Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

for

Strategic Design of a 2,6-Disubstituted Pyridine-based Probe having Hard-Soft Centres: Responsive Divergence from One Core

Krishna Mohan Das,^{a‡} Adwitiya Pal,^{a‡} Bappaditya Goswami,^b Nayarassery N. Adarsh,^c Arunabha Thakur*^a

^aDepartment of Chemistry, Jadavpur University, Kolkata- 700032, India.

^bDepartment of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, India.

^cChemistry and Biomolecular Science, Clarkson University, 8 Clarkson Ave., Potsdam, New

York, 13699.

[‡]These authors contributed equally to the publication.

Phone : 0332-4572779, +919937760940.

Email: arunabha.thakur@jadavpuruniversity.in, babuiitm07@gmail.com

Contents	Page
Fig. S1. ¹ H NMR spectra of compound 5	5
Fig. S2. ¹³ C NMR spectra of compound 5	6
Fig. S3. ¹ H NMR spectra of compound 6	7
Fig. S4. ¹³ C NMR spectra of compound 6	8
Fig. S5. ¹ H NMR spectra of compound 7	9
Fig. S6. ¹³ C NMR spectra of compound 7	10
Fig. S7 ORTEP representation of the molecular structure of 5	11
Table S1. Crystal data of 5	12

Fig. S8. Absorption spectra of compound 5 with all metals in	
DMSO:H ₂ O (7:3, v/v) at 22 °C.	13
Fig. S9. Absorption spectra of compound 7 with all metals in	
DMSO:H ₂ O (7:3, v/v) at 22 °C.	14
Fig. S10. Binding plots by Bindfit software of compound 5	
with Hg ²⁺ ion from UV-vis titration spectra.	15
Fig. S11. Jobs plot of compound 5 with Cu^{2+} metal ion at various concentration.	16
Fig. S12. Jobs plot of compound 7 with Cu^{2+} and Hg^{2+} metal ions	
at various concentration	17
Fig. S13. Binding plots by Bindfit software of compound 5	
with Cu ²⁺ ion from UV-vis titration spectra	18
Fig. S14. Binding plots by Bindfit software of compound 7	
with Cu ²⁺ ion from UV-vis titration spectra	19
Fig. S15. Binding plots by Bindfit software of compound 7	
with Hg ²⁺ ion from UV-vis titration spectra	20
Fig. S16 Fluorescence emission spectra of compound 5 (7.8×10^{-6} M) with all metals in	
DMSO:H ₂ O (7:3, ν/ν) solvent at 22 °C.	21
Fig. S17 Fluorescence emission spectra of compound 7 (7.8×10^{-6} M) with all metals in	
DMSO:H ₂ O (7:3, v/v) solvent at 22 °C.	22
Fig. S18 Stern-Volmer plot of 5+Cu ²⁺ .	23
Fig. S19 Stern-Volmer plot of 7+Cu ²⁺ .	24
Fig. S20 Stern-Volmer plot of 7+Hg ²⁺ .	25
Fig. S21. Limit of detection (LOD) of compound 5 in presence of Cu^{2+} ion from	
fluorescence spectra by 3σ /s method.	26
Fig. S22 Excel sheet for 5+Cu ²⁺ LOD calculation.	27
Fig. S23. Limit of detection (LOD) of compound 7 in presence of Cu^{2+} ion from	
fluorescence spectra by 3σ /s method.	28
Fig. S24 Excel sheet for 7+Cu ²⁺ LOD calculation.	29
Fig. S25. Limit of detection (LOD) of compound 7 in presence of Hg^{2+} ion from	
fluorescence spectra by 3σ /s method.	30
Fig. S26. Excel sheet for 7+Hg ²⁺ LOD calculation.	31

Fig. S27. Quantitive binding data for 5 with Cu^{2+} ion.	32
Fig. S28. Quantitive binding data for 7 with Cu ²⁺ ion.	33
Fig. S29. Quantitive binding data for 7 with Hg^{2+} ion.	34
Table S2. Comparison table for LOD and association constant	35
Fig. S30. Reversibility test of 5 with Cu^{2+} in DMSO:H ₂ O (7:3, v/v) by	
aqueous solution of disodium EDTA.	37
Fig. S31. Reversibility test of 7 with Cu^{2+} in DMSO:H ₂ O (7:3, v/v) by aqueous solution	of
disodium EDTA.	38
Fig. S32. Reversibility test of 7 with Hg^{2+} in DMSO: $H_2O(7:3, v/v)$ by	
aqueous solution of disodium EDTA.	39
Fig. S33. ¹ H NMR titration of ligand 5 with Cu^{2+} ion.	40
Fig. S34. 1 H NMR titration of ligand 7 with Hg ²⁺ ion.	41
Fig. S35. Naked eye detection of Hg^{2+} and Cu^{2+} by 5 and 7 (10 ⁻³ M) in DMSO solvent.	42
Fig. S36. Variation of fluorescence intensity with pH	43
Fig. S37. Variation of fluorescence intensity with temperature and time	44
Fig. S38 Overlay of X-ray crystal structure and DFT optimized structure of	
receptor 5.	45
Table S3 The selected distances (Å) of receptors 5 and 7 calculated at	
B3LYP/6-311g(d)/cpcm (acetonitrile) level.	46
Fig. S39 Frontiers MOs of the acyclic receptor 5 with corresponding energy	
values in parenthesis. (isosurface value= 0.04)	47
Fig. S40 Frontiers MOs of the cyclic receptor 7 with corresponding energy	
values in parenthesis. (isosurface value=0.04)	48
Table S4 The selected distances (Å) of complex [5·Cu(ClO ₄) ₂]	
calculated at B3LYP/6-311g(d)/lanl2dz(Cu)/cpcm(acetonitrile) level.	49
Fig. S41 Frontiers MOs of the complex $[5 \cdot Cu(ClO_4)_2]$ with corresponding	
energy values in parenthesis. (isosurface value= 0.04)	50
Table S5 The selected distances (Å) of complexes [7·Hg ²⁺] (left sided alkyne unit)	
and [7·Hg ²⁺] (left sided alkyne unit) calculated at B3LYP/6-311g(d)/lanl2dz(Hg)/	
cpcm (acetonitrile) level.	51
Fig. S42 Frontiers MOs of the complex $[7 \cdot \text{Hg}^{2+}]$ (left sided alkyne unit) with	
corresponding energy values in parenthesis (isosurface value= 0.04).	52
Fig. S43 Frontiers MOs of the complex $[7 \cdot \text{Hg}^{2+}]$ (right sided alkyne unit) with	

