Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting information

Highly Efficient Ultralong Organic Phosphorescence Induced

by Lone Pair Repulsions and Noncovalent Interactions

Mingxue Yang^{a, b}, Pei Wang^{a, b}, Xu-Lin Chen*^{a, b} and Can-Zhong Lu*^{a, b, c}

^{a.} CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian

Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China

^{b.} Xiamen Institute of Rare Earth Materials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Xiamen, Fujian 361021, China

^c University of Chinese Academy of Sciences, Beijing 100049, China

Content

1.	Synthetic schemes of Materials
	Scheme S1 Synthetic route of 1,2-difluoro-3-iodobenzene
	Scheme S2 Synthetic route of 9-(2,3-difluorophenyl)-9H-carbazole
	Scheme S3 Synthetic route of 9-(2,3-bis((2-bromophenyl)thio)phenyl)-9H-carbazole
	(BrDBTCz)
2.	NMR Spectra4
	Figure S1 ¹ H NMR spectrum of 9-(2,3-difluorophenyl)-9H-carbazole4
	Figure S2 ¹ H NMR spectrum of 9-(2,3-bis((2-bromophenyl)thio)phenyl)-9H-carbazole
	(BrDBTCz)
3.	Single Crystals Analysis
	Table S1 Single crystals data for BrDBTCz 5
	Table S2 Bond lengths for BrDBTCz 5
	Table S3 Bond angles for BrDBTCz 6
4.	UV-Vis Analysis and Thermogravimetry7
	Figure S3 (a) UV-vis absorption spectrum of BrDBTCz in 2-MeTHF solution; (b) TGA curve of
	BrDBTCz
5.	Photophysical Properties
	Figure S4 Time-resolved fluorescence decay curves of crystalline BrDBTCz at 298K7
	Table S4 Photoluminescence lifetimes and percentages (A) of crystalline BrDBTCz under
	ambient conditions
	Figure S5 Time-resolved emission decay curves of BrDBTCz in a diluted 2-MeTHF solution at
	77 К
	Figure S6 Time-resolved emission decay curves at 77 K of BrDBTCz in diluted 2-MeTHF
	solution
	Table S5 Photoluminescence lifetimes of ${\it BrDBTCz}$ in the solution of 2-MeTHF at 77 K10
	Table S6 Photophysical parameters of crystalline BrDBTCz under the excitation of 400 nm at

	298 К10
6.	Data for reference compound11
	Figure S7 A list of the reported non-doped pure organic phosphors with phosphorescent quantum yield over 10%, in which the phosphorescent quantum yield (F_p), intersystem crossing constant (k_{ISC}) and the reference of each molecule was noted underneath, correspondingly
	Figure S8 The diagram of the reported non-doped pure organic phosphors with
_	S1
7.	Theoretical Calculation
	Table S8 Energy level of HOMO, LUMO and their bandgap of monomer and dimer BrDBTCz
	Table S9 Component analysis of the excited-state BrDBTCz monomer
	Table S10 Component analysis of the excited-state BrDBTCz configurated as dimer 116
	Table S11 Component analysis of the excited-state BrDBTCz configurated as dimer 218
	Table S12 Component analysis of the excited-state BrDBTCz configurated as dimer 320
	Table S13 Component analysis of the excited-state BrDBTCz configurated as dimer 422
	Table S14 Component analysis of the excited-state BrDBTCz configurated as dimer 524
	Table S15 Component analysis of the excited-state BrDBTCz configurated as dimer 626

1. Synthetic schemes of Materials

Scheme S1 Synthetic route of 1,2-difluoro-3-iodobenzene

Scheme S2 Synthetic route of 9-(2,3-difluorophenyl)-9H-carbazole

Scheme S3 Synthetic route of 9-(2,3-bis((2-bromophenyl)thio)phenyl)-9H-carbazole (BrDBTCz)

2. NMR Spectra

Figure S1 ¹H NMR spectrum of 9-(2,3-difluorophenyl)-9H-carbazole

Figure S2 ¹H NMR spectrum of 9-(2,3-bis((2-bromophenyl)thio)phenyl)-9H-carbazole (BrDBTCz)

