Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

A revised synthesis of 6-alkoxy-2-aminopurines with late-stage convergence allowing for increased molecular complexity

Lavleen Mader, John. J Hayward*, Lisa A. Porter, John F. Trant*

Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada

Supporting Information

Comparison of existing and refocused syntheses

Scheme S1 Previous synthesis of NU6247.¹ The synthetic steps featuring the O-6 moiety are highlighted in blue. R = Cyclohexylmethyl.

Scheme S2 Refocused synthesis of NU6247 (this work). The synthetic steps featuring the O-6 moiety are highlighted in green.

Scheme S2 Comparison of previous and newly developed synthesis of NU6247 with the yield limiting linear sequences shown in red, which were used to calculate the overall yield.

Synthesis of 3-aminobenzyl alcohol

3-nitrobenzyl alcohol (16)

To a solution of 3-nitrobenzaldehyde (1 g, 6.63 mmol, 1.0 eq) in absolute EtOH (15 mL) was added a suspension of NaBH₄ (0.165 g, 4.87 mmol, 0.66 eq) in absolute EtOH (7 mL) dropwise. The reaction was stirred at room temperature for 1 h and then quenched with 10% NaOH solution (3 mL). Water (5 mL) was added and EtOH was removed under reduced pressure. The product was extracted using EtOAc (5 × 10 mL). The combined organic layers were washed with 5% NaHCO₃ (15 mL) followed by water (10 mL) and then dried over MgSO₄. EtOAc was removed *in vacuo* to yield a yellow oil (0.93 g, 92%). ¹H **NMR** (300 MHz, CDCl₃) δ_{ppm} 8.17 (apparent s, 1H), 8.08-8.05 (apparent dd, *J* = 8.1 Hz, 1.8 Hz, 1H), 7.66-7.63 (apparent dd, *J* = 8.1 Hz, 1.8 Hz, 1H), 7.51-7.45 (apparent t, J = 8.1 Hz, 1H), 4.76 (s, 2H), 2.88 (br s, 1H). This reaction was performed twice for this project, providing the same yield both times Characterization data is consistent with previously reported values.²

3-aminobenzyl alcohol (17)

To a solution of 3-nitrobenzyl alcohol (1.5 g, 9.79 mmol, 1.0 eq) in MeOH (50 mL) under a N_2 atmosphere was added 10% Pd/C (0.15 g, 10 wt %). The reaction mixture was exposed to hydrogen gas using a hydrogen balloon, while displacing nitrogen gas through a bubbler. The bubbler was removed, and the reaction was stirred at room temperature for 24 h, replacing the balloon as needed. The mixture was filtered through celite, concentrated *in vacuo*, and purified by flash column chromatography (5% MeOH/EtOAc, $R_f = 0.51$) to yield a yellow crystalline solid (0.77 g, 64%). ¹H NMR (300 MHz, DMSO-*d*₆) δ_{ppm} 6.96-6.91 (apparent t, *J* = 7.5 Hz, 1H), 6.55-6.54 (apparent dd, *J* = 2.5 Hz, 1.6 Hz, 1H), 6.45-6.40 (apparent ddd, *J* = 7.5 Hz, 2.5 Hz, 1.6 Hz, 2H), 4.99-4.95 (t, *J* = 5.7 Hz, 1H), 4.96 (br s, 1H), 4.35-4.33 (d, *J* = 5.7 Hz, 1H). This reaction was performed once for this project. Characterization data is consistent with previously reported values.³

NMR Spectra

Figure S1. ¹H NMR (300 MHz, DMSO-*d*₆) of Compound 4a

Figure S2. ¹³C NMR (125 MHz, DMSO-d₆) of Compound 4a

Figure S3. ¹⁹F NMR (470 MHz, DMSO-*d*₆) of Compound 4a

Figure S4. ¹H NMR (300 MHz, DMSO-*d*₆) of Compound 4b.

Figure S5. ¹³C NMR (125 MHz, DMSO-*d*₆) of Compound 4b.

Figure S6. ¹⁹F NMR (470 MHz, DMSO-*d*₆) of Compound 4b.

Figure S8. ¹³C NMR (75 MHz, CD_3OD) of Compound 6.

Figure S9. ¹H NMR (300 MHz, CDCl₃) of Compound 7

Figure S10. ¹H NMR (300 MHz, D_2O) of Compound 8.

Figure S12. ¹⁹F NMR (470 MHz, DMSO-*d*₆) of Compound 8.

Figure S13. ¹H NMR (300 MHz, DMSO-*d*₆) of Compound 9 (NU6102)

Figure S14. ¹H NMR (300 MHz, DMSO- d_6) of Compound 11.

Figure S15. ¹³C NMR (75 MHz, DMSO-*d*₆) of Compound 11.

Figure S16. ¹H NMR (300 MHz, CD₃OD) of Compound 12

Figure S17. ¹H NMR (300 MHz, CD₃OD) of Compound 13

Figure S18.¹³C NMR (75 MHz, CD₃OD) of Compound 13

Figure S19. ¹H NMR (300 MHz, CDCI₃) of Compound 14

Figure S20. ¹³C NMR (75 MHz, CDCl₃) of Compound 14

Figure S21. ¹H NMR (300 MHz, CDCI₃) of Compound 15 (NU6247)

Figure S22. ¹³C NMR (125 MHz, CDCl₃) of Compound 15 (NU6247)

Figure S23. ¹H NMR (300 MHz, CDCI₃) of Compound 16

Figure S24. ¹H NMR (300 MHz, DMSO-*d*₆) of Compound 17.

Figure S26. ¹³C NMR (125 MHz, CD₃OD) of Compound 18.

References

- 1. R. J. Griffin, A. Henderson, N. J. Curtin, A. Echalier, J. A. Endicott, I. R. Hardcastle, D. R. Newell, M. E. M. Noble, L.-Z. Wang and B. T. Golding, *J. Am. Chem. Soc*, 2006, **128**, 6012-6013.
- 2. P. J. Monsen and F. A. Luzzio, *Tet. Lett.*, 2020, **61**, 152575.
- 3. M.-U. Hung, S.-T. Yang, M. Ramanathan and S.-T. Liu, *Appl. Organometal. Chem.*, 2018, **32**, e3976.