corresponding energy values in parenthesis (isosurface value= 0.04).	53
Fig. S44 Optimized structure of the complexes considering endocyclic binding	
mode: a) $[7 \cdot \text{Hg}^{2+}]$ (left sided alkyne unit), and b) $[7 \cdot \text{Hg}^{2+}]$ (right sided alkyne unit)	54
Fig. S45 Calculated absorption spectrum of the acyclic receptor 5	55
Table S6 Major excited state transitions of the acyclic receptor 5 with	
Osc. Strength and λ_{ex} .	55
Fig. S46 Calculated absorption spectrum of the cyclic receptor 7.	56
Table S7 Major excited state transitions of the cyclic receptor 7 with	
Osc. Strength and λ_{ex} .	56
Fig. S47 Calculated absorption spectrum of the complex $[5 \cdot Cu(ClO_4)_2]$.	57
Table S8 Major excited state transitions of the complex $[5 \cdot Cu(ClO_4)_2]$ with	
Osc. Strength and λ_{ex} .	57
Fig. S48 Calculated absorption spectrum of the complex (a):	
[7 ·Hg ²⁺] (left side); (b): [7 ·Hg ²⁺] (right side).	58
Table S9 Major excited state transitions of the complex [7·Hg ²⁺]	
(Involving left-sided alkyne as a binding unit) with Osc. Strength and λ_{ex} .	58
Table S10 Major excited state transitions of the complex $[7 \cdot Hg^{2+}]$	
(involving right-sided alkyne as a binding unit) with Osc. Strength and λ_{ex} .	58
Table S11 DFT Optimized coordinates of all the compounds.	59
References	64

Fig. S1 ¹H NMR spectra of compound 5 in DMSO- d_6 as a solvent.

Fig. S2 ¹³C NMR spectra of compound 5 in DMSO- d_6 as a solvent.

Fig. S3 ¹H NMR spectra of compound 6 in $CDCl_3$ as a solvent.

Fig. S4 13 C NMR spectra of compound 6 in CDCl₃ as a solvent

Fig. S5. ¹H NMR spectra of compound 7 in DMSO-d₆ as a solvent.

Fig. S6. ¹³C NMR spectra of compound 7 in DMSO- d_6 as a solvent.

Fig. S7 ORTEP representation of the molecular structure of **5** with thermal ellipsoids drawn at the 50% probability level. Selected bond lengths (Å) and angles (deg) for 5: C3-N1 1.337(2), C4-O1 1.220(2), C4-N2 1.348(2), N2-N3 1.381(2), N3-C5 1.227(3), C5-C6 1.459(3), C9-O2 1.366(2), C13-C14 1.171(3); N1-C3-C4 116.74(17), N1-C3-C2 123.06(18), O1-C4-N2 124.74(18), C4-N2-N3 121.29(16), C5-N3-N2 114.71(16), N3-C5-C6 121.77(18), C9-O2-C12 118.93(16), O2-C9-C10 125.50(18).

Empirical formula	C ₂₇ H ₂₁ N ₅ O ₄
Formula weight	479.49
Crystal size (mm)	0.36 X 0.28 X 0.12
Crystal system	monoclinic
Space group	C2/c
a [Å]	26.676(2)
<i>b</i> [Å]	11.1232(8)
c [Å]	8.1112(6)
α [°]	90
β [°]	103.747(4)
γ[°]	90
volume [Å ³]	2337.9(3)
Ζ	1.362
F(000)	1000
μ MoK _{α} [mm ⁻¹]	0.094
Temperature [K]	140(2)
R _{int}	0.0316
Range of h, k, l	-34/34, -14/14, -10/10
$\theta_{\min/\max}(^{\circ})$	1.992/27.113
Reflections	27987/2588/2043
collected/Unique/observed	
$[I > 2\sigma(I)]$	
Data/restraints/parameters	2588/0/ 164
GOF on F^2	1.126
Final R indices $[I > 2\sigma(I)]$	R1 = 0.0570
	wR2 = 0.1222
R indices [all data]	R1 = 0.0762
	wR2 = 0.1316

Table S1: Crystal data of 5

Fig. S8 Absorption spectra of compound **5** (3.1×10^{-5} M) with all metals in DMSO:H₂O (7:3, v/v) at 22 °C.

Fig. S9 Absorption spectra of compound 7 (3.1×10^{-5} M) with all metals in DMSO:H₂O (7:3, v/v) at 22 °C.

Fig. S10 Fitting of absorption titration data of compound 5 with Hg^{2+} ion into 1:2 Nelder-Mead model in Bindfit software. Screenshots taken from the website supramolecular.org. This fitting for 1:2 fitter with a minimum error of ±1.1363 % justifies the 1:2 binding of 5 with Hg^{2+} ion with an association constant of 14182.40 M⁻¹. 20 data points have been used as input in this fitting with 3 factors viz., host concentration, guest concentration and the change in fluorescence intensity. The optimised value is the actual binding constant obtained.

Fig. S11 Jobs plot of compound 5 with Cu^{2+} metal ion at various concentration.

Fig. S12 Jobs plot of compound 7 with (a)-(c) Cu^{2+} and (d)-(f) Hg^{2+} metal ions at various concentration.

Fig. S13 Association constant of compound 5 with Cu^{2+} ion obtained from fitting the UV-vis absorbance titration data into 1:1 Nelder-Mead model in Bindfit software. Screenshots taken from the website supramolecular.org. This fitting for 1:1 fitter with an error of ±33.3373 % (< 40 %) justifies the 1:1 binding of 5 with Cu^{2+} ion with an association constant of 2113395.04 M^{-1} . 20 data points have been used as input in this fitting with 3 factors viz., host concentration, guest concentration and the change in fluorescence intensity. The optimised value is the actual binding constant obtained.

Fig. S14 Association constant of compound 7 with Cu^{2+} ion obtained from fitting the UV-vis absorbance titration data into 1:1 L-BFGS-B model in Bindfit software. Screenshots taken from the website supramolecular.org. This fitting for 1:1 fitter with an error of ±32.2047 % (< 40 %) justifies the 1:1 binding of 7 with Cu^{2+} ion with an association constant of 1515007.51 M⁻¹. 20 data points have been used as input in this fitting with 3 factors viz., host concentration, guest concentration and the change in fluorescence intensity. The optimised value is the actual binding constant obtained.

Fig. S15 Association constant of compound 7 with Hg^{2+} ion obtained from fitting the UV-vis absorbance titration data into 1:1 L-BFGS-B model in Bindfit software. Screenshots taken from the website supramolecular.org. This fitting for 1:1 fitter with an error of ±9.4898 % (< 40 %) justifies the 1:1 binding of 7 with Hg^{2+} ion with an association constant of 10000 M⁻¹. 20 data points have been used as input in this fitting with 3 factors viz., host concentration, guest concentration and the change in fluorescence intensity. The optimised value is the actual binding constant obtained.

Fig. S16 Fluorescence emission spectra of compound **5** (7.8×10^{-6} M) with all metals in DMSO:H₂O (7:3, v/v) solvent at 22 °C.

