Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Photochemical and electrochemical regioselective *cross*-dehydrogenative $C(sp^2)$ -H sulfenylation and selenylation of substituted benzo[*a*]phenazin-5-ols

Nayana Nayek, Pintu Karmakar, Mullicka Mandal, Indrajit Karmakar and Goutam Brahmachari*

Laboratory of Natural Products & Organic Synthesis, Department of Chemistry,

Visva-Bharati (a Central University), Santiniketan-731 235, West Bengal, India.

*Corresponding author: Prof.Dr.GoutamBrahmachari

(http://orcid.org/0000-0001-9925-6281)

E-mail: brahmg2001@yahoo.co.in; goutam.brahmachari@visva-bharati.ac.in

Electronic Supplementary Information (ESI) for New Journal of Chemistry

Table of Contents

1.	General
2.	Pictorial views of the experimental Set-up (Figure 1)
3.	Physical and spectral data of all the synthesized benzo[<i>a</i>]phenazine derivatives 1
4.	Scanned copies of ¹ H-NMR, ¹³ C-NMR for all the synthesized benzo[<i>a</i>]phenazine derivatives 1 (1a- 1e)
5.	Scanned copies of ¹ H-NMR, ¹³ C-NMR, DEPT-135 NMR, ⁷⁷ Se NMR, 2D-NMR (for representative compound 3e , along with showing the corresponding homo- and hetero-nuclear interactions in Table S1) and HRMS spectra for all the synthesizedbenzo[<i>a</i>]phenazin-5-ols 3 (3a – 3q) and 3' (3'a –
	3'e)
6.	Scanned copies of ¹ H NMR spectra for all the synthesized benzophenones 7 (7a–7c) and benzaldehydes 9 (9a–9b)
7.	Single X-ray crystal structure analysis of 6-(Phenylthio)benzo[<i>a</i>]phenazin-5-ol (3a) S119-S120
8.	References

EXPERIMENTAL SECTION

1. General.

All chemicals (analytical grade) other than benzo[a]phenazin-5-ols were purchased from reputed companies and used without further purification. Benzo[a] phenazin-5-ols (**1a-1e**) used in this present study were prepared out of the reaction between 2-hydroxynaphthoquinone and o-phenylenediamines as per the previously reported procedure.¹ ¹H-, ¹³C-, ⁷⁷Se-NMR spectra were collected at 400, 100 and 76 MHz, respectively, on a Bruker DRX spectrometer using CDCl₃ and DMSO-d₆ containing 1-2 drops of saturated NaOH solution in D₂O, as the solvents. Chemical shifts were reported in δ (ppm), relative to the internal standard, TMS. The signals observed are described as s (singlet), d (doublet), t (triplet), and m (multiplet). Coupling constants are reported as J value in Hz. Mass spectrometry was obtained using a Bruker maXis Impact (Q-TOF), Agilent (Q-TOF), and Microtek Q-TOF Micro YA 263 Waters high-resolution mass spectrometer. X-ray single crystallographic data were collected on X'Calibur CCD area-detector diffractometer. UV spectra were recorded on a SHIMADZU UV-3101PC spectrophotometer. Melting point was recorded on a Chemiline CL-725 melting point apparatus and is uncorrected. Thin Layer Chromatography (TLC) was performed using silica gel 60 F254 (Merck) plates. Philips 9 W Standard B22 white LED Bulbs (Manufacturer: PHILIPS; Model and other details: LED Lamp B22d Crystal White, 9 W, F6500, Lumen 825 lm (91.7 lm/W), 0.060 A, 220-240 Vac, 50 Hz) were used as the light source. For accessing direct sunlight, all reactions were carried out on an open roof-top (Chemistry Building). A 'Metravi RPS-3005 DC Regulated Power Supply' and Graphite, Pt, Ag, Zn, and Cu plate-electrodes were used to perform the electrochemical cell reactions.

2. Pictorial views of the experimental Set-ups

Figure S1: (a) A pictorial view (from the top end) at the time of lightening of two white LED $(2 \times 9 \text{ W})$ positioned face to face; (b) Pictorial view at the time of running the experiment; (c) Pictorial view of the reaction set-up in open sunlight on the roof-top (Dept. of Chemistry, Visva-Bharati), (d) 'Metravi RPS-3005 DC Regulated Power Supply' and Platinum || Graphite plate-electrodes were used to perform the electrochemical cell reactions.

