 109.9, 105.6, 34.7, 24.6. Anal. Calcd for C₂₄H₁₉N₃: C, 82.49;
H, 5.48; N, 12.03%. Found: C, 82.68; H, 5.66; N, 12.34%.

2-Methyl-6-(1-methyl-5-phenyl-1*H*-pyrrol-2-yl)-4-(thiophen-2-yl)nicotinonitrile

(2e). Yield: 309 mg (87%), yellow crystals, mp 148-149 °C. IR (film) 3104, 3071, 2955, 2925, 2217, 1578, 1531, 1458, 1400, 1352, 1297, 1240, 1184, 1060, 1034, 910, 878, 853, 797, 759, 731, 701, 649 cm⁻¹.¹H NMR (400.13 MHz, CDCl₃): δ 7.86–7.85

(m, 1H, H-5, thiophene), 7.55–7.44 (m, 6H, H*o*,*m*, Ph, H-5, pyridine, H-3, thiophene), 7.42–7.35 (m, 1H, H*p*, Ph), 7.20–7.15 (m, 1H, H-4, thiophene), 6.77 (d, J = 3.8 Hz, 1H, H-3, pyrrole), 6.42 (d, J = 3.8 Hz, 1H, H-4, pyrrole), 3.64 (s, 3H, NCH₃), 2.90 (s, 3H, CH₃, pyridine). ¹³C NMR (100.6 MHz, CDCl₃): δ 163.3, 153.9, 144.8, 143.6, 140.6, 132.6, 130.9, 130.0, 129.2 (2C), 128.7 (2C), 128.6, 127.8, 126.9, 117.9, 115.9, 113.7, 109.9, 105.2, 34.7, 24.4. Anal. Calcd for C₂₂H₁₇N₃S: C, 74.34; H, 4.82; N, 11.82; S, 9.02%. Found: C, 74.50; H, 4.98; N, 11.56; S, 8.81%.

6-(4,5-Diphenyl-1-vinyl-1*H*-pyrrol-2-yl)-4-(furan-2-yl)-2-methylnicotinonitrile

(**2f**). Yield: 307 mg (72%), yellow crystals, mp 156-157 °C. IR (film) 3142, 3060, 3032, 2220, 1640, 1598, 1570, 1486, 1407, 1297, 1193, 1096, 1072, 1012, 953, 910, 886, 828, 764, 733, 700, 648, 595, 508 cm⁻¹. ¹H NMR (400.13 MHz, CDCl₃): δ 7.67

(s, 1H, H-5, pyridine), 7.61–7.59 (m, 1H, H-5, furan), 7.43–7.35 (m, 5H, Ph), 7.25–7.23 (m, 1H, Hp, Ph), 7.22–7.17 (m, 4H, Ho,m, Ph), 7.17–7.12 (m, 1H, H-3, furan), 6.93 (s, 1H, H-3, pyrrole), 6.81 (dd, J = 15.7, 8.5 Hz, 1H, H_x), 6.60–6.58 (m, 1H, H-4, furan), 4.85 (d, J = 8.5 Hz, 1H, H_A), 4.57 (d, J = 15.7 Hz, 1H, H_B), 2.85 (s, 3H, CH₃, pyridine). ¹³C NMR (100.6 MHz, CDCl₃): δ 163.1, 152.7, 150.2, 145.2, 144.9, 134.9, 134.8, 131.7 (2C), 131.4, 131.3, 128.7 (2C), 128.5, 128.3 (2C), 128.1 (2C), 127.9, 126.2, 124.8, 117.7,

116.2, 116.0, 112.7, 112.0, 110.4, 105.2, 24.4. Anal. Calcd for C₂₉H₂₁N₃O: C, 81.48; H, 4.95; N, 9.83; O, 3.74%. Found: C, 81.62; H, 5.12; N, 10.03%.

2-Methyl-4-phenyl-6-(5-(*p***-tolyl)-1-vinyl-1***H***-pyrrol-2-yl)nicotinonitrile (2g**). Yield: 263 mg (70%), yellow crystals, mp 118-119 °C. IR (film) 3063, 3028, 2919, 2850, 2219, 1640, 1580, 1537, 1537, 1476, 1423, 1286, 1238,

1074, 910, 822, 779, 733, 693 cm⁻¹. ¹H NMR (400.13 MHz, CDCl₃): δ 8.06–8.04 (m, 2H, H*o*, Ph), 7.65 (s, 1H, H-5, pyridine), 7.54–7.47 (m, 3H, H*m*,*p*, Ph), 7.38–7.36 (m, 2H, H*o*, *p*-tolyl), 7.26–7.23 (m, 2H, H*m*, *p*-tolyl), 6.95 (dd, *J* = 15.6, 8.6 Hz, 1H, H_x), 6.76 (d, *J* = 3.8 Hz, 1H, H-3, pyrrole), 6.38 (d, *J* = 3.8 Hz, 1H, H-4, pyrrole), 4.94 (d, *J* = 8.6 Hz, 1H, H_A), 4.64 (d, *J* = 15.6 Hz, 1H, H_B), 2.90 (s, 3H, CH₃, pyridine), 2.41 (s, 3H, CH₃, *p*-tolyl). ¹³C NMR (100.6 MHz, CDCl₃): δ 162.7, 158.5, 145.4, 139.0, 137.9, 137.8, 131.5, 130.3, 129.4, 129.3 (2C), 129.2 (2C), 129.0 (2C), 128.5, 127.4 (2C), 118.4, 117.7, 115.8, 110.9, 110.6, 105.8, 24.5, 21.3. Anal. Calcd for C₂₆H₂₁N₃: C, 83.17; H, 5.64; N, 11.19%. Found: C, 83.38; H, 5.90; N, 11.35%.