Fig. S17 Fluorescence emission spectra of compound 7 (7.8×10^{-6} M) with all metals in DMSO:H₂O (7:3, v/v) solvent at 22 °C.

Fig. S18 Stern-Volmer plot of $5+Cu^{2+}$.

Fig. S19 Stern-Volmer plot of $7+Cu^{2+}$.

Fig. S20 Stern-Volmer plot of $7+Hg^{2+}$.

Fig. S21 Limit of detection (LOD) of compound 5 in presence of Cu^{2+} ion from fluorescence spectra by $3\sigma/s$ method.

Conc of Cu	Fl. Intensity	/							
2.22E-06	343980								
2.42E-06	339786								
2.60E-06	336191								
2.76E-06	331997								
2.92E-06	328401								
3.07E-06	325405								
3.21E-06	323009								
3.34E-06	320612								
3.46E-06	318215								
3.58E-06	315818								
3.69E-06	314620								
3.90E-06	309827								
SUMMARY	OUTPUT								
Regressior	n Statistics								
Multiple R	0.998571								
R Square	0.997144								
Adjusted F	0.996858								
Standard I	597.8115								
Observatio	12								
ANOVA									
	df	SS	MS	F	gnificance	F			
Regressior	1	1.25E+09	1.25E+09	3490.972	4.68E-14				
Residual	10	3573786	357378.6						
Total	11	1.25E+09							
(Coefficients	andard Erro	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%	pper 95.0%	6
Intercept	388266.7	1073.658	361.63	6.43E-22	385874.5	390659	385874.5	390659	
X Variable	-2E+10	3.42E+08	-59.0844	4.68E-14	-2.1E+10	-1.9E+10	-2.1E+10	-1.9E+10	

Fig. S22 Excel sheet for $5+Cu^{2+}$ LOD calculation

Fig. S23 Limit of detection (LOD) of compound 7 in presence of Cu^{2+} ion from fluorescence spectra by $3\sigma/s$ method.

Conc of Cu ²⁺	Fl.intensity
0.37	402654
0.71	379315
1	342297
1.3	320226
1.5	292405
1.8	268494
2	240101
2.2	227226
2.4	212512
2.6	191477
2.7	184119
2.9	168602
3	151245
3.2	145727
3.3	140209
3.5	114691
3.6	109173

SUMMARY OU	TPUT							
Regression	Statistics							
Multiple R	0.9981031							
R Square	0.9962097							
Adjusted R Squ	0.9959571							
Standard Error	5845.8903							
Observations	17							
ANOVA								
	df	SS	MS	F	ignificance	F		
Regression	1	1.35E+11	1.35E+11	3942.516	1.4E-19			
Residual	15	5.13E+08	34174434					
Total	16	1.35E+11						
	Coefficients	andard Erro	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%	pper 95.0%
Intercept	434909.28	3574.913	121.6559	7.03E-24	427289.5	442529	427289.5	442529
X Variable 1	-91990.145	1465.057	-62.7895	1.4E-19	-95112.8	-88867.4	-95112.8	-88867.4

Fig. S24 Excel sheet for $7+Cu^{2+}$ LOD calculation.

Fig. S25 Limit of detection (LOD) of compound 7 in presence of Hg^{2+} ion from fluorescence spectra by $3\sigma/s$ method.

Conc of Hg ²⁺	Fl.intensity
0.37	457894
0.71	424787
1	393887
1.3	371816
1.5	351952
1.8	323259
2	305602
2.2	283531
2.4	265874
2.6	252631
2.7	239388
2.9	221731
3	204074
3.2	193039
3.3	188624
3.5	179796
3.6	170967

SUMMARY OUT	PUT							
Regression	Statistics	-						
Multiple R	0.9983704							
R Square	0.9967435							
Adjusted R Squa	0.9965264							
Standard Error	5333.8425							
Observations	17							
ANOVA								
	df	SS	MS	F	ignificance	F		
Regression	1	1.31E+11	1.31E+11	4591.216	4.5E-20			
Residual	15	4.27E+08	28449876					
Total	16	1.31E+11						
	Coefficients	andard Erro	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%	pper 95.0%
Intercept	486937.95	3261.782	149.2859	3.27E-25	479985.6	493890.3	479985.6	493890.3
X Variable 1	-90574.92	1336.731	-67.7585	4.5E-20	-93424.1	-87725.7	-93424.1	-87725.7

Fig. S26 Excel sheet for 7+Hg²⁺ LOD calculation.

Fig. S27 Association constant of compound 5 with Cu^{2+} ion from Benesi-Hildebrand plot. Error bars represent standard deviation.

Fig. S28 Association constant of compound 7 with Cu^{2+} ion from Benesi-Hildebrand plot. Error bars represent standard deviation.

Fig. S29 Association constant of compound 7 with Hg^{2+} ion from Benesi-Hildebrand plot. Error bars represent standard deviation.

Table S2. Comparison table for LOD and association constant.

Entry	Ligand molecular formula	Solvent	LOD	Association Constant	Method of detection	Ref
1	C ₃₁ H ₃₇ N ₅ O ₃	HEPES buffer (pH 7.5)	 (a) 3.5×10⁻⁶ M for Cu²⁺ (b) 6.11×10⁻⁸ M for Hg²⁺ 	(a) 3.51×10 ⁶ M ⁻¹ for Cu ²⁺ (b) 6.06×10 ⁶ M ⁻¹ ¹ for Hg ²⁺	(a) Turn-Offfluorescence(b) Turn-Onfluorescence	1
2	C ₁₅ H ₁₂ N ₆ O	CH ₃ OH/H ₂ O (1:1)	 (a) 50×10⁻⁹ M for Cu²⁺ (b) 0.8×10⁻⁸ M for Hg²⁺ 	 (a) 1.3×10⁵ M⁻¹ for Cu²⁺ (b) 0.05×10⁵ M⁻¹ ¹ for Hg²⁺ 	(a) Turn-On fluorescence(b) Turn-On fluorescence	2
3	C ₄₇ H ₄₈ N ₄ OS ₂	THF/HEPES buffer (8:2, v/v, pH 7.4)	(a) 97×10 ⁻⁹ M for Cu ²⁺ (b) 80×10 ⁻⁸ M for Hg ²⁺	(a) 3.5×10 ⁶ M ⁻¹ for Cu ²⁺	(a) Turn-Offfluorescence(b) Turn-Offfluorescence	3
4	C ₄₇ H ₄₈ N ₄ O	THF/HEPES buffer (v/v, 7:3, pH 7.4)	 (a) 2.1×10⁻⁸ M for Cu²⁺ (b) 1.8×10⁻⁸ M for Hg²⁺ 	(a) 1.6×10 ⁷ M ⁻¹ for Cu ²⁺	(a) Ratiometric in fluorescence(b) Ratiometric in fluorescence	4
5	$C_{260}H_{491}N_5O_{117}S$	H ₂ O	(a) 5.92×10 ⁻⁷ M for Cu ²⁺ (b) 2.85×10 ⁻⁶ M for Hg ²⁺	(a) 5.38×10 ⁴ M ⁻¹ for Cu ²⁺ (b) 1.63×10 ⁵ M ⁻ ¹ for Hg ²⁺	(a) Turn-On fluorescence(b) Turn-On fluorescence	5
6	C ₃₂ H ₃₃ FeN ₃ O ₂ S ₂	CH ₃ CN/H ₂ O (7:3, v/v)	(a) 6.17×10 ⁻⁷ M for Cu ²⁺ (b)7.94×10 ⁻⁷ M for Hg ²⁺	(a) 9.06×10 ⁴ M ⁻¹ for Cu ²⁺ (b) 3.01×10 ⁴ M ⁻ ¹ for Hg ²⁺	(a) Turn-Onfluorescence(b) Turn-Offfluorescence	6
7	C ₂₄ H ₂₂ N ₂ O ₅ S	HEPES buffer	(a) 2.02×10 ⁻⁶ M for Cu ²⁺ (b) 1.24×10 ⁻⁶ M for Hg ²⁺ 35	 (a) 2.4×10⁵ M⁻¹ for Cu²⁺ (b) 7.46×10⁵ M⁻¹ ¹ for Hg²⁺ 	(a) Turn-Offfluorescence(b) Turn-Offfluorescence	7