3. The spectral data of all the synthesized benzo[a]phenazin derivatives 1 (1a – 1e) are given below:

Benzo[*a*]**phenazin-5-ol** (1a).^{1a} Orange amorphous solid; yield: 89% (220 mg, 1 mmol scale); mp =296 °C.¹H NMR (400 MHz, DMSO-*d*₆): δ = 9.16-9.13 (m, 1H, Ar-H), 8.43-8.41 (m, 1H, Ar-H), 8.10 (d, 1H, *J* = 8.0 Hz, Ar-H), 7.90 (d, 1H, *J* = 8.4 Hz, Ar-H), 7.84-7.77 (m, 2H, Ar-H), 7.71-7.68 (m, 1H, Ar-H), 7.60-7.56 (m, 1H, Ar-H), 6.77 (s, 1H, *H*C=C(OH)-)) ppm. ¹³C NMR (400 MHz, DMSO-*d*₆): δ =166.39, 148.19, 143.11, 46.400 MHz, 120.472 (20).426.02 (400 MHz, 120.421 (400.411))

139.72, 137.85, 133.66, 131.46, 129.54, 129.17 (2C), 127.90, 126.92, 125.39, 124.53, 124.19, 101.51 ppm.

10-Bromobenzo[*a*]**phenazin-5-ol** (**1b**). Yellow crystalline solid; yield: 94% (308 mg, 1 mmol scale); mp = 274-276°C. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 11.61 (br s, 1H, Ar-*OH*), 9.16 (m, 1H, Ar-H), 8.41-8.28 (m, 2H, Ar-H), 8.15-8.03 (m, 1H, Ar-H), 7.95-7.88 (m, 3H, Ar-H), 7.14 (s, 1H, *H*C=C(OH)-)) ppm. ¹³C NMR (400 MHz, DMSO-*d*₆): δ = 157.45, 145.56, 141.21, 139.88, 133.15, 131.45, 131.07, 130.95, 130.64, 130.43, 129.96, 111.102.21 mm

128.87, 124.94, 122.97, 121.11, 103.31 ppm.

10-Chlorobenzo[*a*]**phenazin-5-ol** (**1c**).^{1c} Greenish yellow crystalline solid; yield: 87% (244 mg, 1 mmol scale); mp = 280-282 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 11.61 (br s, 1H, Ar-*OH*), 9.18-9.17 (m, 1H, Ar-H), 8.30-8.22 (m, 2H, Ar-H), 8.15-8.11 (m, 1H, Ar-H), 7.92-7.78 (m, 3H, Ar-H), 7.14 (s, 1H, *H*C=C(OH)-)) ppm. ¹³C NMR (400 MHz, DMSO-*d*₆): δ = 157.38, 145.48, 141.03, 139.49, 132.57, 131.05, 130.76, 130.70, 130.61,

130.41, 129.91, 128.84, 127.62, 124.94, 122.95, 103.29 ppm.

10-Fluorobenzo[*a*]**phenazin-5-ol (1d)**. Yellow amorphous solid; yield: 92% (243 mg, 1 mmol scale); mp = 283-286°C. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 11.57 (br s, 1H, Ar-*OH*), 9.23-9.21 (m, 1H, Ar-H), 8.32-8.30 (m, 1H, Ar-H), 8.23-8.19 (m, 1H, Ar-H), 8.02-7.98 (m, 1H, Ar-H), 7.94-7.88 (m, 2H, Ar-H), 7.86-7.80 (m, 1H, Ar-H), 7.18 (s, 1H, *H*C=C(OH)-)) ppm. ¹³C NMR (400 MHz, DMSO-*d*₆): δ = 159.62 (*J*_{CF} = 554 Hz),

159.92, 144.86, 139.95, 139.76, 130.69, 130.57, 130.41, 128.96, 128.81, 124.97, 124.70, 122.95, 120.96 ($J_{CF} = 26$ Hz), 111.98 ($J_{CF} = 21$ Hz), 103.30 ppm.

9,10-dichlorobenzo[*a*]**phenazin-5-ol** (1e).^{1a} Orange amorphous solid; yield: 95% (299 mg, 1 mmol scale); mp = 295-297°C. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 9.06-9.04 (m, 1H, Ar-H), 8.35-8.33 (m, 1H, Ar-H), 8.27 (s, 1H, Ar-H), 8.06 (s, 1H, Ar-H), 7.84-7.77 (m, 2H, Ar-H), 6.57 (s, 1H, *H*C=C(OH)-)) ppm. ¹³C NMR (400 MHz, DMSO-*d*₆): δ = 168.51, 167.60, 153.03, 149.12, 142.46, 140.97, 136.29, 131.07, 130.01, 129.52

(2C), 128.11, 127.05, 124.99, 124.16, 101.29 ppm.