6-(1-Ethyl-5-(4-methoxyphenyl)-1*H***-pyrrol-2-yl)-2-methyl-4-(thiophen-2-yl)nicotinonitrile (2h)**. Yield: 283 mg (71%), yellow crystals, mp 141-142 °C. IR (film) 3140, 3058, 2976, 2934, 2836, 2218, 1611, 1580, 1531, 1471, 1442, 1287, 1249, 1177, 1060, 1032, 910, 836, 778, 731, 649, 548 cm⁻¹. ¹H

NMR (400.13 MHz, CDCl₃): δ 7.88–7.85 (m, 1H, H-5, thiophene), 7.56–7.52 (m, 2H, H-5, pyridine, H-3, thiophene), 7.44–7.41 (m, 2H, H*o*, Ph), 7.19–7.16 (m, 1H, H-4, thiophene), 7.02–6.97 (m, 2H, H*m*, Ph), 6.68 (d, *J* = 3.7 Hz, 1H, H-3, pyrrole), 6.31 (d, *J* = 3.7 Hz, 1H, H-4, pyrrole), 4.10 (q, *J* = 7.2 Hz, 2H, NCH₂), 3.87 (s, 3H, OCH₃), 2.90 (s, 3H, CH₃, pyridine), 0.84 (t, *J* = 7.2 Hz, 3H, CH₃). ¹³C NMR (100.6 MHz, CDCl₃): δ 163.2, 159.5, 153.9, 145.6, 143.6, 139.8, 130.6 (2C), 130.0, 129.3, 128.6, 126.9, 125.6, 117.6, 115.8, 114.4, 114.2 (2C), 110.6, 105.5, 55.4, 41.1, 24.4, 16.2. Anal. Calcd for C₂₄H₂₁N₃OS: C, 72.15; H, 5.30; N, 10.52; S, 8.02%. Found: C, 72.41; H, 5.48; N, 10.29; S, 7.83%. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₄H₂₁N₃OS 400.148359; Found 400.1484.

6-(1-Benzyl-5-(4-methoxyphenyl)-1H-pyrrol-2-yl)-2-methyl-4-

phenylnicotinonitrile (2i). Yield: 337 mg (74%), yellow crystals, mp 135-136 °C. IR (film) 3105, 3063, 3031, 2932, 2848, 2218, 1580, 1536, 1473,

1251, 1178, 1031, 910, 836, 780, 732, 695, 544 cm⁻¹. ¹H NMR (400.13 MHz, CDCl₃): δ 7.77–7.75 (m, 2H, H*o*, Ph), 7.51 (s, 1H, H-5, pyridine), 7.43–7.40 (m, 3H, H*m*,*p*, Ph), 7.37–7.31 (m, 2H, H*o*, CH₃OPh), 7.22–7.16 (m, 3H, H*m*,*p*, Bn), 6.90–6.88 (m, 2H, H*m*, CH₃OPh), 6.78 (d, *J* = 3.8 Hz, 1H, H-3, pyrrole), 6.75–6.71 (m, 2H, H*o*, Bn), 6.42 (d, *J* = 3.8 Hz, 1H, H-4, pyrrole), 5.23 (s, 2H, CH₂-Ph), 3.82 (s, 3H, OCH₃), 2.83 (s, 3H, CH₃, pyridine). ¹³C NMR (100.6 MHz, CDCl₃): δ 163.0, 159.5, 158.6, 145.2, 140.4, 138.9, 137.8, 130.7 (2C), 130.3, 130.1, 128.9 (2C), 128.8 (2C), 127.4 (3C), 125.9 (2C), 125.3, 117.7, 117.3, 114.6, 114.1 (2C),

110.4, 106.1, 55.4, 49.6, 24.6. Anal. Calcd for C₃₁H₂₅N₃O: C, 81.73; H, 5.53; N, 9.22; O, 3.51%. Found: C, 81.97; H, 5.74; N, 9.41%.