8	C ₂₃ H ₂₀ N ₂ O	CH ₃ CN/H ₂ O	 (a) 7.74×10⁻⁶ M for Cu²⁺ (b) 7.67×10⁻⁶ M for Hg²⁺ 	(a) $\log \beta = 5.23$ M ⁻¹ for Cu ²⁺ (b) $\log \beta = 5.49$ M ⁻¹ for Hg ²⁺	(a) Turn-Offfluorescence(b) Turn-Offfluorescence	8
9	$C_{22}H_{20}FeS$ and $C_{22}H_{20}FeO_2S$	CH ₃ CN	 (a) 5.22×10⁻⁷ M for Cu²⁺ (b) 6.93×10⁻⁷ M for Hg²⁺ 	 (a) 5.74×10⁴ M⁻¹ for Cu²⁺ (b) 5×10⁴ M⁻¹ for Hg²⁺ 	(a) Absorptionincreases(b) Absorptionincreases	9
10	C ₂₀ H ₁₃ NS ₃	THF/H ₂ O (7:3, <i>v/v</i>)	 (a) 7.06×10⁻⁸ M for Cu²⁺ (b) 1.16×10⁻⁷ M for Hg²⁺ 	 (a) 9.4×10⁴ M⁻¹ for Cu²⁺ (b) 8.69×10⁴ M⁻ ¹ for Hg²⁺ 	(a) Turn-Off fluorescence (b)Turn-On fluorescence	10
11	C ₅₆ H ₆₇ N ₆ O ₂	CH ₃ CN/H ₂ O (1:1, v/v)	 (a) 1.3×10⁻⁶ M for Cu²⁺ (b) 1.45×10⁻⁶ M for Hg²⁺ 	(a) 3.25×10 ⁷ M ⁻¹ for Cu ²⁺ (b) 6.88×10 ⁶ M ⁻² for Hg ²⁺	(a) Turn-Off fluorescence (b) Turn-Off fluorescence	11
12	C ₂₁ H ₂₂ N ₃ O ₂ S	DMSO/H ₂ O (9:1, <i>v/v</i>)	 (a) 2.9×10⁻⁶ M for Cu²⁺ (b) 2×10⁻⁹ M for Hg²⁺ 	(a) 5.69×10 ⁵ M ⁻¹ for Cu ²⁺ (b) 1.85×10 ⁴ M ⁻ ² for Hg ²⁺	(a) Turn-Offfluorescence(b) Turn-Offfluorescence	12
13	C ₂₇ H ₂₁ N ₅ O ₄ (5) & C ₂₇ H ₁₉ N ₅ O ₄ (7)	DMSO/H ₂ O (7:3, <i>v</i> / <i>v</i>)	(a) 5.5×10 ⁻⁷ M for (5- Cu ²⁺⁾ and 5.2×10 ⁻⁷ M for (7-Cu ²⁺⁾ (b) 4.4×10 ⁻⁷ M for (7- Hg ²⁺⁾	(a) 1.02×10^5 M ⁻¹ (5 -Cu ²⁺) and 3.9×10^5 M ⁻¹ (7 -Cu ²⁺) (b) 7.4×10^4 M ⁻¹ (7 -Hg ²⁺)	(a) Turn-Offfluorescence(b) Turn-Offfluorescence	This work

Fig. S30 Reversibility test of compound **5** (7.8×10^{-6} M) with Cu²⁺ ion in presence of EDTA in DMSO:H₂O (7:3, v/v) solvent at 22 °C.

Fig. S31 Reversibility test of compound 7 (7.8×10^{-6} M) with Cu²⁺ ion in presence of EDTA in DMSO:H₂O (7:3, v/v) solvent at 22 °C.

Fig. S32 Reversibility test of compound 7 (7.8×10^{-6} M) with Hg²⁺ ion in presence of EDTA in DMSO:H₂O (7:3, v/v) solvent at 22 °C.

Fig. S33 ¹H NMR titration of ligand 5 with addition of up to 1 equiv of Cu^{2+} ion in DMSOd₆.

Fig. S34 ¹H NMR titration of ligand 7 with addition of up to 1 equiv of Hg^{2+} ion in DMSO-d₆ medium.

(a)

(b)

Fig. S35 Naked eye detection of Hg^{2+} and Cu^{2+} among all other metal ions (1×10⁻⁵ M) by compounds (a) **5** and (b) **7** (1×10⁻³ M) in DMSO solvent.

Fig. S36 Variation of fluorescence intensity with pH in (a) Free 5 and 5+Cu²⁺, (b) Free 7, $7+Cu^{2+}$ and $7+Hg^{2+}$ in DMSO solvent at 22 °C.

Fig. S37 Variation of fluorescence intensity with temperature in (a) Free 5 and $5+Cu^{2+}$, (b) Free 7 and $7+Hg^{2+}$ in DMSO solvent at 22 °C and (c) Free 7 and $7+Cu^{2+}$ and variation of fluorescence intensity with response time of (d) 5 for Cu^{2+} , (e) 7 for Cu^{2+} and (f) 7 for Hg^{2+} in DMSO solvent at 22 °C.

Fig. S38 Overlay of X-ray crystal structure and DFT optimized structure of receptor **5**. (Crystal structure obtained from XRD is shown in black color, and DFT optimized structure is shown in magenta color.