3. Single Crystals Analysis

Table S1 Single crys	Table S1 Single crystals data for BrDBTCz						
Empirical formula	$C_{30H_{19}Br_2NS_2}$						
Formula weight	617.40						
Temperature/K	200.0						
Crystal system	triclinic						
Space group	<i>P</i> -1						
a / Å	9.2405(6)						
<i>b </i> Å	10.8311(8)						
c / Å	13.7741(8)						
α / °	93.965(2)						
6 / °	95.341(2)						
γ/°	114.128(2)						
V / Å ³	1243.93(14)						
Z	2						
$\rho_{calc} g/cm^3$	1.648						
μ / mm ⁻¹	3.447						
F(000)	616.0						
Crystal size / mm ³	0.192 × 0.164 × 0.09						
R _{int}	0.0665						
GOOF on F ²	1.043						
$R_1[l \ge 2\sigma(l)]$	0.0413						
$wR_2[I \ge 2\sigma(I)]$	0.0928						

Table S2 Bond lengths for BrDBTCz

Atom	Atom	Length/Å	Atom	Atom	Length/Å	Atom	Atom	Length/Å
Br01	С00Н	1.892(3)	COOE	С00Н	1.383(4)	C008	С00К	1.385(5)
Br02	C008	1.900(3)	COOE	COON	1.410(4)	C009	COOP	1.394(4)
S003	C006	1.773(3)	C00F	C00J	1.412(4)	C00A	COOB	1.377(4)
S003	C009	1.770(3)	C00F	COOL	1.380(5)	C00B	C00I	1.388(4)
S004	C007	1.768(3)	C00G	C00J	1.441(5)	C00C	C00I	1.387(4)
S004	COOE	1.772(3)	C00G	C00U	1.395(5)	C00D	C00G	1.409(4)
N005	C00C	1.422(4)	C00H	C000	1.385(4)	C00D	C00Q	1.388(5)
N005	COOD	1.387(4)	C001	C00W	1.401(5)	COOP	C00T	1.382(5)
N005	C00F	1.396(4)	С00К	COOR	1.377(5)	C00Q	C00V	1.388(5)
C006	C007	1.407(4)	COOL	COOY	1.389(5)	COOR	C00T	1.368(5)
C006	C00C	1.400(4)	C00M	C000	1.379(5)	C00U	C00X	1.369(5)
C007	C00A	1.391(4)	C00M	C00S	1.378(5)	C00V	COOX	1.400(5)
C008	C009	1.386(4)	C00N	C005	1.373(4)	C00W	C00Z	1.369(6)

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C009	S003	C006	102.44(14)	COOL	C00F	N005	129.2(3)
C007	S004	COOE	103.44(14)	COOL	COOF	COOJ	122.5(3)
C00D	N005	C00C	125.5(3)	C00D	C00G	COOJ	106.8(3)
C00D	N005	C00F	108.8(2)	C00U	C00G	C00D	118.9(3)
C00F	N005	C00C	125.6(3)	C00U	C00G	COOJ	134.3(3)
C007	C006	S003	121.8(2)	COOE	С00Н	Br01	120.7(2)
C00C	C006	S003	119.1(2)	COOE	С00Н	C000	121.3(3)
C00C	C006	C007	119.0(3)	C000	С00Н	Br01	118.1(2)
C006	C007	S004	117.7(2)	C00C	C00I	C00B	119.5(3)
C00A	C007	S004	122.8(2)	COOF	C00J	C00G	107.1(3)
C00A	C007	C006	119.5(3)	C00W	C00J	C00F	118.5(3)
C009	C008	Br02	120.4(2)	C00W	C00J	C00G	134.4(3)
СООК	C008	Br02	117.9(3)	COOR	СООК	C008	119.3(3)
СООК	C008	C009	121.7(3)	COOF	COOL	C00Y	117.3(3)
C008	C009	S003	120.2(2)	COOS	C00M	C000	119.9(3)
C008	C009	COOP	117.7(3)	COOS	COON	C00E	120.7(3)
COOP	C009	S003	122.1(2)	C00M	C000	C00H	119.9(3)
COOB	C00A	C007	120.7(3)	С00Т	COOP	C009	120.7(3)
C00A	COOB	C00I	120.6(3)	C00V	C00Q	COOD	117.4(3)
C006	C00C	N005	120.2(3)	С00Т	COOR	СООК	120.2(3)
C00I	C00C	N005	119.0(3)	COON	COOS	C00M	120.4(3)
C00I	C00C	C006	120.8(3)	COOR	С00Т	COOP	120.5(3)
N005	C00D	C00G	108.9(3)	COOX	C00U	C00G	119.3(3)
N005	C00D	C00Q	128.9(3)	C00Q	C00V	COOX	120.9(3)
C00Q	C00D	C00G	122.2(3)	C00Z	C00W	C00J	119.3(3)
C00H	COOE	S004	124.4(2)	C00U	COOX	C00V	121.2(3)
C00H	COOE	COON	117.8(3)	COOL	COOY	C00Z	121.2(4)
COON	COOE	S004	117.6(2)	C00W	C00Z	COOY	121.2(3)
N005	C00F	C001	108.3(3)				