4. Scanned copies of ¹H NMR and ¹³C NMR spectra for all the synthesized benzo[*a*]phenazin derivatives 1 (1a – 1e) (Figure S1 – S10)

Figure S1. ¹H-NMR spectrum of benzo[*a*]phenazin-5-ol (1a)

Figure S2. ¹³C-NMR spectrum of benzo[*a*]phenazin-5-ol (1a)

Figure S3. ¹H-NMR spectrum of 10-bromobenzo[*a*]phenazin-5-ol (**1b**)

Figure S4. ¹³C-NMR spectrum of 10-bromobenzo[*a*]phenazin-5-ol (**1b**)

Figure S95. ¹H-NMR spectrum of 10-chlorobenzo[*a*]phenazin-5-ol (**1c**)

Figure S6. ¹³C-NMR spectrum of 10-chlorobenzo[*a*]phenazin-5-ol (1c)

Figure S7. ¹H-NMR spectrum of 10-fluorobenzo[*a*]phenazin-5-ol (1d)

Figure S8. ¹³C-NMR spectrum of 10-fluorobenzo[*a*]phenazin-5-ol (1d)

Figure S9. ¹H-NMR spectrum of 9,10-dichlorobenzo[*a*]phenazin-5-ol (1e)

Figure S10. ¹³C-NMR spectrum of 9,10-dichlorobenzo[*a*]phenazin-5-ol (1e)

5. Scanned copies of ¹H NMR, ¹³C NMR, DEPT-135, ⁷⁷Se NMR, 2D-NMR (for representative compound 3e, along with showing the corresponding homo- and hetero-nuclear interactions in Table S1) and HRMS spectra for all the synthesized benzo[*a*]phenazin-5-ols 3 (3a–3q) and 3' (3'a–3'e) (Figure S11 – S100)

Figure S11.¹H-NMR spectrum of 6-(phenylthio)benzo[*a*]phenazin-5-ol (**3a**) [**0.1 mmol scale**]

Figure S12. ¹H-NMR spectrum of 6-(phenylthio)benzo[*a*]phenazin-5-ol (**3a**) [**1.0 mmol scale**]

Figure S13.¹³C-NMR spectrum of 6-(phenylthio)benzo[*a*]phenazin-5-ol (**3a**)

Figure S14. DEPT-135 NMR spectrum of 6-(phenylthio)benzo[a]phenazin-5-ol (3a)

Figure S15. High-resolution Mass spectra of 6-(phenylthio)benzo[a]phenazin-5-ol (3a)

Figure S16. ¹H-NMR spectrum of 6-((4-chlorophenyl)thio)benzo[*a*]phenazin-5-ol (**3b**)

Figure S17. ¹³C-NMR spectrum of 6-((4-chlorophenyl)thio)benzo[*a*]phenazin-5-ol (**3b**)

Figure S17. DEPT-135 NMR spectrum of 6-((4-chlorophenyl)thio)benzo[a]phenazin-5-ol (3b)

Figure S18. High-resolution Mass spectra of 6-((4-chlorophenyl)thio)benzo[a]phenazin-5-ol (3b)

Figure S19.¹H-NMR spectrum of 6-((4-fluorophenyl)thio)benzo[*a*]phenazin-5-ol (**3c**)

Figure S20.¹³C-NMR spectrum of 6-((4-fluorophenyl)thio)benzo[*a*]phenazin-5-ol (**3c**)

Figure S21. DEPT-135 NMR spectrum of 6-((4-fluorophenyl)thio)benzo[*a*]phenazin-5-ol (**3c**)

Figure S22. High-resolution Mass spectra of 6-((4-fluorophenyl)thio)benzo[a]phenazin-5-ol (3c)

Figure S23. ¹H-NMR spectrum of 6-((4-(trifluoromethyl)phenyl)thio)benzo[a]phenazin-5-ol (**3d**)

Figure S24.¹³C-NMR spectrum of 6-((4-(trifluoromethyl)phenyl)thio)benzo[*a*]phenazin-5-ol (**3d**)

Figure S25. DEPT-135 NMR spectrum of 6-((4-(trifluoromethyl)phenyl)thio)benzo[a]phenazin-5-ol (3d)

Figure S26. High-resolution Mass spectra of 6-((4-(trifluoromethyl)phenyl)thio)benzo[a]phenazin-5-ol (3d)

Figure S27. ¹H-NMR spectrum of 6-((4-methoxyphenyl)thio)benzo[a]phenazin-5-ol (3e)

