Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting information

Figure S1. ¹H-NMR spectrum of FHE

Figure S2. ¹³C-NMR spectrum of FHE

Figure S3. An HR-Mass spectrum of FHE

Figure S4. Changes in photophysical properties of **FHE** upon interaction with various cations and anions observed under visible light (top) and UV lamp with the wavelength 315 nm (bottom).

Benesi-Hildebrand equation

$$\frac{1}{(F-F_0)} = \frac{1}{K_a(F_{max}-F_0)} \frac{1}{[Zn^{2+}]} + \frac{1}{(F_{max}-F_0)} \quad (Eq. S1)$$

Where,

 F_0 is the fluorescence of FHE ($\lambda ex = 305 \text{ nm}$, $\lambda em = 503 \text{ nm}$)

F is the fluorescence intensity in the presence of the varying $[Zn^{2+}]$

 F_{max} is the maximum fluorescence intensity ($\lambda ex = 305 \text{ nm}$, $\lambda em = 503 \text{ nm}$) up on titration with [Zn²⁺]

 K_a is the association constant (M⁻¹)

 $[Zn^{2+}]$ is the concentration of the Zn^{2+} ion added during titration study

Probe Structure	Stokes shift (nm)	LOD (nM)	Detection mechanism	Solvent	Application		
					Water sample analysis	Cell imaging	Ref.
	140	650	CHEF	H ₂ O/ethanol (8:2, v/v)	×	~	1
	135	98	PET	ACN	×	×	2
	135	95	CHEF	Ethanol	×	×	3
О-ОН	129	5070	CHEF	THF/H ₂ O (8:2, v/v)	×	~	4
	88	284	PET	CH ₃ OH/H ₂ O, (9:1, v/v)	×	×	5
NH HO NH OH	114	77.4	PET	CH₃OH	×	×	6
H FHE	198	12.7	CHEF	HEPES Buffer (pH = 7.4, ACN 50%, v/v)	~	~	This work

Table S1. Comparison of FHE and reported probes used for the Zn^{2+} detection

References

 Shen, R., Liu, D., Hou, C., Cheng, J., Bai, D. New fluorescent probe for Zn²⁺ imaging in living cells and plants. *Anal. Methods*, 2016, 8, 83–88. <u>https://doi.org/10.1039/C5AY02380G</u>.

- Ashokkumar, P., Ramakrishnan, V. T., Ramamurthy, P. Photoinduced Electron Transfer (PET) Based Zn²⁺ Fluorescent Probe: Transformation of Turn-On Sensors into Ratiometric Ones with Dual Emission in Acetonitrile. J. Phys. Chem. A., 2011, 115 (50), 14292–14299. DOI: 10.1021/jp209061f.
- Shen, L.-Y., Chen, X.-L., Yang, X.-J., Xu, H., Huang, Y.-L., Zhang, X., Redshaw, C., Zhang, Q.-L. A Highly Selective Turn-On Fluorescent Probe for the Detection of Zinc. *Molecules* 2021, 26, 3825. <u>https://doi.org/10.3390/molecules26133825</u>.
- Mariyappan, M., Malini, N., Sivamani, J. et al. Turn-on Fluorescence Chemosensor for Zn²⁺ Ion Using Salicylate Based Azo Derivatives and their Application in Cell-Bioimaging. J Fluoresc. 2019, 29, 737–749. https://doi.org/10.1007/s10895-019-02382-4.
- Guo, W.T., Peng, Y.D., Zhang, Y. et al. Novel Tridentate Bisoxime Chemosensor for Selective Recognition of Cu2+ and Zn2+ with Different Mechanisms. *J Appl Spectrosc.* 2021, 88, 452–460. <u>https://doi.org/10.1007/s10812-021-01193-5</u>.
- Karmakar, M.; Chattopadhyay, S. Synthesis, structure and nitroaromatic sensing ability of a trinuclear zinc complex with a reduced Schiff base ligand: Assessment of the ability of the ligand to sense zinc ion. *Polyhedron* 2020, 187, 114639.