Table S3 Bond angles for BrDBTCz

4. UV-Vis Analysis and Thermogravimetry

Figure S3 (a) UV-vis absorption spectrum of BrDBTCz in 2-MeTHF solution; (b) TGA curve of BrDBTCz.

5. Photophysical Properties

Figure S4 Time-resolved fluorescence decay curves of crystalline BrDBTCz at 298K.

 Table S4 Photoluminescence lifetimes and percentages (A) of crystalline BrDBTCz under ambient conditions

Fluorescence			Room Ten	nperature	Phospho	rescence	
Wavelength(nm)	$ au_1$ (ns)		Wavelength(nm)	$ au_1$ (ms)	A ₁ (%)	τ ₂ (ms)	A ₂ (%)
408	0.71		550	89.5	41.3	367	58.7
			596	82.6	47.9	343	52.1
426	0.85		650	75.1	67.5	322	32.5

Figure S5 Time-resolved emission decay curves of BrDBTCz in a diluted 2-MeTHF solution at 77 K.

Figure S6 Phosphorescence decay curves at 77 K of BrDBTCz in diluted 2-MeTHF solution.

Wavelength		Floure	scence		Ultralong Phosphorescesnce			snce
(nm)	τ ₁ (ns)	A ₁ (%)	$ au_2$ (ns)	A ₂ (%)	τ ₁ (s)	A ₁ (%)	τ ₂ (s)	A ₂ (%)
346	1.98	39.7	4.83	60.3				
361	1.48	46.7	3.75	53.3				
378	2.34	58.1	5.92	41.9				
415	5.52	100	-	—	1.69	5.9	4.49	94.1
444					1.89	11.1	4.57	88.9
468					1.89	11.2	4.56	88.8
478					1.9	11.3	4.57	88.7
501					1.7	11.8	4.51	88.2

Table S5 Photoluminescence lifetimes of BrDBTCz in the solution of 2-MeTHF at 77 K

Table S6 Photophysical parameters of crystalline **BrDBTCz** under the excitation of 400 nm at 298 K

$arPsi_{ ext{total}}$ ^(a)		Flu	orescence			Pho	sphores	cence	
(%)	τ _F ^(b) (ns)	Ф _F ^(с) (%)	k ^F r (× 10 ⁷ s⁻¹)	k ^F nr (× 10 ⁷ s⁻¹)	τ _Ρ ^(d) (ms)	Ф _Р ^(е) (%)	k [₽] r (s⁻¹)	k [₽] nr (s⁻¹)	k _{ISC} ⁽¹⁾ (× 10 ⁷ s ⁻¹)
21.51	0.63	2.51	3.98	124.59	209	19.00	0.91	3.87	30.16

^(a) Absolute photoluminescence quantum yield from 385–660 nm;

^(b) Algorithmic average lifetime value of all the main fluorescent emission peaks;

(c)
$$\Phi_{\rm F} = \Phi_{\rm total} - \Phi_{\rm P}$$

^(d) Algorithmic average lifetime value of all the main phosphorescent emission peaks;

^(e) photoluminescence quantum yield from 500–660 nm;

^{Note (1)} Reference: Zhao, W., et al. Boosting the efficiency of organic persistent room-temperature phosphorescence by intramolecular triplet-triplet energy transfer, *Nat. Commun.*, **2019**, *10*, 1595–1603.

$$\begin{split} k^{\rm F}_{\rm r} &= \mathcal{D}_{\rm F} \,/\, \tau_{\rm F}; \, k^{\rm F}_{\rm nr} = (1 - \mathcal{D}_{\rm F} - \mathcal{D}_{\rm P}) \,/\, \tau_{\rm F}; \\ k^{\rm P}_{\rm r} &= \mathcal{D}_{\rm P} \,/\, \tau_{\rm P}; \, k^{\rm P}_{\rm nr} = (1 - \mathcal{D}_{\rm P}) \,/\, \tau_{\rm P} \\ k_{\rm ISC} &= \mathcal{D}_{\rm P} \,/\, \tau_{\rm F} \end{split}$$

6. Data for reference compound

Figure S7 A list of the reported non-doped pure organic phosphors with phosphorescent quantum yield over 10%, in which the phosphorescent quantum yield (Φ_p), intersystem crossing constant (k_{ISC}) and the reference of each molecule was noted underneath, correspondingly

Figure S8 The diagram of the reported non-doped pure organic phosphors with phosphorescent quantum yield over 10%, in which the names are identical to that in **Figure S7**.