Figure S28. ¹³C-NMR spectrum of 6-((4-methoxyphenyl)thio)benzo[*a*]phenazin-5-o1(**3e**)

Figure S29. DEPT-135 NMR spectrum of 6-((4-methoxyphenyl)thio)benzo[a]phenazin-5-ol (3e)

Figure S30. ¹H⁻¹H COSY45 spectra of6-((4-methoxyphenyl)thio)benzo[*a*]phenazin-5-ol (**3e**)

Figure S30a. ¹H⁻¹H COSY45 spectra of 6-((4-methoxyphenyl)thio)benzo[*a*]phenazin-5-ol (**3e**) [extended form]

Figure S31.¹H⁻¹³C HMQC spectra of 6-((4-methoxyphenyl)thio)benzo[*a*]phenazin-5-ol (**3e**)

Figure S31a.¹H⁻¹³C HMQC spectra of 6-((4-methoxyphenyl)thio)benzo[*a*]phenazin-5-ol (**3e**) [extended form]

Figure S32.¹H⁻¹³C HMBCspectra of 6-((4-methoxyphenyl)thio)benzo[*a*]phenazin-5-ol (**3e**)

Figure S32a.¹H⁻¹³C HMBCspectra of 6-((4-methoxyphenyl)thio)benzo[*a*]phenazin-5-ol (**3e**)

Table S1. 2D-NMR properties of representative compound 3e showing the corresponding homo- and hetero-nuclear interactions

Carbon	¹ Η (ppm/δ)	¹³ C (ppm/δ)	DEPT-135	¹ H- ¹ H COSY-45	¹ H- ¹³ C HMQC	¹ H- ¹³ C HMBC
C-1	7.98 (d, 1H, J = 8.4 Hz, Ar-H)	129.09	СН	H-1 (δ 7.98) <i>vs</i> H-2 (δ 7.43- 7.39)	δ 7.98 (H-1) <i>vs</i> δ 129.09 (C-1)	δ 7.98 (H-1) vs δ 143.59 (C-12a)
C-2	7.43-7.39 (m, 1H, Ar-H)	124.22	СН	H-2 (δ 7.43-7.39) <i>vs</i> H-1 (δ 7.98) & H-3 (δ 7.75-7.69)	δ 7.43-7.39 (H-2) <i>vs</i> δ 124.22 (C-2)	δ 7.43-7.39 (H-2) <i>vs</i> δ 135.94 (C-12b)
C-3	7.75-7.69 (m, 1H, Ar-H)	128.34	СН	H-3 (δ 7.75-7.69) <i>vs</i> H-2 (δ 7.43-7.39) & H-4 (δ 9.05- 9.02)	δ 7.75 (H-3) <i>vs</i> δ 128.34 (C- 3)	δ 7.75 (H-3) <i>vs</i> δ 124.22 (C-2), δ 124.56(C-4), δ 135.94 (C-12b)
C-4	9.05-9.02 (m, 1H, Ar-H)	124.56	СН	H-4 (δ 9.05-9.02) <i>vs</i> H-3 (δ 7.75-7.69)	δ 9.05-9.02 (H-4) <i>vs</i> δ 124.56 (C-4)	δ 9.05-9.02 (H-4) <i>vs</i> δ 129.09 (C-1)
C-4a	_	132.10	С	_	_	_
C-5	_	173.03	С	_	_	_
C-6	_	98.00	С	_	_	_
С-ба	_	150.31	С	_	_	_
C-7a	_	139.96	С	_	_	_
C-8	8.41-8.39 (m, 1H, Ar-H)	125.75	СН	H-8 (δ 8.41-8.39) <i>vs</i> H-9 (δ 7.75-7.69)	δ 8.41-8.39 (H-8) <i>vs</i> δ 125.75 (C-8)	δ 8.41-8.39 (H-8) <i>vs</i> δ 128.85 (C-9/ C-10)
C-9	7.75-7.69 (m, 1H, Ar-H)	128.85	СН	H-9 (δ 7.75-7.69) <i>vs</i> H-8 (δ 8.41-8.39)	δ 7.75-7.69 (H-9) <i>vs</i> δ 128.85 (C-9)	δ 7.75-7.69 (H-9) <i>vs</i> δ 136.73 (C-11a)

