Excited-state intramolecular proton transfer based covalent organic

framework for fluorescence anions sensing

Zhitao Wang,^{ab*} Yanju Huang,^a Shuang Wu,^c Xiu-Mei Li,^a and Qikun Sun^{d*}

Methods

The infrared spectra were recorded from 600 to 3500 cm⁻¹ on an Avatar FT-IR 360 spectrometer. Elemental analyses were measured by an Elementar model vario EL cube analyzer. Powder X-ray diffraction data were performed on a XRD (Ultima IV) diffractometer by depositing powder on glass substrate, from $2\theta = 3.0^{\circ}$ to 35° with 0.02° . Field emission scanning electron microscopy and energy dispersive spectroscopy for elemental mapping were recorded on a SU8020 model HITACHI microscope. Thermogravimetric analysis (TGA) was performed on a TA Q500 thermogravimeter with the heating at a rate of 10 °C min⁻¹ from room temperature to 800 °C under nitrogen atmosphere. Nitrogen sorption isotherms were measured at 77 K with a JW-BK 132F analyzer.

Fluorescence measurement

ACOF samples (2 mg) were dispersed in tetrahydrofuran (50 mL), which was sociated for several mins to give a relatively homogeneous dispersion. The mixture containing 3 mL ACOF in THF with F anions was subjected to fluorescence spectroscopy. The time-dependent fluorescence spectra were recorded. The fluorescence intensity was fixed around 10 mins.

Recycle porosity measurement

We used ACOF 50 mg in THF 2.5 L were added tetrabutylamine fluoride in THF. After 10 mins, the trifluoroacetic acid was added into the mixture. This process operated for 3 times. Finally, the samples were filtered, washed by THF and water, and dried under vacuum.

Fig. S2. ¹³ C NMR spectrum of ACOF

Fig. S3. TGA curve of ACOF

Fig. S4. FE SEM images of ACOF

Fig. S5. PXRD patterns of ACOF. (As-synthesized: red; water: blue; THF: black; HCl: green; NaOH: purple).

Fig. S6. FT-IR spectra of ACOF (As-synthesized: red; water: blue; THF: black; HCl: green; NaOH: purple).

Fig. S7. Ultraviolet–visible spectra of ACOF (red), 5'-(4-formyl-3-hydroxyphenyl)-3,3"-dihydroxy-[1,1':3',1"-terphenyl]-4,4"dicarbaldehyde (blue), and model compound (black).

Fig. S8. Fluorescence spectrum of ACOF at the solid state.

Fig. S9. Dynamic light scattering profile of ACOF.

Fig. S10. Fluorescence spectra of ACOF@F⁻@anions {(a) Cl⁻, (b) Br⁻, (c) I⁻, (d) NO₃⁻, and (e) PF_6^{-} }.

Fig. S11. Effect of pH on luminescence intensity of ACOF with fluoride anions.

Fig. S12. Plot of PL quenching efficiency (I/I_0) as a function of fluoride anions.

Fig. S13. Fluorescence spectra of $ACOF@F^{-}@H^{+}@F^{-}@H^{+}@F^{-}$.

Fig. S14. Nitrogen adsorption-desorption isotherms of recycled-ACOF measured at 77 K (\bullet : adsorption, \circ : desorption).

	Detection limit	Ksv	Ref.
ACOF	2.5 μM	$1.2 \times 10^4 \text{ M}^{-1}$	This work
DATGC1-iCONs	5 ppb	$2.25 \times 10^3 \text{ M}^{-1}$	ACS Appl. Mater. Interfaces
			2020, 12 , ,13248–13255.
CMP-A	141 nM	$1 \times 10^4 \text{ M}^{-1}$	Mater. Chem. Front., 2020,
CMP-B	272 nM	$1 \times 10^4 \text{ M}^{-1}$	4 , 3040–3046.
TFPPy-DETHz-COF	50.5 ppb		J. Am. Chem. Soc., 2018,
			140 , 12374–12377
BCMP-3			Chem. Eur. J., 2015, 21 ,
			17355–17362.
BN-ph-ae			J. Mater. Chem. A,
			2013, 1 , 13878–13884.

Tab. S1. The detection limit and Ksv values of the reported porous organic polymers.