7. Theoretical Calculation

Figure S9 The molecular electro-static potential (MESP) isosurface painted in blue translucent block visualizes the lone pair regions of sulphur atoms (with π electrons from carbazole group), in which the brown point inside the block indicated the attractor (minimum point). The isovalue is for the surface is 0.09 atom unit (a.u.) higher than the minimum ESP value. Axes colouring in red, green and blue represent *x*, *y* and *z* axis, respectively

Table S7 Frontier orbitals (HOMO: blue, LUMO: orange), and electron (green) / hole (purple) densities of excited states S_1 and T_1 for single **BrDBTCz** molecule and its six dimers, with ΔE_{ST} and

SOC coefficient(ξ) listed correspondingly.

Table S8 Energy	level of HOMO.	LUMO and their	bandgap of monom	er and dimer BrDBTCz
		Lonno ana men	Sanagap or monor	

	Monomer	Dimer 1	Dimer 2	Dimer 3	Dimer 4	Dimer 5	Dimer 6
HOMO (eV)	-5.5511	-5.5124	-5.5857	-5.3853	-5.6041	-5.7150	-5.4592
LUMO (eV)	-1.3126	-1.3622	-1.2107	-1.3909	-1.3151	-1.4326	-1.2635
Bandgap (eV)	4.2385	4.1502	4.3750	3.9944	4.2890	4.2824	4.1957

State	No.	Energy (eV)	Transition Contributions (%) ^a	ξ _{Tn-S1} (cm ⁻¹)	
	1	3.7333	H→L+1(89.00%), H→L+2(5.93%)		
	2	3.8389	H→L(89.78%), H→L+4(3.48%)		
	2	4 0020	H→L+3(64.43%), H-2→L(10.44%), H-3→L(7.84%),]	
S _n	3	4.0020	H-1→L(6.71%)		
	4	4 0102	H-2→L(27.19%), H→L+3(22.45%), H-3→L(17.24%),]	
	4	4.0195	H-1→L(10.58%), H→L+4(8.61%), H-1→L+1(6.98%)		
	E	4.0400	H-1→L+1(58.45%), H-2→L+1(9.94%), H→L+4(8.34%),		
	כ	4.0490	H-2→L(4.25%), H-1→L(3.59%), H-1→L+2(3.36%), H→L(3.22%)		
	1	3.1554	H-1→L+3(57.01%), H-1→L+4(19.00%), H→L+9(6.37%)	0.45	
	`	2 2020	H-2→L+1(36.24%), H-2→L+2(8.81%), H-3→L+4(7.72%),	1 77	
	2	3.3038	H-3→L+5(3.68%), H-3→L(3.48%), H→L+3(3.48%)	1.//	
	3	3.3611	H→L+3(70.12%), H→L+4(16.28%)	0.98	
	4		H-2→L+5(18.39%), H-2→L(8.29%), H-3→L+1(7.60%),	0.00	
		2 5060	H-4→L+6(5.83%), H-3→L+6(4.74%), H-4→L+5(4.67%),		
		4	3.5060	H-4→L+4(3.90%), H-7→L+5(3.74%), H-2→L+1(3.59%),	0.90
			H-2→L+6(3.53%), H-4→L+7(3.38%)		
	F	2 5 7 7 7	H-3→L(27.31%), H-9→L(16.65%), H-6→L+2(9.10%),	1 1 1	
	Э	3.5727	H-2→L(8.58%), H-6→L(8.19%), H-6→L+1(4.07%)	1.11	
	c	3.6597	H→L+1(73.01%), H→L+4(9.11%), H-3→L+1(4.69%),	1 22	
I n	б	(ΔE_{S1Tn} =0.0736)	H→L+2(4.14%)	1.33	
	7	3.7773	H→L(39.80%), H-2→L+1(12.23%), H→L+4(7.36%),	4.74	
	/	(ΔE_{S1Tn} =0.0440)	H→L+1(6.92%), H-3→L+4(3.94%), H-2→L+4(3.10%)	4.74	
	0	2 9754	H→L(47.20%), H-2→L+1(9.94%), H-2→L+4(9.76%),	2.74	
	0	5.8754	H-3→L+4(9.70%), H-2→L+3(4.11%)	2.74	
	0	2 0759	H-3→L+1(43.80%), H-2→L(10.43%), H→L+4(6.60%),	2.40	
	9	5.9758	H-1→L(4.06%), H-6→L+1(3.05%)	5.40	
			H→L+4(16.90%), H-3→L+1(12.75%), H-2→L(9.39%),		
	10	2 0024	H-2→L+4(5.80%), H-1→L(5.36%), H-3→L(4.57%),	2.40	
	10	5.3324	H→L+3(4.54%), H-6→L+2(4.44%), H→L+1(3.97%),	2.40	
			H-2→L+3(3.32%)		