C-10	7.75-7.69 (m, 1H, Ar-H)	128.85	СН	H-10 (δ 7.75-7.69) <i>vs</i> H-11 (δ 7.58-7.54)	δ 7.75-7.69 (H-10) <i>vs</i> δ 128.85 (C-10)	δ 7.75-7.69 (H-10) <i>vs</i> δ 136.73 (C-11a)
C-11	7.58-7.54 (m, 1H, Ar-H)	129.49	СН	H-11 (δ 7.58-7.54) vs H-10 (δ 7.75-7.69)	δ 7.58-7.54 (H-11) <i>vs</i> δ 128.85 (C-11)	δ 7.58-7.54 (H-11) <i>vs</i> δ 129.49 (C-12a)
C-11a	_	136.73	С	_	_	_
C-12a	-	143.59	С	_	-	_
C-12b	_	135.94	С	_	_	_
C-1'	_	133.20	С	_	_	_
C-2' &C- 6'	6.95 (d, 2H, <i>J</i> = 8.8 Hz,Ar-H)	127.09	СН	H-2'/ H-6' (δ 6.95) <i>vs</i> H-3'/ H-5' (δ 6.65)	δ 6.95 (H-2'/H-6') <i>vs</i> δ 127.09 (C-2'/C-6')	δ 6.95 (H-2'/H-6') <i>vs</i> δ 156.19 (C-4'), 133.20 (C-1')
C-3' &C- 5'	6.65 (d, 2H, <i>J</i> = 8.8 Hz,Ar-H)	114.20	СН	H-3'/ H-5' (δ 6.65) <i>vs</i> H-2'/ H-6' (δ 6.95)	δ 6.65 (H-3'/H5') <i>vs</i> δ 114.20 (C-3'/C-5')	δ 6.65 (H-3'/H-5') <i>vs</i> δ 156.19 (C-4'),
C-4'	_	156.19	С	-	_	_
C-7'	3.75 (s, 3H, Ar-OCH ₃)	55.33	OCH ₃	_	δ 3.59 (Ar-OCH ₃) <i>vs</i> δ 55.33 (Ar-OCH ₃)	δ 3.59 (Ar-OCH ₃) vs δ 156.19 (C-4')

Figure S33. High-resolution Mass spectra of 6-((4-methoxyphenyl)thio)benzo[*a*]phenazin-5-ol (**3e**)

Figure S34.¹H-NMR spectrum of 6-(*p*-tolylthio)benzo[*a*]phenazin-5-ol (**3f**)

Figure S35.¹³C-NMR spectrum of 6-(*p*-tolylthio)benzo[*a*]phenazin-5-ol (**3f**)

Figure S36. DEPT-135 NMR spectrum of 6-(p-tolylthio)benzo[a]phenazin-5-ol (3f)

Figure S37. High-resolution Mass spectra of 6-(p-tolylthio)benzo[a]phenazin-5-ol (3f)

Figure S38. ¹H-NMR spectrum of 10-bromo-6-(phenylthio)benzo[*a*]phenazin-5-ol (**3g**)

Figure S39. ¹³C-NMR spectrum of 10-bromo-6-(phenylthio)benzo[*a*]phenazin-5-ol (**3g**)

Figure S40. DEPT-135 NMR spectrum of 10-bromo-6-(phenylthio)benzo[a]phenazin-5-ol (3g)

Figure S41. High-resolution Mass spectra of 10-bromo-6-(phenylthio)benzo[a]phenazin-5-ol (3g)

Figure S42. ¹H-NMR spectrum of 10-bromo-6-((4-fluorophenyl)thio)benzo[*a*]phenazin-5-ol (**3h**)

Figure S43. ¹³C-NMR spectrum of 10-bromo-6-((4-fluorophenyl)thio)benzo[a]phenazin-5-ol (3h)

Figure S40. DEPT-135 NMR spectrum of 10-bromo-6-((4-fluorophenyl)thio)benzo[a]phenazin-5-ol (3h)

Figure S41. High-resolution Mass spectra of 10-bromo-6-((4-fluorophenyl)thio)benzo[*a*]phenazin-5-ol (**3h**)

Figure S42. ¹H-NMR spectrum of 10-bromo-6-((4-(trifluoromethyl)phenyl)thio)benzo[a]phenazin-5-ol (3i)

Figure S43. ¹³C-NMR spectrum of 10-bromo-6-((4-(trifluoromethyl)phenyl)thio)benzo[*a*]phenazin-5-ol (**3i**)

Figure S44. DEPT-135 NMR spectrum of 10-bromo-6-((4-(trifluoromethyl)phenyl)thio)benzo[a]phenazin-5-ol (3i)

Figure S45. High-resolution Mass spectra 10-bromo-6-((4-(trifluoromethyl)phenyl)thio)benzo[a]phenazin-5-ol (3i)