6-(5-(4-Chlorophenyl)-1-methyl-1H-pyrrol-2-yl)-2-methyl-4-

phenylnicotinonitrile (2j). Yield: 268 mg (70%), yellow crystals, mp 183-184
°C. IR (film) 3063, 2219, 1581, 1534, 1468, 1452, 1410, 1342, 1304, 1241,

1191, 1012, 909, 1053, 1012, 909, 833, 778, 733, 694, 650, 513 cm⁻¹. ¹H NMR (400.13 MHz, CDCl₃): δ 8.10–8.07 (m, 2H, Ho, Ph), 7.64 (s, 1H, H-5, pyridine), 7.54–7.52 (m, 3H, Ph), 7.45–7.43 (m, 4H, Ph), 6.80 (d, J = 3.9 Hz, 1H, H-3, pyrrole), 6.42 (d, J = 3.9 Hz, 1H, H-4, pyrrole), 3.64 (s, 3H, NCH₃), 2.99 (s, 3H, CH₃, pyridine). ¹³C NMR (100.6 MHz, CDCl₃): δ 163.2, 159.1, 144.9, 139.2, 138.0, 133.9, 131.5, 131.1, 130.5, 130.4 (2C), 129.1 (2C), 129.0 (2C), 127.5 (2C), 117.9, 117.8, 113.7, 110.2, 105.9, 34.7, 24.6. Anal. Calcd for C₂₄H₁₈ClN₃: C, 75.09; H, 4.73; Cl, 9.23; N, 10.95%. Found: C, 75.31; H, 4.96; Cl, 8.95; N, 10.72%.

6-(5-(2-Fluorophenyl)-1-vinyl-1H-pyrrol-2-yl)-2-methyl-4-

phenylnicotinonitrile (2k). Yield: 258 mg (68%), yellow crystals, mp 91-92 °C. IR (film) 3110, 3063, 3038, 2959, 2926, 2856, 2220, 1642, 1583, 1538, 1469, 1416, 1319, 1288, 1239, 1110, 1030, 961, 910, 816, 910, 816, 781, 758, 733, 694,

650, 542, 526 cm⁻¹. ¹H NMR (400.13 MHz, CDCl₃): δ 8.06–8.04 (m, 2H, Ho, Ph), 7.68 (s, 1H, H-5, pyridine), 7.55–7.46 (m, 3H, H*m*,*p*, Ph), 7.46–7.37 (m, 2H, Ph), 7.25–7.14 (m, 2H, Ph), 6.90–6.81 (m, 2H, H-3, pyrrole, H_x), 6.45 (d, *J* = 3.7 Hz, 1H, H-4, pyrrole), 4.93 (d, *J* = 8.7 Hz, 1H, H_A), 4.67 (d, *J* = 15.7 Hz, 1H, H_B), 2.92 (s, 3H, CH₃, pyridine). ¹³C NMR (100.6 MHz, CDCl₃): δ 162.8, 159.7 (d, *J* = 248.3 Hz, C-2, 2-FC₆H₄), 158.5, 144.8, 137.8, 132.2 (d, *J* = 4.0 Hz, C-6, 2-FC₆H₄), 132.1, 131.2, 130.3 (2C), 130.3, 130.2 (d, *J* = 6.5 Hz, C-4, 2-FC₆H₄), 128.9 (2C), 127.4 (2C), 124.2 (d, *J* = 3.3 Hz, C-5, 2-FC₆H₄), 120.4 (d, *J* = 14.7 Hz, C-1, 2-FC₆H₄), 118.3, 117.5, 116.1, 116.0 (d, *J* = 22.0 Hz, C-3, 2-FC₆H₄), 112.5, 110.7, 105.7, 24.4. Anal. Calcd for C₂₅H₁₈FN₃: C, 79.14; H, 4.78; N, 11.07; F, 5.01%. Found: C, 79.43; H, 5.01; N, 11.31; F, 4.79%.

6-(5-(4-Fluorophenyl)-1-vinyl-1H-pyrrol-2-yl)-2-methyl-4-

phenylnicotinonitrile (2l). Yield: 265 mg (70%), yellow crystals, mp 136-137
 °C. IR (film) 3063, 2220, 1641, 1583, 1477, 1424, 1395, 1319, 1287, 1225,

1159, 1096, 1029, 965, 909, 39, 780, 732, 694, 648, 608, 527 cm⁻¹. ¹H NMR (400.13 MHz, CDCl₃): δ 8.06–8.04 (m, 2H, H*m*, Ph), 7.65 (s, 1H, H-5, pyridine), 7.51–7.49 (m, 3H, H*o*,*p*, Ph), 7.47–7.42 (m, 2H, H*o*, Ph), 7.15–7.10 (m, 2H, H*m*, Ph), 6.89 (dd, *J* = 15.7, 8.5 Hz, 1H, H_x), 6.75 (d, *J* = 3.8 Hz, 1H, H-3, pyrrole), 6.39 (d, *J* = 3.8 Hz, 1H, H-4, pyrrole), 4.97 (d, *J* = 8.5 Hz, 1H, H_A), 4.65 (d, *J* = 15.7 Hz, 1H, H_B), 2.90 (s, 3H, CH₃, pyridine). ¹³C NMR (100.6 MHz, CDCl₃): δ 162.8, 162.6 (d, *J* = 248.3 Hz, C-4, 4-FC₆H₄), 158.7,

145.3, 137.9, 137.6, 131.3, 131.3 (d, J = 11.5 Hz, C-2,6, 4-FC₆H₄), 130.4, 129.1 (2C), 128.8, 128.5 (d, J = 2.6 Hz, C-1, 4-FC₆H₄), 127.5 (2C), 118.5, 117.6, 115.6 (d, J = 21.6 Hz, C-3,5, 4-FC₆H₄), 115.5, 111.3, 111.1, 106.0, 24.5. Anal. Calcd for C₂₅H₁₈FN₃: C, 79.14; H, 4.78; N, 11.07; F, 5.01%. Found: C, 79.38; H, 4.97; N, 11.38; F, 4.81%. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₅H₁₈FN₃ 380.1563; Found 380.1562.

