Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Synthesis and characterization of Fe[®]@chitosan/cellulose biocompatible composite from

natural resources as advanced carrier for Ibuprofen drug; reaction kinetics and equilibrium

Mostafa R. Abukhadra^{1,2}, Fatma A. El Kashief¹, Sarah I. Othman³; Haifa A. Alqhtani³; Ahmed A. Allam⁴

¹Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef City, Egypt.
 ²Geology Department, Faculty of Science, Beni-Suef University, Beni – Suef city, Egypt
 ³Biology Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
 ⁴Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt

Fig.S1. chemical structure of the used Ibuprofen drug

Table S1. The representative equations of the studied kinetic and isotherm models in their linear and nonlinear forms

Kinetic models		
Model	Linear equation	Parameters
Pseudo-first-order	$q_t = q_e (1 - e^{-k_1 \cdot t})$	$q_t(mg~g^{-1})$ is the $$ adsorbed ions at time (t), and K_1 is the rate constant of the first-order adsorption (min^-1)
Pseudo-second-order	$q_t = \frac{q_e^2 k_2 t}{1 + q_e k_2 t}$	qe is the quantity of adsorbed ions after equilibration (mg g^{-1}), and K_2 is the model rate constant (g mg^{-1} min ⁻¹).
Isotherm models		
Model	Equation	Parameters
Langmuir	$q_e = \frac{q_{max} bC_e}{(1 + bC_e)}$	C_e is the rest ions concentrations (mg L ⁻¹), q_{max} is the theoritical maximum adsorption capacity (mg g ⁻¹), and <i>b</i> is the Langmuir constant (L mg ⁻¹)
Freundlich	$q_e = K_f C_e^{1/n}$	$K_{\rm F}$ is the constant of Freundlich model related to the adsorption capacity and n is the constant of Freundlich model related to the adsorption intensities
Dubinin–Radushkevich	$q_e = q_m e^{-\beta \varepsilon^2}$	β (mol^2 KJ-²) is the D-R constant, ϵ (KJ² mol-²) is the polanyil potential, and q_m is the adsorption capacity
Monolayer model with one energy site (Model 1)	$Q = nN_o = \frac{nN_M}{1 + (\frac{C1/2}{C})^n} = \frac{Q_o}{1 + (\frac{C1/2}{C})^n}$	Q is the adsorbed quantities in mg/g n is the number of adsorbed ion per site Nm is the density of the effective receptor sites (mg/g) Q_o is the adsorption capacity at the saturation state in mg/g C1/2 is the concentration of the ions at half saturation stage in mg/L