Figure S46. ¹H-NMR spectrum of 6-((4-bromophenyl)thio)-10-chlorobenzo[a]phenazin-5-ol (3j)

Figure S47. ¹³C-NMR spectrum of 6-((4-bromophenyl)thio)-10-chlorobenzo[a]phenazin-5-ol (3j)

Figure S48. DEPT-135 NMR spectrum of 6-((4-bromophenyl)thio)-10-chlorobenzo[a]phenazin-5-ol (3j)

Figure S49. High-resolution Mass spectra of 6-((4-bromophenyl)thio)-10-chlorobenzo[a]phenazin-5-ol (3j)

Figure S50. ¹H-NMR spectrum f 10-chloro-6-((4-fluorophenyl)thio)benzo[a]phenazin-5-ol (**3k**)

Figure S51. ¹³C-NMR spectrum of 10-chloro-6-((4-fluorophenyl)thio)benzo[a]phenazin-5-ol (**3k**)

Figure S52. High-resolution Mass spectra of 10-chloro-6-((4-fluorophenyl)thio)benzo[*a*]phenazin-5-ol (**3k**)

Figure S53. ¹H-NMR spectrum of 10-chloro-6-((4-(trifluoromethyl)phenyl)thio)benzo[a]phenazin-5-ol (3l)

Figure S54. ¹³C-NMR spectrum of 10-chloro-6-((4-(trifluoromethyl)phenyl)thio)benzo[*a*]phenazin-5-ol (**3**)

Figure S55. DEPT-135 NMR spectrum of 10-chloro-6-((4-(trifluoromethyl)phenyl)thio)benzo[a]phenazin-5-ol (3l)

Figure S56. High-resolution Mass spectra of 10-chloro-6-((4-(trifluoromethyl)phenyl)thio)benzo[a]phenazin-5-ol (31)

Figure S57. ¹H-NMR spectrum of 10-fluoro-6-(phenylthio)benzo[*a*]phenazin-5-ol (**3m**)

Figure S58. ¹³C-NMR spectrum of 10-fluoro-6-(phenylthio)benzo[*a*]phenazin-5-ol (**3m**)

Figure S59. High-resolution Mass spectra of 10-fluoro-6-(phenylthio)benzo[a]phenazin-5-ol (3m)

Figure S60. ¹H-NMR spectrum of 6-((4-bromophenyl)thio)-10-fluorobenzo[a]phenazin-5-ol (3n)

Figure S61. ¹³C-NMR spectrum of 6-((4-bromophenyl)thio)-10-fluorobenzo[a]phenazin-5-ol (**3n**)

Figure S62. DEPT-135 NMR spectrum of 6-((4-bromophenyl)thio)-10-fluorobenzo[a]phenazin-5-ol (3n)

Figure S63. High-resolution Mass spectra of 6-((4-bromophenyl)thio)-10-fluorobenzo[a]phenazin-5-ol (**3n**)

Figure S64. ¹H-NMR spectrum of 6-((4-chlorophenyl)thio)-10-fluorobenzo[*a*]phenazin-5-ol (**3o**)

Figure S65. ¹³C-NMR spectrum of 6-((4-chlorophenyl)thio)-10-fluorobenzo[*a*]phenazin-5-ol (**3o**)

Figure S66. DEPT-135 NMR spectrum of 6-((4-chlorophenyl)thio)-10-fluorobenzo[a]phenazin-5-ol (**3o**)

Figure S67. High-resolution Mass spectra of 6-((4-chlorophenyl)thio)-10-fluorobenzo[*a*]phenazin-5-ol (**3o**)

Figure S68. ¹H-NMR spectrum of 10-fluoro-6-((4-fluorophenyl)thio)benzo[*a*]phenazin-5-ol (**3p**)

Figure S69. ¹³C-NMR spectrum of 10-fluoro-6-((4-fluorophenyl)thio)benzo[*a*]phenazin-5-ol (**3p**)

Figure S70. DEPT-135 NMR spectrum of 10-fluoro-6-((4-fluorophenyl)thio)benzo[a]phenazin-5-ol (3p)

Figure S71. High-resolution Mass spectra of 10-fluoro-6-((4-fluorophenyl)thio)benzo[a]phenazin-5-ol (3p)

Figure S72. ¹H-NMR spectrum of 10-fluoro-6-((4-(trifluoromethyl)phenyl)thio)benzo[a]phenazin-5-ol (3q)

Figure S73. ¹³C-NMR spectrum of 10-fluoro-6-((4-(trifluoromethyl)phenyl)thio)benzo[*a*]phenazin-5-ol (**3q**)