2-Methyl-6-(1-methyl-5-(thiophen-2-yl)-1H-pyrrol-2-yl)-4-

phenylnicotinonitrile (2m). Yield: 238 mg (67%), yellow crystals, mp 171-172 °C. IR (film) 3106, 3069, 3035, 2922, 2219, 1578, 1538, 1448, 1419, 1399, 1297, 1227, 1200, 1110, 1078, 1041, 910, 846, 778, 732, 695, cm^{-1.} ¹H NMR (400.13 MHz, CDCl₃): δ 8.07–8.06 (m, 2H, Ho, Ph), 7.62 (s, 1H, H-5, pyridine), 7.52–7.50 (m, 3H, H*m*,*p* Ph,), 7.37–7.36 (m, 1H, H-5, thiophene), 7.18– 7.17 (m, 1H, H-3, thiophene), 7.14–7.12 (m, 1H, H-4, thiophene), 6.72 (d, *J* = 3.9 Hz, 1H, H-3, pyrrole), 6.49 (d, *J* = 3.9 Hz, 1H, H-4, pyrrole), 3.73 (s, 3H, N-CH₃), 2.92 (s, 3H, CH₃, pyridine). ¹³C NMR (100.6 MHz, CDCl₃): δ 163.2, 159.0, 144.8, 138.0, 134.2, 132.7, 131.0, 130.4, 129.1 (2C), 127.7, 127.5 (3C), 126.6, 126.0, 117.8, 113.7, 111.1, 105.9, 34.6, 24.6. Anal. Calcd for C₂₂H₁₇N₃S: C, 74.34; H, 4.82; N, 11.82; S, 9.02%. Found: C, 74.43; H, 4.60; N, 11.99; S, 8.78%.

2-Methyl-6-(1-methyl-4,5,6,7-tetrahydro-1*H*-indol-2-yl)-4-phenylnicotinonitrile

(2n). Yield: 235 mg (72%), yellow crystals, mp 186-187 °C. IR (film) 3062, 3036, 2930, 2851, 2217, 1639, 1586, 1563, 1538, 1496, 1457, 1444, 1368, 1298, 1240, 1189, 1147, 1057, 911, 782, 759, 732, 694 cm⁻¹. ¹H NMR (400.13 MHz, CDCl₃): δ 8.03–8.01 (m, 2H, Ho, Ph), 7.51–7.48 (m, 4H, Hm,p, Ph, H-5, pyridine), 6.48 (s, 1H, H-3, pyrrole), 3.54 (s, 3H, NCH₃), 2.88 (s, 3H, CH₃, pyridine), 2.64–2.61 (m, 2H, CH₂-7), 2.58–2.55 (m, 2H, CH₂-4), 1.94–1.86 (m, 2H, CH₂-5), 1.83–1.74 (m, 2H, CH₂-6). ¹³C NMR (100.6 MHz, CDCl₃): δ 163.1, 158.6, 145.1, 138.2, 134.5, 130.2, 129.1 (2C), 127.4 (2C), 127.3, 119.1, 118.1, 117.3, 112.3, 105.1, 32.1, 24.6, 23.5, 23.2, 23.0, 22.6. Anal. Calcd for C₂₂H₂₁N₃: C, 80.70; H, 6.46; N, 12.83%. Found: C, 80.91; H, 6.64; N, 13.07%.

Ph

6-(1-Benzyl-4,5,6,7-tetrahydro-1*H*-indol-2-yl)-4-(furan-2-yl)-2-

methylnicotinonitrile (20). Yield: 263 mg (67%), yellow crystals, mp 193-194 °C. IR (film) 3137, 3115, 2922, 2850, 2211, 1595, 1559, 1530, 1490, 1441, 1381, 1356, 1296, 1236, 1157, 1011, 945, 882, 826, 765, 729, 660, 602, 458 cm⁻¹. ¹H NMR

(400.13 MHz, CDCl₃): δ 7.44 (s, 1H, H-5, pyridine), 7.35–7.27 (m, 4H, H*m*,*p*, Ph, H-5, furan), 7.03–6.95 (m, 1H, H-3, furan), 6.91–6.90 (m, 2H, H*o*, Ph), 6.66 (s, 1H, H-3, pyrrole), 6.50–6.46 (m, 1H, H-4, furan), 5.14 (s, 2H, CH₂-Ph), 2.82 (s, 3H, CH₃, pyridine), 2.64–2.59 (m, 2H, CH₂-7), 2.50–2.45 (m, 2H, CH₂-4), 1.86–1.73 (m, 4H, CH₂-5,6). ¹³C NMR (100.6 MHz, CDCl₃): δ 163.4, 152.6, 149.9, 144.6 (2C), 138.4, 134.6, 129.0 (2C), 127.4 (2C), 125.6 (2C), 119.7, 118.0, 114.7, 113.3, 112.4, 111.5, 104.5, 48.0, 24.5, 23.5,

23.2, 23.1, 22.5. Anal. Calcd for C₂₆H₂₃N₃O: C, 79.36; H, 5.89; N, 10.68; O, 4.07%. Found: C, 79.52; H, 6.13; N, 10.96%.