Table S3. The selected distances (Å) of receptors **5** and **7** calculated at B3LYP/6-311g(d)/cpcm (acetonitrile) level (The labeled primary binding core of both receptors **5** (left) and **7** (right) are shown above the table).

	contact	Distance (Å)]		conta
	C1-C2	1.20120			01-0
	C2-C3	1.45721			C1-C
	C3-O1	1.43501			C2-C
	C10-N1	1.28331			C3-C
	N1-N2	1.36129			C4-C
	N2-C11	1.36383			C5-C
ptor [5	C12-N3	1.33802		r [7]	C6-C
Recel	C11-O2	1.22191		scepto	C13-1
	C17-N4	1.36383		Re	N1-N
	C17-O3	1.22191			N2-C
	N4-N5	1.36129			C14-0
	N5-C18	1.28331			C20-1
	O4-C25	1.43501			C20-0
	C25-C26	1.45721			N4-N
	C26-C27	1.20120			N5-C
	N2-N4	4.58178			N2-N
	N2H-N4H	2.68537			N2H-N
	N2-N3	2.70241			N2-N
	N3-N4	2.70241			N3-N
	N1-N5	6.72499			N1-N
	C10-C18	6.21463			C21-C
	С10Н-С18Н	4.15275			C10H-C

contact	Distance (Å)
O1-C1	1.44165
C1-C2	1.46116
C2-C3	1.21151
C3-C4	1.36336
C4-C5	1.21123
C5-C6	1.46086
C6-O2	1.43574
C13-N1	1.28535
N1-N2	1.37255
N2-C14	1.36563
C14-O3	1.22013
C20-N4	1.36600
C20-O4	1.21987
N4-N5	1.36923
N5-C21	1.28452
N2-N4	4.36916
N2H-N4H	2.47027
N2-N3	2.64242
N3-N4	2.63921
N1-N5	5.93003
C21-C13	5.05133
 C10H-C18H	3.31883

Fig. S39 Frontiers MOs of the acyclic receptor **5** with corresponding energy values in parenthesis. (isosurface value= 0.04)

Fig. S40 Frontiers MOs of the cyclic receptor 7 with corresponding energy values in parenthesis. (isosurface value = 0.04).

Table S4. The selected distances (Å) of complex $[5 \cdot Cu(ClO_4)_2]$ calculated at B3LYP/6-311g(d)/lanl2dz(Cu)/cpcm(acetonitrile) level (The labeled primary binding core of complex $[5 \cdot Cu(ClO_4)_2]$ is shown at the left side of the table).

	contact	Distance (Å)	
	C1-C2	1.20100	
	C2-C3	1.45611	
	C3-O1	1.43968	
_	C10-N1	1.28805	
)4)2	N1-N2	1.38611	
CIC	N2-C11	1.43524	
•-((C11-O2	1.19948	
Cu²-	C17-N4	1.43518	
.10	C17-O3	1.19949	
omplex [5	N4-N5	1.38611	
	N5-C18	1.28804	
	O4-C25	1.43967	
Ŭ	C25-C26	1.45611	
	C26-C27	1.20100	
	N2-Cu1	2.29963	
	N3-Cu1	1.98024	
	N4-Cu1	2.30009	
	O5-Cu1	2.36077	
	06-Cu1	1.97125	

Fig. S41 Frontiers MOs of the complex $[5 \cdot Cu(ClO_4)_2]$ with corresponding energy values in parenthesis. (isosurface value= 0.04).

Table S5The selected distances (Å) of complexes $[7 \cdot Hg^{2+}]$ (left sided alkyne unit) and $[7 \cdot Hg^{2+}]$ (left sided alkyne unit) calculated at B3LYP/6-311g(d)/lanl2dz(Hg)/cpcm(acetonitrile) level (The zoomed portions of the primary binding core of $[7 \cdot Hg^{2+}]$ (left) and $[7 \cdot Hg^{2+}]$ (right) with atom labeling are shown above the table).

<i>Receptor</i> [7·Hg ²⁺]					
contact	Left side alkyne unit	Right side alkyne unit			
	distance(Å)	distance(Å)			
C1-O1	1.43988	1.44038			
C1-C2	1.46266	1.46169			
C2-C3	1.21292	1.21154			
C3-C4	1.36375	1.36346			
C4-C5	1.21126	1.21245			
C5-C6	1.46148	1.46242			
C6-O2	1.43431	1.43355			
C2-Hg1	3.67708				
C3-Hg1	3.60429				
C4-Hg1		3.73262			
C5-Hg1		3.61795			

Fig. S42 Frontiers MOs of the complex $[7 \cdot Hg^{2+}]$ (left sided alkyne unit) with corresponding energy values in parenthesis (isosurface value= 0.04)

Fig. S43 Frontiers MOs of the complex $[7 \cdot \text{Hg}^{2+}]$ (right sided alkyne unit) with corresponding energy values in parenthesis (isosurface value= 0.04)

Fig. S44 Optimized structure of the complexes considering endocyclic binding mode: a) $[7 \cdot \text{Hg}^{2+}]$ (left sided alkyne unit), and b) $[7 \cdot \text{Hg}^{2+}]$ (right sided alkyne unit).

Fig. S45 Calculated absorption spectrum of the acyclic receptor 5

Table S6 Major excited state transitions of the acyclic receptor 5 with Osc. Strength and λ_{ex} .

$\begin{array}{c} \lambda_{ex}(nm) \\ (Exp.)^{a} \end{array}$	$\lambda_{ex} (nm)$ (Calc.) ^b	Oscillator Strength (f)	Major Transitions ^c		
221	202.7	1 7105			
321	293.7	1./195	$H-1 \rightarrow L+1 (35\%), H \rightarrow L (45\%)$		
262	225.6	0 1162	$\text{H-1} \rightarrow \text{L} \text{ (12\%), H-1} \rightarrow \text{L+3 (31\%),}$		
203	235.0 0.1162		H → L+2 (36%)		
^a Experimental wavelength in DMSO. ^b TD-DFT calculated wavelength of acyclic					
receptor 5 in DMSO. ^c Transitions with greater than 10% contribution are represented.					

Fig. S46 Calculated absorption spectrum of the cyclic receptor 7.

Table S7 Major excited state transitions of the cyclic receptor 7 with Osc. Strength and λ_{ex} .

(Calc.) ^b	Strength (f)	Major Transitions ^e				
289.4	1.769	$H-1 \rightarrow L (53\%), H-1 \rightarrow L+1 (9\%), H \rightarrow L+1$ (17%)				
^a Experimental wavelength in DMSO. ^b TD-DFT calculated wavelength of cyclic receptor 7 in DMSO. ^c Transitions with greater than 10% contribution are represented.						
- v	(Calc.) ⁶ 289.4 vavelength	(Calc.) ^b Strength (f) 289.4 1.769 vavelength in DMSO. ^b TE nsitions with greater than 1				

Fig. S47 Calculated absorption spectrum of the complex $[5 \cdot Cu(ClO_4)_2]$

Table S8 Major excited state transitions of the complex $[5 \cdot Cu(ClO_4)_2]$ with Osc. Strength and λ_{ex} .