Table S9 Component analysis of the excited-state BrDBTCz monomer

^a H: HOMO ; L: LUMO

State	No.	Energy (eV)	Transition Contributions (%) ^a	ξ _{Tn-S1} (cm ⁻¹)					
	1	3.6588	H-1→L+2(50.00%), H-1→L+1(39.07%), H-1→L+4(4.84%), H-1→L+5(3.36%)						
	2	3.6747	H-1→L+1(48.91%), H-1→L+2(36.69%), H-1→L(9.83%)						
	3	3.7514	H→L+3(91.75%), H→L+9(3.14%)						
	4	3.7744	H-1→L(78.65%), H-1→L+1(6.07%), H-1→L+5(4.85%), H-1→L+2(4.42%)						
	5	3.8845	H→L+1(51.69%), H→L+2(27.35%), H→L(3.19%)						
			H-3→L+1(37.29%), H-3→L+2(18.75%), H-2→L+1(16.22%),						
S _n	6	3.9206	H-2→L+2(8.37%), H-3→L(4.61%), H-1→L+3(3.12%)						
	7	3.9473	H-1→L+3(48.97%), H-1→L+5(25.30%), H-1→L+7(3.94%),	-					
			$H-3 \rightarrow L+1(3.01\%), H-1 \rightarrow L(3.23\%)$						
	8	3.9762	$H-3 \rightarrow L+2(37.90\%), H-1 \rightarrow L+3(13.52\%), H-3 \rightarrow L+1(13.50\%),$ $H-2 \rightarrow L+2(12.93\%), H-2 \rightarrow L+1(5.25\%)$						
			H-1→L+5(28.97%), H-1→L+3(12.40%), H-3→L(8.28%).						
	9	3.9834	H-5→L(6.88%), H-3→L+1(6.58%), H-7→L(5.86%),						
			H-3→L+2(5.25%), H-2→L+2(3.50%)						
	10	3.9955	H→L(91.80%), H→L+6(3.02%)						
	1		H-3→L+8(21.27%), H-3→L+7(13.55%), H-3→L+1(9.47%).						
		3.1273	H-3→L+2(8.27%). H-2→L+8(7.37%). H-1→L+18(4.90%).	0.44					
			H-2→L+7(4.73%), H-2→L+1(3.31%)						
				H-2→L+6(40.39%), H-3→L+6(14.63%), H-2→L+8(7.71%),					
	2	3.1558	H→L+19(5.44%), H-2→L+9(5.13%)	0.00					
			H-5→L+2(12.75%), H-5→L+1(11.20%), H-1→L+2(11.09%),						
	3	3.2888	H-7→L+5(6.42%), H-5→L+4(5.72%), H-1→L+1(5.37%),	1.57					
			H-1→L+8(5.18%), H-1→L+7(4.55%), H-1→L+5(3.29%)						
	4	3.3011	H-4→L+3(34.83%), H-4→L+7(6.49%), H-6→L+9(3.41%)	0.40					
_			H-1→L+8(16.91%), H-1→L+2(15.29%), H-1→L+1(12.34%),						
I _n	5	3.3135	H-1→L+7(11.74%), H-5→L+1(5.37%), H-5→L+2(4.68%),	0.92					
			H-4→L+3(3.30%)						
		2 2570	H→L+6(66.98%), H→L+8(10.64%), H→L+9(5.22%),	0.00					
	6	3.3576	H→L+7(4.15%)	0.00					
			H-6→L+3(12.28%), H-4→L+11(11.81%), H-6→L+11(5.96%),						
	7	3.4994	H-6→L+13(5.77%), H-9→L+13(4.81%), H-4→L+1(3.73%),	0.09					
			H-6→L+6(3.51%), H-8→L+13(3.03%)						
			H-5→L+10(15.57%), H-5→L(7.37%), H-7→L+12(4.22%),						
	8	3.5038	H-5→L+12(4.12%), H-7→L+1(3.90%), H-8→L+10(3.17%),	0.89					
			H-8→L+12(3.14%), H-5→L+1(3.03%), H-7→L+2(3.02%)						