2-Methyl-4-phenyl-6-(1-vinyl-4,5,6,7-tetrahydro-1*H*-indol-2-yl)nicotinonitrile

(2p). Yield: 214 mg (63%), yellow crystals, mp 108-109 °C. IR (film) 3104, 3061, 3035, 2931, 2850, 2218, 1641, 1587, 1568, 1539, 1496, 1439, 1382, 1332, 1288, 119,

1146, 1028, 967, 910, 884, 781, 733, 694, 630, 590, 626 cm⁻¹. ¹H NMR (400.13 MHz, CDCl₃): δ 8.02–7.99 (m, 2H, Ho, Ph), 7.60 (s, 1H, H-5, pyridine), 7.52–7.46 (m, 3H, Hm, p, Ph), 6.76 (dd, J = 15.8, 8.8 Hz, 1H, H_x), 6.62 (s, 1H, H-3, pyrrole), 4.99 (d, J = 8.8 Hz, 1H, H_A), 4.90 (d, J = 15.8 Hz, 1H, H_B), 2.86 (s, 3H, CH₃) pyridine), 2.72–2.68 (m, 2H, CH₂-7), 2.59–2.56 (m, 2H, CH₂-4), 1.90–1.75 (m, 4H, CH₂-5,6). ¹³C NMR (100.6 MHz, CDCl₃): δ 163.0, 158.3, 144.9, 138.2, 134.0, 130.9, 130.2, 129.0 (2C), 127.4 (2C), 126.4, 120.5, 118.0, 117.7, 115.1, 107.5, 104.8, 24.6, 23.8, 23.3, 23.2, 23.0. Anal. Calcd for C₂₃H₂₁N₃: C, 81.38; H, 6.24; N, 12.38%. Found: C, 81.65; H, 6.49; N, 12.71%.

2-Methyl-4,6-diphenylnicotinonitrile (2q). Yield: 194 mg (72%), yellow crystals, mp 113-114 °C. IR (film) 3087, 3058, 3034, 2953, 2921, 2218, 1574, 1542, 1493, 1441, 1381, 1374, 1233, 1177, 1156, 1074, 1031, 999, 876, 776, 746, 698, 687 cm⁻¹. ¹H NMR (400.13 MHz, CDCl₃): δ 8.09–8.07 (m, 2H, Ph), 7.69 (s, 1H, H-5, pyridine), 7.66–7.62 (m, 2H, Ph), 7.55–7.54 (m, 3H, Ph),

7.51-7.49 (m, 3H, Ph), 2.93 (s, 3H, CH₃, pyridine). ¹³C NMR (100.6 MHz, CDCl₃): δ 162.9, 159.3, 153.9, 137.9, 136.7, 130.4, 130.0, 129.1 (2C), 129.1 (2C), 128.5 (2C), 127.6 (2C), 118.0, 117.3, 105.9, 24.5. Anal. Calcd for C₁₉H₁₄N₂: C, 84.42; H, 5.22; N, 10.36%. Found: C, 84.72; H, 4.96; N, 10.67%.

4-(Furan-2-yl)-2-methyl-6-phenylnicotinonitrile (2r). Yield: 127 mg (49%), vellow crystals; mp 140-141 °C. IR (film) 3143, 3114, 2925, 2856, 2221, 1599, 1563, 1485, 1450, 1378, 1242, 1160, 1009, 945, 884, 828, 777, 754, 701 cm⁻¹. ¹H NMR (400.13 MHz, CDCl₃): δ 7.66-7.63 (m, 3H, Ph), 7.61 (s, 1H, H-5, pyridine), 7.55-7.54 (m, 3H, Ph, H-5,

furan), 7.37-7.36 (m, 1H, H-3, furan), 6.61-6.60 (m, 1H, H-4, furan), 2.90 (s, 3H, CH₃, pyridine). ¹³C NMR (100.6 MHz, CDCl₃): δ 163.1, 154.0, 152.5, 150.6, 145.1, 136.5, 130.1, 129.1 (2C), 128.5 (2C), 117.3, 115.9, 112.8, 112.4, 105.4, 24.4. Anal. Calcd for C17H12N2O: C, 78.44; H, 4.65; N, 10.76%. Found: C, 78.71; H, 4.82; N, 10.45%.