Figure S74. DEPT-135 NMR spectrum of 10-fluoro-6-((4-(trifluoromethyl)phenyl)thio)benzo[*a*]phenazin-5-ol (**3q**)

Figure S75. High-resolution Mass spectra of 10-fluoro-6-((4-(trifluoromethyl)phenyl)thio)benzo[a]phenazin-5-ol (3q)

Figure S76. ¹H-NMR spectrum of 6-(Phenylselanyl)benzo[*a*]phenazin-5-ol (**3'a**)

Figure S77. ¹³C-NMR spectrum of 6-(Phenylselanyl)benzo[*a*]phenazin-5-ol (**3'a**)

Figure S78. DEPT-135 NMR spectrum of 6-(Phenylselanyl)benzo[a]phenazin-5-ol (3'a)

Figure S79. ⁷⁷Se-NMR spectrum of 6-(Phenylselanyl)benzo[*a*]phenazin-5-ol (**3'a**)

Figure S80. High-resolution Mass spectra of 6-(Phenylselanyl)benzo[a]phenazin-5-ol (3'a)

Figure S81. ¹H-NMR spectrum of 10-bromo-6-(phenylselanyl)benzo[*a*]phenazin-5-ol (**3'b**)

Figure S82. ¹³C-NMR spectrum of 10-bromo-6-(phenylselanyl)benzo[*a*]phenazin-5-ol (**3'b**)

Figure S83. DEPT-135 NMR spectrum of 10-bromo-6-(phenylselanyl)benzo[a]phenazin-5-ol (3'b)

Figure S84. ⁷⁷Se NMR spectrum of 10-bromo-6-(phenylselanyl)benzo[*a*]phenazin-5-ol (**3'b**)

Figure S85. HRMS NMR spectrum of 10-bromo-6-(phenylselanyl)benzo[a]phenazin-5-ol (3'b)

Figure S86. ¹H-NMR spectrum of 10-fluoro-6-(phenylselanyl)benzo[*a*]phenazin-5-ol (**3'c**)

Figure S87. ¹³C-NMR spectrum of 10-fluoro-6-(phenylselanyl)benzo[*a*]phenazin-5-ol (**3'c**)

Figure S88. DEPT-135 NMR spectrum of 10-fluoro-6-(phenylselanyl)benzo[a]phenazin-5-ol (3'c)

Figure S89. ⁷⁷Se-NMR spectrum of 10-fluoro-6-(phenylselanyl)benzo[*a*]phenazin-5-ol (**3'c**)

Figure S90. High-resolution Mass spectra of 10-fluoro-6-(phenylselanyl)benzo[*a*]phenazin-5-ol (**3'c**)

Figure S91. ¹H-NMR spectrum of 10-methyl-6-(phenylselanyl)benzo[a]phenazin-5-ol (**3'd**)

Figure S92. ¹³C-NMR spectrum of 10-methyl-6-(phenylselanyl)benzo[*a*]phenazin-5-ol (**3'd**)

Figure S93. DEPT-135 NMR spectrum of 10-methyl-6-(phenylselanyl)benzo[a]phenazin-5-ol (3'd)

Figure S94. ⁷⁷Se-NMR spectrum of 10-methyl-6-(phenylselanyl)benzo[*a*]phenazin-5-ol (**3'd**)

Figure S95. High-resolution Mass spectra of 10-methyl-6-(phenylselanyl)benzo[a]phenazin-5-ol (3'd)

Figure S96. ¹H-NMR spectrum of 9,10-dichloro-6-(phenylselanyl)benzo[*a*]phenazin-5-ol (**3'e**)

Figure S97. ¹³C-NMR spectrum of 9,10-dichloro-6-(phenylselanyl)benzo[*a*]phenazin-5-ol (**3'e**)

Figure S98. DEPT-135 NMR spectrum of 9,10-dichloro-6-(phenylselanyl)benzo[a]phenazin-5-ol (3'e)

Figure S99. ⁷⁷Se-NMR spectrum of 9,10-dichloro-6-(phenylselanyl)benzo[*a*]phenazin-5-ol (**3'e**)

Figure S100. High-resolution Mass spectra of 9,10-dichloro-6-(phenylselanyl)benzo[a]phenazin-5-ol (3'e)

6. Scanned copies of ¹H NMR and ¹³C NMR (for representative compound 7b) spectra for all the synthesized benzophenones 7 (7a–7c) and benzaldehydes 9 (9a–9b) (Figure S101 – S105)

Figure S101. ¹H-NMR spectrum of benzophenone (**7a**)