 Table S10 Component analysis of the excited-state BrDBTCz configurated as dimer 1

State	No.	Energy (eV)	Transition Contributions (%) ^a	ξ _{Tn-S1} (cm ⁻¹)
			H-6→L+1(9.89%), H-12→L+7(8.74%), H-4→L+1(7.63%),	
	9	3.5592	H-6→L+2(6.60%), H-4→L+2(5.22%), H-12→L+9(5.22%),	0.08
			H-16→L+1(3.40%), H-14→L+1(3.08%)	
	10	2 5742	H-7→L(27.59%), H-19→L(16.43%), H-13→L+4(8.84%),	0.72
	10	5.5742	H-13→L(8.09%), H-5→L(7.48%)	0.72
	11	3.5932	H-1→L+1(43.45%), H-1→L+2(35.84%), H-1→L+5(4.44%),	1.00
	11	$(\Delta E_{S1Tn} = 0.0656)$	H-1→L+4(4.12%)	1.00
	12	2.000	H→L+3(69.34%), H→L+9(8.02%), H-6→L+3(5.37%),	0.15
	12	3.0005	H-4→L+3(4.41%)	0.15
	12	3.7066	H-1→L(49.48%), H-1→L+5(9.69%), H-1→L+1(6.30%),	457
	15	(∆E _{S1Tn} =0.0478)	H-1→L+8(5.63%), H-5→L+2(4.76%)	4.57
			H-4→L+3(15.62%), H→L+3(12.23%), H→L+1(8.59%),	
	14	3.7801	H-1→L+3(5.64%), H-4→L+9(5.12%), H→L+2(4.12%),	0.88
T _n			H→L+7(3.75%)	
'n	15	2 9175	H-1→L+1(19.18%), H-1→L+2(17.89%), H-1→L+8(15.03%),	1.00
	12	5.8175	H-1→L+7(11.75%), H-1→L(11.14%)	1.60
	10	2.0404	H-1→L(24.25%), H-7→L+5(13.72%), H-5→L+5(13.12%),	2.52
	10	16 3.8404	H-5→L+2(12.20%), H-1→L+5(5.02%), H-3→L+2(3.49%)	2.53
	17	2 0012	H→L+1(40.70%), H→L+2(22.28%), H-1→L+3(4.21%),	0.20
	1/	3.8913	H-4→L+9(4.16%)	0.26
			H-3→L+1(22.92%), H-2→L+1(10.71%), H-3→L+2(9.44%),	
	18	3.9114	H-3→L(7.61%), H-1→L+18(6.37%), H-2→L+2(4.63%),	0.83
			H-2→L(3.06%)	
	10	2 02 47	H-1→L+3(31.03%), H-1→L+5(17.16%), H-1→L+9(4.33%),	0.00
	19	3.9347	H-6→L+3(3.86%)	0.98
			H-1→L+5(20.17%), H-6→L+3(9.12%), H-3→L+1(7.17%),	
	20	3.9532	H-2→L+1(5.92%), H-3→L+2(3.80%), H-5→L(3.78%),	2.04
			H-5→L+5(3.30%)	