Synthesis of alcohols 3a-c

5-(1-Benzyl-4,5,6,7-tetrahydro-1*H*-indol-2-yl)-3-hydroxy-3-(thiophen-2yl)pent-4-ynenitrile (3a)

Lithium (14 mg, 2 mmol) was added to solution of ethynylpyrrole 2a (345 mg, 1 mmol) in dry MeCN (5 ml). Reaction was stirred at room temperature for 16 hours, diluted with water (30 ml), and extracted by diethyl ether (3x10 ml). Extracts were washed with water and dried over CaCl₂. The residue after removing solvents was fractionated by column chromatography (SiO₂, *n*-hexane : diethyl ether, 10 : 1) to afford 120 mg (31%) of compound **3a** as yellow oil. IR (film) 3412, 3105, 3089, 3065, 3031, 2929, 2852, 2213, 1605, 1569, 1494, 1440, 1391, 1357, 1234, 1144, 1114, 1081, 1030, 910, 849, 804, 730, 704 649, 608, 458 cm⁻¹. ¹H NMR (400.13 MHz, CDCl₃): δ 7.33–7.27 (m, 2H, H*o*, Ph), 7.27–7.24 (m, 2H, H*p*, Ph, H-5, thiophene), 7.11–7.08 (m, 1H, H-3, thiophene), 7.05–7.01 (m, 2H, H*m*, Ph), 6.93–6.90 (m, 1H, H-4, thiophene), 6.39 (s, 1H, H-3, pyrrole), 5.15 (s, 2H, CH₂Ph), 3.06 (d, *J* = 16.3 Hz, 1H, CH₂CN), 2.97 (d, *J* = 16.3 Hz, 1H, CH₂CN), 2.91 (s, 1H, OH), 2.53–2.48 (m, 2H, CH₂-7), 2.46–2.41 (m, 2H, CH₂-4), 1.84–1.67 (m, 4H, CH₂-5,6). ¹³C NMR (100.6 MHz, CDCl₃): δ 146.3, 138.2, 132.1, 128.7 (2C), 127.3, 127.1, 126.5 (2C), 126.1, 125.5, 118.4, 116.0, 115.1, 111.4, 91.8, 81.1, 68.4, 48.0, 35.8, 23.4, 23.1, 23.0, 22.4. Anal. Calcd for C₂₄H₂₂N₂OS: C, 74.58; H, 5.74; N, 7.25; O, 4.14; S, 8.29%. Found: C, 74.65; H, 5.87; N, 7.44; S, 8.27%.

5-(1-benzyl-4,5,6,7-tetrahydro-1H-indol-2-yl)-3-hydroxy-2,2-dimethyl-3-(thiophen-2-yl)pent-4-ynenitrile (3b)

Analogously, from of ethynylpyrrole **1a** (345 mg, 1 mmol), lithium (14 mg, 2 mmol) and Me₂CHCN (5 ml) 248 mg (60%) of compound **3b** as yellow oil was obtained.

IR (film) 3408, 2928, 2852, 2210, 1639, 1494, 1455, 1441, 1389, 1356, 1303, 1236, 1179, 1142, 1078, 1043, 1003, 973, 910, 799, 729, 699 cm⁻¹. ¹H NMR (400.13 MHz, CDCl₃): δ 7.31–7.23 (m, 4H, H*o*,*p* Ph, H-5, thiophene), 7.18–7.17 (m, 1H, H-3, thiophene), 7.00–6.98 (m, 2H, H*m*, Ph), 6.96–6.93 (m, 1H, H-4, thiophene), 6.39 (s, 1H, H-3, pyrrole), 5.15 (s, 2H, CH₂Ph), 2.86 (s, 1H, OH), 2.51–2.49 (m, 2H, CH₂-7), 2.44–2.42 (m, 2H, CH₂-4), 1.79–1.71 (m, 4H, CH₂-5,6), 1.41 (s, 3H, Me), 1.30 (s, 3H, Me). ¹³C NMR (100.6 MHz, CDCl₃): δ 144.3, 138.2, 132.0, 128.8 (2C), 127.3, 127.1, 126.9, 126.3 (2C), 126.1, 123.4, 118.5, 115.1, 111.7, 91.8, 81.4, 75.1, 48.0, 44.4, 23.5, 23.2, 23.1, 23.1, 22.9, 22.4. Anal. Calcd for C₂₆H₂₆N₂OS: C, 75.33; H, 6.32; N, 6.76; O, 3.86; S, 7.73%. Found: C, 75.09; H, 6.51; N, 6.38; S, 7.90%.

5-(1-Benzyl-4,5,6,7-tetrahydro-1*H*-indol-2-yl)-3-hydroxy-2-propyl-3-(thiophen-2-yl)pent-4-ynnitrile (3c)

Analogously, from of ethynylpyrrole 1a (345 mg, 1 mmol), lithium (14 mg, 2 mmol) and *n*-BuCN (5 ml) 111 mg (26%) of compound 3c (two diasreoisomers) as yellow

oil was obtained.