$\lambda_{ex} (nm)$ (Exp.) ^a	$\lambda_{ex} (nm)$ (Calc.) ^b	Oscillator Strength (f)	Major Transitions ^c			
321	305.9	0.3656	H-1(B)->L+1(B) (23%), HOMO(B)->L+2(B) (42%)			
^a Experimental wavelength in DMSO. ^b TD-DFT calculated wavelength of complex						
$[5 \cdot Cu(ClO_4)_2]$ in DMSO. ^c Transitions with greater than 10% contribution are represented.						

Fig. S48 Calculated absorption spectrum of the complex (a): $[7 \cdot Hg^{2+}]$ (left side); (b): $[7 \cdot Hg^{2+}]$ (right side).

Table S9 Major excited state transitions of the complex $[7 \cdot Hg^{2+}]$ (involving left-sided alkyne as a binding unit) with Osc. Strength and λ_{ex} .

$\lambda_{ex}(nm)$	$\lambda_{ex}(nm)$	Oscillator	Major Transitions ^c		
(Exp.) ^a	(Calc.) ^b	Strength (f)			
321	289.1	1.7992	H-1->L+1 (53%), HOMO->L+2 (18%)		
^a Experimental wavelength in DMSO. ^b TD-DFT calculated wavelength of complex					
$7 \cdot \text{Hg}^{2+}$ (left) in DMSO. °Transitions with greater than 10% contribution are					
represented.					

Table S10 Major excited state transitions of the complex $[7 \cdot Hg^{2+}]$ (involving right-sided alkyne as a binding unit) with Osc. Strength and λ_{ex} .

$\lambda_{ex}(nm)$	$\lambda_{ex}(nm)$	Oscillator				
(Exp.) ^a	(Calc.) ^b	Strength (f)	Major Transitions			
321	289.08	1.8078	H-1->L+1 (51%), HOMO->L+2 (19%)			
^a Experime	^a Experimental wavelength in DMSO. ^b TD-DFT calculated wavelength of complex					
$7 \cdot \text{Hg}^{2+}$ (<i>right</i>) in DMSO. ^c Transitions with greater than 10% contribution are						
represented.						

Table S11 DFT Optimized coordinates of all the compounds

Receptor 5 (Acyclic)							
C -0.000014000 0.000029000	6.788843000 -	H 7.559683000 0.000564000	-0.902606000				
H -0.000017000 0.000045000	7.872722000 -	C 6.151638000 0.000228000	-2.523064000 -				
C 1.197266000 0.000194000	6.082655000	C 4.802129000 0.000739000	-2.885547000 -				
H 2.158046000 0.000353000	6.579698000	H 4.494441000 0.001097000	-3.922954000 -				
C 1.149371000 0.000205000	4.687792000	C 3.826519000 0.000827000	-1.889890000 -				
N -0.00007000 0.000012000	4.002783000	H 2.781184000 0.001208000	-2.182721000 -				
C 2.452542000 0.000457000	3.923529000	O 7.195340000 0.000079000	-3.398110000 -				
O 3.531826000 0.001071000	4.496426000	C 6.903412000 0.000293000	-4.803110000 -				
N 2.290885000 0.000136000	2.569317000 -	H 6.315562000 0.886770000	-5.065323000 -				
H 1.342681000 0.000630000	2.204501000 -	H 6.314874000 0.885688000	-5.065449000				
N 3.362494000 0.000014000	1.729821000	C 8.163609000 0.000159000	-5.534801000				
C 3.107319000 0.000481000	0.472134000 -	C 9.188389000 0.000553000	-6.161457000				
H 2.076380000 0.001007000	0.101232000 -	H 10.099137000 0.000885000	-6.714842000				
C 4.165342000 0.000408000	-0.532594000 -	C -1.197290000 0.000231000	6.082649000 -				
C 5.531404000 0.000084000	-0.186645000	H -2.158073000 0.000404000	6.579686000 -				
H 5.812796000 0.000409000	0.859852000	C -1.149388000 0.000200000	4.687786000 -				
C 6.507199000 0.000172000	-1.162959000	C -2.452555000 0.000425000	3.923516000 -				

O -3.531842000 0.001092000	4.496407000 -	C -4.802107000 0.000753000	-2.885572000
N -2.290891000 0.000174000	2.569305000	H -4.494413000 0.001119000	-3.922977000
H -1.342685000 0.000682000	2.204494000	C -3.826502000 0.000852000	-1.889910000
N -3.362496000 0.000006000	1.729803000	H -2.781165000 0.001250000	-2.182736000
C -3.107314000 0.000508000	0.472118000	O -7.195314000 0.000059000	-3.398149000
H -2.076373000 0.001052000	0.101221000	C -6.903382000 0.000289000	-4.803150000
C -4.165332000 0.000423000	-0.532616000	H -6.315543000 0.886777000	-5.065353000
C -5.531396000 0.000092000	-0.186674000 -	H -6.314831000 0.885681000	-5.065495000 -
H -5.812793000 0.000426000	0.859821000 -	C -8.163566000 0.000173000	-5.534862000 -
C -6.507186000 0.000191000	-1.162993000 -	C -9.188434000 0.000576000	-6.161375000 -
H -7.559671000 0.000600000	-0.902646000 -	H -10.099545000 0.000917000	-6.714161000 -
C -6.151617000 0.000220000	-2.523096000		
	Receptor 7	(Cyclic)	•••••
C -6.407551000 0.552625000	1.058947000 -	O -4.671760000 0.620386000	3.391924000 -
C -5.068345000 0.163472000	1.066929000 -	N -3.068400000 0.508712000	2.184737000
N -4.387264000 0.059310000	-0.060488000	C -4.087601000 0.064293000	-2.466883000 -
C -4.977274000 0.143718000	-1.241518000 -	O -4.427515000 0.505799000	-3.552060000 -
C -6.312918000 0.530172000	-1.346284000 -	N -2.880051000 0.506395000	-2.180363000
C -7.039140000 0.715318000	-0.171858000 -	N -1.757261000 0.331026000	-2.944155000
C -4.272126000 0.112885000	2.356813000 -	N -1.975979000 0.272966000	2.981558000