Figure S102. ¹H-NMR spectrum of bis(4-chlorophenyl)methanone (7b)

Figure S103. ¹H-NMR spectrum of bis(4-fluorophenyl)methanone (7c)

Figure S104. ¹H-NMR spectrum of benzaldehyde (9a)

Figure S105. ¹H-NMR spectrum of 4-methylbenzaldehyde (9b)

7. Single X-ray crystal structure analysis of 6-(Phenylthio)benzo[a]phenazin-5-ol (3a)

Preparation of single crystals of compound 3a

For preparing single crystals of compound **3a**, 30 mg of the sample was dissolved in 5 mL of DMSO, and the solution was left for 3 days for slow evaporation at ambient temperature to yield reddish block-shaped crystals.

CCDC 2116546 (Compound **3a**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from *The Cambridge Crystallographic Data Centre via* www.ccdc.cam.ac.uk/data_request/cif

Figure S106a. *ORTEP* view of the molecule, showing the atom-labelling scheme Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Figure S106b. The packing arrangement of molecules viewed down the a-axis, b-axis and c-axis

CCDC Number	2116546	
Empirical formula	$C_{22}H_{14}N_2OS$	
Formula weight	354.41	
Temperature	150.02 (18) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 2 ₁ /n	
Unit cell dimensions	a = 12.9621(4) Å	$\alpha = 90^{\circ}$
	b = 8.5724 (3) Å	β=91.399 (3)°
	c = 14.8322 (6) Å	$\gamma = 90^{\circ}$
Volume	1647.60 (10) Å ³	
Z	4	
Density (calculated)	1.429 g/cm ³	
Absorption coefficient	0.210 mm ⁻¹	
F(000)	736.0	
Crystal size	0.334×0.131×0.118 mm ³	
Crystal shape (colour)	Block (Red color)	
Theta range for data collection	4.12 to 56.68°	
Index ranges	-16<=h<=14, -4<=k<=11, -9<=l<=19	
Reflections collected	5264	
Independent reflections	3661 [$R_{int} = 0.0528$, $R_{sigma} = 0.0764$]	
Completeness to theta = 28.340°	86.5 %	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	3561 / 0 / 236	
Goodness-of-fit on F ²	1.049	
Final R indices [I>= $2\sigma(I)$]	$R_1 = 0.0673, wR_2 = 0.1783$	
R indices (all data)	$R_1 = 0.0858, wR_2 = 0.2057$	
Largest diff. peak and hole	0.73 and -0.76 e.Å ⁻³	
Scan mode	ωscan	
Reflections observed (I > $2\sigma(I)$)	5264	
Structure determination	Direct methods	
No. of parameters refined	236	
Final residual electron density	0.73 and -0.76 e.Å ⁻³	
Software for geometry calculation	WinGX [2]	
Software for geometrical calculation	PARST [3]	
Software for molecular plotting	PLATON [4], Ortep3 [5]	
Software for structure solution	SHELXS-97 [6]	
Software for refinement	SHELXL-97 [7]	

8. References

- (*a*) A. Shaabani, R. Ghadari and M. Arabieh, *Helv. Chim. Acta.*, 2014, **97**, 228-236; (b) H. Kour, S. Paul, P. P. Sing and R. Gupta, *Synlett*, 2014, **25**, 495-500; (*c*) A. S. Choudhary, M. K. Malik, S. R. Patil, K. H. Prabhu, R. R. Deshmukh and N. Sekar, *Can. Chem. Trans.*, 2014, **2**, 365-380;
 (*d*) P. Saluja, A. Chaudhary and J. M. Khurana, *Tetrahedron Lett.*, 2014, **55**, 3431-3435; (*e*) G. H. Mahdavinia, M. Mirzazadeh and B. Notash, *Tetrahedron Lett.*, 2013, **54**, 3487-3492; (*f*) J. M. Khurana, A. Chaudhary, A. Lumb, A. and B. Nand, *Green Chem.*, 2012, **14**, 2321-2327.
- 2. L. J. Farrugia, J. Appl. Crystallogr., 1999, 32, 837-838.
- 3. M. Nardelli, J. Appl. Crystallogr., 1995, 28, 659.
- 4. A. L. Spek, Acta Crystallogr., 2009, D65, 148-155.
- 5. L. J. Farrugia, J. Appl. Crystallogr., 1997, 30, 565.
- 6. G. M. Sheldrick, SHELXS97, Program for the solution of the crystal structure, University of Gottingen, Germany, 1997.
- 7. G. M. Sheldrick, SHELXL97, University of Göttingen, Germany, 1997.