1 isomer:

IR (film) 3331, 3103, 3066, 3031, 2958, 2923, 2854, 2755, 2693, 2243, 2231, 1725, 1664, 1606, 1571, 1495, 1453, 1443, 1390, 1357, 1303, 1255, 1234, 1205, 1120, 1081, 1042, 911, 872, 803, 730, 700, 648, 641, 457 cm⁻¹. ¹H NMR (400.13 MHz, CDCl₃): δ 7.32–7.30 (m, 2H, H*m*, Ph), 7.28–7.24 (m, 2H, H*p*, Ph, H-5,

thiophene), 7.15–7.14 (m, 1H, H-3, thiophene), 7.01–7.00 (m, 2H, Ho, Ph), 6.94–6.91 (m, 1H, H-4, thiophene), 6.39 (s, 1H, H-3, pyrrole), 5.15 (s, 2H, CH₂Ph), 3.05 (dd, J = 11.1, 4.03 Hz, 1H, CH), 2.87 (s, 1H, OH), 2.52–2.50 (m, 2H, CH₂-7), 2.44–2.42 (m, 2H, CH₂-4), 1.81–1.72 (m, 4H, CH₂-5,6), 1.53–1.49 (m, 1H, CH₂), 1.35–1.32 (m, 1H, CH₂), 0.98–0.96 (m, 2H, CH₂), 0.85 (t, J = 6.8 Hz, 3H, CH₃). ¹³C NMR (100.6 MHz, CDCl₃): δ 145.8, 138.2, 132.0, 128.8 (2C), 127.3, 127.1, 126.3, 126.2, 126.1 (2C), 119.1, 118.5, 115.0, 111.7, 91.7, 81.2, 71.7, 48.0, 47.3, 30.2, 23.5, 23.1, 23.0, 22.4, 20.7, 13.6. Anal. Calcd for C₂₇H₂₈N₂OS: C, 75.67; H, 6.59; N, 6.54; O, 3.73; S, 7.48%. Found: C, 75.39; H, 6.31; N, 6.80; S, 7.64%.

2 isomer:

IR (film) 3401, 3065, 3031, 2958, 2932, 2873, 2855, 2245, 2212, 1722, 1605, 1495, 1453, 1441, 1390, 1357, 1303, 1234, 1144, 1116, 1079, 1032, 1005, 910, 849, 805, 732, 701, 648, 457 cm⁻¹. ¹H NMR (400.13 MHz, CDCl₃): δ 7.31–7.24 (m, 2H, H*m*, Ph), 7.30 (dd, *J* = 5.0, 1.0 Hz, 1H, H-5, thiophene), 7.23–7.21 (m, 1H, H*p*, Ph), 7.12 (dd, *J* = 3.8, 1.0 Hz, 1H, H-3, thiophene), 7.03–7.01 (m, 2H, H*o*, Ph), 6.92 (dd, *J* = 5.0, 3.8 Hz, 1H, H-4, thiophene), 6.42 (s, 1H, H-3, pyrrole), 5.23 (d, *J* = 16.5 Hz, 1H, CH₂Ph), 5.15 (d, *J* = 16.5 Hz, 1H, CH₂Ph), 3.06 (s, 1H, OH), 3.02 (dd, *J* = 11.2, 3.6 Hz, 1H, CH), 2.53–2.51 (m, 2H, CH₂-7), 2.44–2.42 (m, 2H, CH₂-4), 1.78–1.73 (m, 4H, CH₂-5,6), 1.50–1.48 (m, 1H, CH₂), 1.27–1.26 (m, 1H, CH₂), 1.00–0.89 (m, 2H, CH₂), 0.78 (m, *J* = 6.8 Hz, 3H, CH₃). ¹³C NMR (100.6 MHz, CDCl₃): δ 145.6, 138.2, 132.0, 128.7 (2C), 127.3, 126.9, 126.5, 126.4, 126.3 (2C), 119.4, 118.5, 115.1, 111.7, 91.0, 81.8, 72.2, 48.0, 47.4, 30.5, 23.5, 23.1, 23.0, 22.4, 20.6, 13.4. Anal. Calcd for C₂₇H₂₈N₂OS: C, 75.67; H, 6.59; N, 6.54; O, 3.73; S, 7.48%. Found: C, 75.41; H, 6.72; N, 6.80; S, 7.22%.

Synthesis of (E)-3-(1-benzyl-4,5,6,7-tetrahydro-1*H*-indol-2-yl)-N-(1-cyanoprop-1-en-2-yl)propiolamide (7)

Lithium (14 mg, 2 mmol) was added to solution of ethynylpyrrole **6** (307 mg, 1 mmol) in dry MeCN (5 ml). Reaction mixture was stirred at room temperature for