C 0.856189000	-0.905282000	2.57464900	0	C 5.4 0.568440000	79601000	0.709243000	-
C 0.909709000	-0.711868000	-2.47269600	0	C 5.4 0.796437000	33306000	-0.634117000	-
C 0.586601000	0.429644000	3.09145800	0	H -6.9 0.734856000	22664000	1.993310000	-
C 0.703522000	0.641986000	-2.97857400	0	H -6.7 0.693958000	52672000	-2.321619000	-
C 0.433374000	711776000	4.020193000	-	H -8.0 1.008221000	81737000	-0.215707000	-
C 2.0 0.765365000	019118000	4.325402000	-	H 0.858666000	-2.900705000	1.2470100)00
C 3.0 0.088985000	086186000	3.710468000	-	H 0.809827000	-2.762611000	-1.2189150	000
C 0.966988000	2.823599000	2.83520400	0	H 1.547093000	-0.944128000	1.7249200)00
C 1.287511000	1.504985000	2.53081900	0	H 1.554115000	-0.788489000	-1.5902560)00
C 1.471793000	1.675701000	-2.42120700	0	H -0.1 0.989319000	04461000	4.467156000	-
C 1.230361000	3.003166000	-2.75226900	0	H 2.2 1.572662000	43776000	5.013312000	-
C 0.204206000	3.313639000	-3.64144200	0	H 1.520162000	3.621616000	2.3590680	000
C 2. 0.545659000	294748000	-4.238995000	-	H 2.082402000	1.312616000	1.8172130	000
C 0. 0.295084000	968940000	-3.911931000	-	H 2.249482000	1.438943000	-1.7021620)00
O 4. 0.551044000	333622000	4.018714000	-	H 1.812995000	3.804245000	-2.3132290	000
C 5.4 0.016159000	470193000	3.323403000	-	H 2.5 1.326967000	549441000	-4.946902000	-
C 5.4 0.328480000	487845000	1.896432000	-	H 0.1 0.892815000	78763000	-4.351529000	-
O 4. 0.043234000	640924000	-3.941491000	-	H 4.6 2.081589000	543830000	-3.476423000	-
C 5. 1.177069000	226722000	-3.270966000	-	H 6.2 1.302314000	209906000	-3.727411000	-
C 5. 0.988582000	355954000	-1.827787000	-	H 1.066499000	5.535363000	3.4759160	000

H 6.329460000 3.819924000 - 0.468276000

Complex 5·Cu(ClO ₄) ₂					
C 1.204020000 1.089960000	-5.489535000 -	C 5.095856000 0.552985000	1.054237000 -		
C 1.163520000 0.822595000	-4.125902000 -	C 5.999207000 0.608976000	2.102392000 -		
N 0.000062000 0.667773000	-3.479105000 -	C 6.103532000 0.477636000	2.987991000		
C -1.163421000 0.822045000	-4.125979000 -	C 5.292339000 1.609666000	2.805072000		
C -1.203918000 1.089389000	-5.489623000 -	C 4.394472000 1.653596000	1.756861000		
C 0.000049000 1.199987000	-6.181051000 -	C -4.393190000 1.653037000	1.758153000		
C 2.392448000 0.827669000	-3.264002000 -	C -5.291326000 1.609090000	2.806142000		
O 3.378194000 1.457187000	-3.529996000 -	C -6.103925000 0.477860000	2.987709000		
N 2.211544000 0.078255000	-2.053392000 -	C -6.000776000 0.607916000	2.100959000 -		
C -2.392499000 0.826740000	-3.264265000 -	C -5.097168000 0.551894000	1.053015000 -		
O -3.378341000 1.456003000	-3.530583000 -	O 6.948249000 0.532210000	4.043597000		
N -2.211666000 0.077609000	-2.053543000 -	C 7.812132000 0.590848000	4.298787000 -		
N -3.190462000 0.282780000	-1.093777000 -	C 8.614886000 0.292303000	5.476376000 -		
N 3.189884000 0.283792000	-1.093236000 -	O -6.948758000 0.532335000	4.043251000		
C 3.324715000 0.661424000	-0.228675000	C -7.813772000 0.590098000	4.297315000 -		
C -3.324154000 0.661632000	-0.228183000	C -8.616206000 0.291934000	5.475221000 -		
C 4.277743000 0.573908000	0.859097000	C 9.291433000 0.074249000	6.444437000 -		
C -4.277616000 0.574181000	0.859255000	C -9.292508000 0.074183000	6.443522000 -		

H 2.158360000 1.219203000	-5.982707000 -	H 8.459135000 0.766966000	3.433496000 -
H -2.158277000 1.218200000	-5.982870000 -	H -8.460983000 0.764704000	3.431871000 -
H 0.000039000 1.397440000	-7.245697000 -	H -7.214804000 1.490925000	4.464682000 -
H 1.985945000 0.907877000	-2.262148000	H 9.889583000 0.123441000	7.304053000
H -1.985216000 0.908323000	-2.262014000	H -9.890431000 0.123232000	7.303359000
H 2.716453000 1.567867000	-0.278345000	Cu 0.000112000 0.408380000	-1.515923000 -
H -2.714535000 1.567233000	-0.276567000	O 0.000218000 0.594764000	0.446496000 -
H 5.014701000 1.391298000	0.372946000 -	Cl -0.000307000 2.049354000	1.023975000 -
H 6.611294000 1.492780000	2.223220000 -	O -0.000979000 2.971629000	-0.142521000 -
H 5.387823000 2.435910000	3.499541000	O 1.220817000 2.200028000	1.836080000 -
H 3.772064000 2.532510000	1.624722000	O -1.221206000 2.198928000	1.836626000 -
H -3.769677000 2.531330000	1.627091000	Cl 0.000945000 2.876123000	-2.161453000
H -5.385925000 2.434707000	3.501478000	O -0.000799000 1.895239000	-0.999622000
H -6.613951000 1.491112000	2.220725000 -	O -0.001210000 4.257743000	-1.658248000
H -5.016925000 1.389570000	0.370832000 -	O 1.228907000 2.598443000	-2.973589000
H 7.212258000 1.490898000	4.467071000 -	O -1.222816000 2.596384000	-2.979045000
	Complex 7 ·Hg ²⁺ (le	ft sided alkyne)	
C -6.411018000 0.600764000	1.058991000 -	C -4.983317000 0.164554000	-1.238139000 -
C -5.075605000 0.198915000	1.070102000 -	C -6.315238000 0.562751000	-1.346107000 -
N -4.396116000 0.037300000	-0.055525000	C -7.040399000 0.761599000	-0.173216000 -

