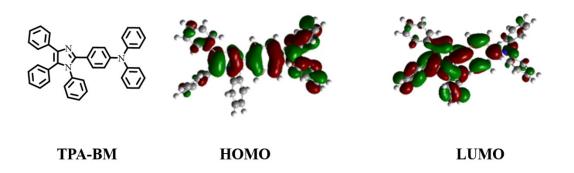
Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

New Journal of Chemistry


Novel A-D-A structural imidazole derivatives with charge transfer excited states: Importance of molecular structure design in obtaining a "turn-on" type fluorescence probe

Jin Liu, Xiaolong Zheng, Yujie Dong*, Weijun Li, Maoxing Yin, Qingbao Song and Cheng Zhang*

International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China

* Corresponding author:

Y. Dong, dongyujie@zjut.edu.cn; C. Zhang, czhang@zjut.edu.cn

Fig. S1 The molecular structure and the electronic density distributions of the frontier molecular orbitals (HOMO and LUMO) in the ground state of **TPA-BM**.

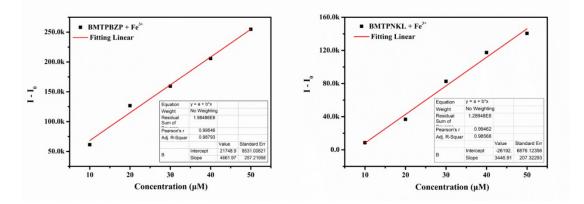


Fig. S2 The linear intensity changes of (a) BMTPBZP and (b) BMTPNKL $(1 \times 10^{-5} \text{ M})$ as a function of the concentration of Fe³⁺ based on their PL titration spectra.

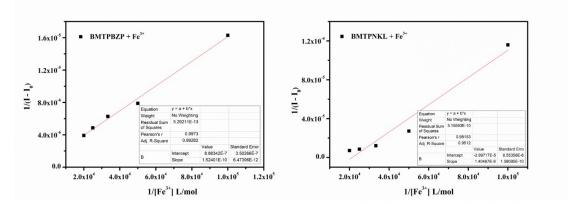


Fig. S3 The Benesi-Hildebrand linear analysis plot of (a) BMTPBZP and (b) BMTPNKL $(1 \times 10^{-5} \text{ M})$ at different Fe³⁺ concentrations.

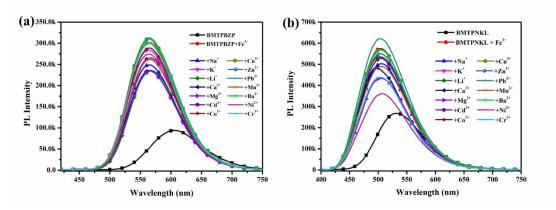


Fig. S4 The PL spectra of (a) BMTPBZP+Fe³⁺ and (b) BMTPNKL+Fe³⁺ in the

presence of different metal ions.

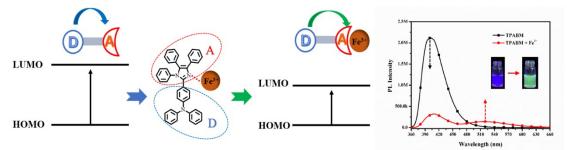


Fig. S5 The fluorescence response of the imidazole derivative TPA-BM with the simple D-A structure to Fe^{3+} , which showed a completely opposite fluorescence quenching and red-shifted response, and its possible response mechanism.

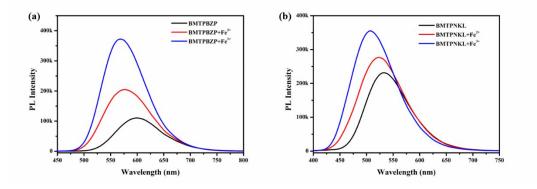


Fig. S6 The PL spectra of (a) BMTPBZP and (b) BMTPNKL ($1 \times 10-5$ M) before and after adding Fe²⁺ and Fe³⁺.

As shown in the above Fig. S6, the response behaviors of the probe molecules **BMTPBZP** and **BMTPNKL** to Fe^{2+} were also studied, and the results showed that both of they could also showed emission enhancement and blue shift response to Fe^{2+} , but the response amplitude was relatively weaker than that of Fe^{3+} .