24 h, diluted with water (30 ml), extracted with diethyl ether (3x10 ml). Extracts were washed with water and dried over CaCl₂. The residue after removing solvents was fractionated by column chromatography (SiO₂, *n*-hexane : diethyl ether, 5 : 1) to afford 223 mg (yield 65%) of amide **7** as white crystals, mp 168-169 °C. IR (KBr) 3272, 3181, 3137, 3093, 2925, 2209, 2171, 1667, 1631, 1520, 1434, 1397, 1377, 1309, 1251, 1208, 1133, 1109, 1072, 805, 754, 718, 698 cm⁻¹. ¹H NMR (400.13 MHz, CDCl₃): δ 7.35–7.24 (m, 3H, H*m*,*p*, Ph), 7.18–7.09 (m, 1H, NH), 7.04–7.03 (m, 2H, H*o*, Ph), 6.56 (s, 1H, H-3, pyrrole), 6.30 (s, 1H, HC=), 5.11 (s, 2H, CH₂Ph), 2.52–2.47 (m, 2H, CH₂-7), 2.45–2.40 (m, 2H, CH₂-4), 2.14 (s, 3H, CH₃), 1.81–1.67 (m, 4H, CH₂-5,6). ¹³C NMR (100.6 MHz, CDCl₃): δ 152.1, 151.3, 137.4, 135.7, 128.9 (2C), 127.7, 126.6 (2C), 120.2, 119.4, 118.4, 110.1, 89.9, 84.6, 82.3, 48.4, 23.2, 23.0, 22.8, 22.7, 20.6. Anal. Calcd for C₂₂H₂₁N₃O: C, 76.94; H, 6.16; N, 12.24; O, 4.66%. Found: C, 76.97; H, 6.25; N, 12.26%.

. .

NMR Spectra of synthesized compounds

¹H NMR spectrum of 6-(1-benzyl-4,5,6,7-tetrahydro-1*H*-indol-2-yl)-2-methyl-4-(thiophen-2-yl)nicotinonitrile (2a) in CDCl₃

¹³C NMR spectrum of 6-(1-benzyl-4,5,6,7-tetrahydro-1*H*-indol-2-yl)-2-methyl-4-(thiophen-2-yl)nicotinonitrile (**2a**) in CDCl₃

¹H NMR spectrum of 2-methyl-6-(1-methyl-1*H*-pyrrol-2-yl)-4-phenylnicotinonitrile (**2b**) in CDCl₃

¹³C NMR spectrum of 2-methyl-6-(1-methyl-1*H*-pyrrol-2-yl)-4-phenylnicotinonitrile (**2b**) in CDCl₃

¹H NMR spectrum of 6-(1-benzyl-1*H*-pyrrol-2-yl)-2-methyl-4-phenylnicotinonitrile (2c) in CDCl₃

¹H NMR spectrum of 2-methyl-6-(1-methyl-5-phenyl-1*H*-pyrrol-2-yl)-4-(thiophen-2-yl)nicotinonitrile (2e) in CDCl₃

¹³C NMR spectrum of 2-methyl-6-(1-methyl-5-phenyl-1*H*-pyrrol-2-yl)-4-(thiophen-2-yl)nicotinonitrile (**2e**) in CDCl₃

¹H NMR spectrum of 2-methyl-4-phenyl-6-(5-(p-tolyl)-1-vinyl-1H-pyrrol-2-yl)nicotinonitrile (**2g**) in CDCl₃ $\begin{array}{c} & & & & & \\ & & & & & & \\$ Me Мe 2.04₋₋T 1.01 ₹ 3.07 ₹ 2.03 ₹ 2.02 ₹ 1.00 ↓ 1.02 ↓ 1.00_{-1} 1.03_{-1} 1.10-3.03__ 3.02__ 5.0 2.5 2.0 0.5 -0.5 -1. 8.5 7.5 7.0 6.5 6.0 5.5 4.5 4.0 3.5 3.0 1.5 1.0 0.0 8.0 f1 (ppm)

¹³C NMR spectrum of 6-(5-(4-chlorophenyl)-1-methyl-1*H*-pyrrol-2-yl)-2-methyl-4-phenylnicotinonitrile (**2j**) in CDCl₃

¹³C NMR spectrum of 2-methyl-6-(1-methyl-5-(thiophen-2-yl)-1H-pyrrol-2-yl)-4-phenylnicotinonitrile (**2m**) in CDCl₃

¹H NMR spectrum of 2-methyl-4,6-diphenylnicotinonitrile (**2q**) in CDCl₃

137.89 136.68 130.41 129.10 129.10 129.10 122.57 122.57 117.35 105.93 24.51 Ph N Ph Me unanthyterentrandyterentyterethyteret f1 (ppm) -1 Ó

¹³C NMR spectrum of 2-methyl-4,6-diphenylnicotinonitrile (**2q**) in CDCl₃

¹³C NMR spectrum of 4-(furan-2-yl)-2-methyl-6-phenylnicotinonitrile (2r) in CDCl₃

¹³C NMR spectrum of 5-(1-benzyl-4,5,6,7-tetrahydro-1H-indol-2-yl)-3-hydroxy-2,2-dimethyl-3-(thiophen-2-yl)pent-4-ynenitrile (3b) in CDCl₃

¹³C NMR spectrum of 5-(1-benzyl-4,5,6,7-tetrahydro-1H-indol-2-yl)-3-hydroxy-2-propyl-3-(thiophen-2-yl)pent-4-ynenitrile (3c, isomer 1) in CDCl₃

¹³C NMR spectrum of 5-(1-benzyl-4,5,6,7-tetrahydro-1H-indol-2-yl)-3-hydroxy-2-propyl-3-(thiophen-2-yl)pent-4-ynenitrile (3c, isomer 2) in CDCl₃