C -4.279191000 0.149754000	2.359873000 -	C 2.289946000 0.491130000	-4.238499000 -
O -4.670497000 0.672243000	3.390413000 -	C 0.963181000 0.252744000	-3.906217000 -
N -3.08332700 0.488985000	00 2.192166000	O 4.333937000 0.522949000	3.993995000 -
C -4.092497000 0.071139000	-2.461558000 -	C 5.462704000 0.028700000	3.302041000
O -4.425556000 0.510835000	-3.549338000 -	C 5.487110000 0.282977000	1.874390000 -
N -2.8903090 0.509563000	00 -2.170108000	O 4.633761000 0.026333000	-3.942616000
N -1.7649170 0.346299000	00 -2.931732000	C 5.228564000 1.115135000	-3.297231000 -
N -1.98563000 0.255415000	00 2.981789000	C 5.375520000 0.944190000	-1.852043000 -
C -0.92181300 0.851488000	00 2.575914000	C 5.485911000 0.524281000	0.687413000 -
C -0.7239590 0.928321000	00 -2.454885000	C 5.447963000 0.753497000	-0.656399000 -
C 0.41743600 0.588327000	00 3.085347000	H -6.925008000 0.793754000	1.991818000 -
C 0.6313250 0.734309000	-2.962381000	H -6.753076000 0.724878000	-2.322577000 -
C 0.710763000 0.434424000	4.007452000 -	H -8.080216000 1.063795000	-0.219494000 -
C 2.021779000 0.757889000	4.306323000 -	H -2.922384000 0.850639000	1.257700000
C 3.080851000 0.069735000	3.691243000 -	H -2.777729000 0.810481000	-1.207272000
C 2.8073380 0.987921000	00 2.821791000	H -0.969824000 1.549345000	1.732378000
C 1.48506700 1.300203000	00 2.524148000	H -0.805302000 1.565893000	-1.567997000
C 1.6608850 1.503360000	-2.398683000	H -0.099569000 0.998522000	4.454880000 -
C 2.9894710 1.273962000	-2.734446000	H 2.255094000 1.566353000	4.989957000 -
C 3.3044910 0.259644000	-3.635164000	H 3.599090000 1.550397000	2.345984000

H 2.097629000	1.283889000	1.8158620	00	H 1.1121730	5.513341000 00	3.454109	000
H 2.272604000	1.420346000	-1.6718990	00	H 0.4112070	6.328462000 00	3.798388000	-
H 1.858355000	3.787308000	-2.2917400	00	H 2.0181250	4.644255000 00	-3.505373000	-
H 2.5 1.262476000	47926000	-4.956081000	-	H 1.2336210	6.205404000 00	-3.768433000	-
H 0.1 0.850482000	76045000	-4.351143000	-	Hg 2.4824980	8.595388000 00	-0.964937000	-
		Complex 7·1	∃g ²⁺ (rigl	nt sided al	lkyne)		•••

C -6.426141000 0.560272000	1.054363000 -	C 3.064271000 0.111641000	3.692070000 -
C -5.087574000 0.169086000	1.064437000 -	C 2.805099000 0.947642000	2.820389000
N -4.404661000 0.053724000	-0.061840000	C 1.487010000 1.274020000	2.518633000
C -4.991769000 0.151799000	-1.243846000 -	C 1.661490000 1.476331000	-2.409540000
C -6.326647000 0.540271000	-1.350816000 -	C 2.990072000 1.240359000	-2.740443000
C -7.055033000 0.724925000	-0.177581000 -	C 3.304725000 0.216111000	-3.630136000
C -4.292156000 0.117785000	2.354594000 -	C 2.289278000 0.538055000	-4.227867000 -
O -4.688089000 0.630889000	3.387983000 -	C 0.962372000 0.292994000	-3.900754000 -
N -3.091032000 0.510895000	2.184313000	O 4.311434000 0.578124000	4.000321000 -
C -4.098801000 0.073103000	-2.466934000 -	C 5.451104000 0.024613000	3.329627000 -
O -4.434701000 0.516178000	-3.552502000 -	C 5.497173000 0.326299000	1.899405000 -
N -2.892446000 0.499362000	-2.177330000	O 4.633817000 0.023617000	-3.931960000 -
N -1.767413000 0.325787000	-2.937582000	C 5.224924000 1.158533000	-3.270716000 -
N -1.995608000 0.269275000	2.974457000	C 5.368033000 0.972515000	-1.827989000 -
C -0.925377000 0.852081000	2.566476000	C 5.503214000 0.560168000	0.709738000 -
C -0.724428000 0.906802000	-2.463830000	C 5.455048000 0.782988000	-0.634534000 -
C 0.410303000 0.574788000	3.078093000	H -6.942952000 0.742465000	1.987810000 -
C 0.631006000 0.704227000	-2.967494000	H -6.764377000 0.705938000	-2.326740000 -
C 0.689808000 0.450590000	4.001544000 -	H -8.097158000 1.019164000	-0.223196000 -
C 1.996259000 0.788212000	4.304263000 -	H -2.926486000 0.865695000	1.247849000

H 0.804341000	-2.778649000	-1.215929000	H 1.8271250	3.788539000 00	-2.302048000
H 1.547419000	-0.964995000	1.720460000	H 1.3175440	2.546815000 00	-4.936735000 -
H 1.551248000	-0.804419000	-1.581741000	H 0.8934470	0.174719000 00	-4.341130000 -
H -0.1 1.005243000	27967000	4.447174000 -	H 1.0577980	5.500883000 00	3.489984000
H 2.2 1.598532000	218891000	4.989247000 -	H 0.4699610	6.307310000 00	3.837244000 -
H 1.500398000	3.604237000	2.345460000	H 2.0630490	4.640193000 00	-3.470777000 -
H 2.072495000	1.296500000	1.808586000	H 1.2843560	6.203954000 00	-3.735932000 -
H 2.253437000	1.421348000	-1.691006000	Hg 0.0924580	9.095788000 00	1.608142000 -
			*****	*****	*****

References:

- 1. C.-B. Huang, H.-R. Li, Y. Luo and L. Xu, Dalton Trans., 2014, 43, 8102-8108
- A. Mondal, A. Roy Chowdhury, S. Bhuyan, S. K. Mukhopadhyaye and P. Banerjee, Dalton Trans., 2019, 48, 4375–4386
- 3. M. Kaur, M. J. Cho and D. H. Choi, Dyes and Pigments, 2016, 125, 1-7
- M. Kaur, Y. H. Ahn, K. Choi, M. J. Cho and D. H. Choi, *Org. Biomol. Chem.*, 2015, 13, 7149–7153
- 5. G. Li, L. Bai, F. Tao, A. Deng and L. Wang, Analyst, 2018, 143, 5395-5403
- 6. J. Dong, J. Hu, H. Baigudea and H. Zhang, Dalton Trans., 2018, 47, 314-322
- S. Lal, K. Prakash, N. Khera, Drashya , S. Singh, A. Singh, S. Hooda and R. Chandra, J. Mol. Str., 2020, 1211, 128091.
- 8. P. Kaur, S. Kaura and K. Singh, Org. Biomol. Chem., 2012, 10, 1497–1501.
- Y. Liu, J. Hua, Q. Tenga and H. Zhang, Sensors and Actuators B, 2017, 238, 166– 174.

- 10. S. Zhang, Q. Niu, L. Lan and T. Li, Sensors and Actuators B, 2017, 240, 793-800.
- C. S. M. Park, M. H. Kim, J. I. Choe, K. T. No and S.K. Chang, J. Org. Chem. 2007, 72, 3550-3553.
- 12. Y. W. Sie, C. F. Wan and A. T. Wu, RSC Adv., 2017, 7, 2460–2465.