State	No.	Energy (eV)	Transition Contributions (%) ^a	ξ _{Tn-S1} (cm ⁻¹)
	1	3.8670	H→L+2(24.71%), H-1→L+2(24.30%), H→L+3(20.74%),	
			H-1→L+3(17.10%)	_
	1d ^b	3.8674	H→L+2(24.82%), H-1→L+2(23.83%), H-1→L+3(20.11%),	
			H→L+3(18.04%)	_
	3	3.9503	H→L+1(31.33%), H-1→L(26.81%), H→L(8.55%),	
			H-6→L(7.25%), H-7→L+1(4.95%), H-2→L+1(3.68%)	_
	4	3.9509	$H \rightarrow L(32.32\%), H-1 \rightarrow L+1(27.98\%), H \rightarrow L+1(7.45\%),$	
			H-6→L+1(6.88%), H-7→L(4.60%), H-2→L(3.67%)	_
	5	3.9940	H-1→L+4(46.70%), H→L+5(41.41%)	_
Sn	6	3.9956	H→L+4(47.84%), H-1→L+5(39.06%)	
			H-2→L(20.15%), H-1→L+1(18.34%), H-6→L+1(11.25%),	
	7	4.0297	H-7→L(8.33%), H-5→L+1(7.25%), H-3→L+1(7.08%),	
			H-4→L(6.55%), H→L+9(3.93%), H-1→L+8(3.54%)	
			H-1→L(19.85%), H-2→L+1(19.72%), H-6→L(11.05%),	
	8	4.0334	H-7→L+1(8.53%), H-5→L(7.34%), H-4→L+1(6.84%),	
9			H-3→L(6.59%), H-1→L+9(3.85%), H→L+8(3.58%)	
	۵	1 0501	H-2→L+2(41.08%), H-3→L+3(13.99%), H-5→L+3(12.76%),	
		4.0391	H-4→L+2(11.23%)	
	10	4 0720	H-2→L+3(29.20%), H-3→L+2(17.40%), H-5→L+2(16.63%),	
	10	4.0730	H-1→L+1(9.10%), H-4→L+3(8.35%), H→L+3(3.20%)	
			H-3→L+4(15.83%), H-2→L+5(11.92%), H-3→L+5(11.88%),	
	1	3.1575	H-4→L+5(11.82%), H-4→L+4(7.68%), H-2→L+4(7.65%),	0.09
			H-5→L+4(4.82%), H-5→L+5(3.54%)	
			H-3→L+5(17.20%), H-3→L+4(11.01%), H-2→L+4(10.86%),	
	1d ^b	3.1578	H-4→L+4(10.09%), H-2→L+5(8.17%), H-4→L+5(7.50%),	0.41
			H-5→L+5(6.21%), H-5→L+4(4.04%)	
	_	2 2255	H-5→L+2(10.04%), H-2→L+3(9.07%), H-7→L+9(6.43%),	1.00
	3	3.2966	H-4→L+3(6.19%), H-3→L+2(4.66%), H-6→L+8(3.67%)	1.90
		2 2074	H-2→L+2(10.23%), H-5→L+3(8.16%), H-4→L+2(7.42%),	0.00
T _n	4	3.2971	H-6→L+9(6.32%), H-3→L+3(3.93%), H-7→L+8(3.73%)	0.82
	5	3.3373	H→L+5(40.84%), H-1→L+4(38.60%)	0.64
	6	3.3377	H-1→L+5(40.72%), H→L+4(37.86%)	0.26
			H-8→L+10(7.57%), H-5→L+10(5.98%), H-2→L+13(5.70%),	
	7	3.4762	H-8→L+8(5.35%), H-5→L+11(5.04%), H-4→L+13(4.82%),	0.78
			H-9→L+15(4.28%), H-6→L+2(3.66%)	
			H-5→L+13(10.54%), H-8→L+15(5.63%), H-2→L+10(4.33%),	
	8	3.5107	H-3→L+13(3.75%), H-9→L+10(3.55%), H-4→L+10(3.31%)	1.04
			H-6→L+1(15.75%), H-7→L(15.29%), H-17→L(8.74%),	
	9	3.5675	H-16→L+1(7.84%), H-13→L+7(4.22%), H-13→L(3.10%)	1.30

 Table S11 Component analysis of the excited-state BrDBTCz configurated as dimer 2

State	No.	Energy (eV)	Transition Contributions (%) ^a				
	10	3.5691	H-7→L+1(14.97%), H-6→L(14.81%), H-17→L+1(8.48%), H-16→L(7.78%), H-13→L+6(4.04%), H-13→L+1(3.13%)	1.00			
	11	3.7492	$H \rightarrow L+2(19.33\%), H-1 \rightarrow L+3(13.26\%), H \rightarrow L+8(5.79\%),$ $H-6 \rightarrow L+3(5.30\%), H-7 \rightarrow L+2(5.24\%), H \rightarrow L+3(4.77\%),$ $H-1 \rightarrow L+9(4.06\%), H-1 \rightarrow L+2(3.97\%)$	2.49			
	12	3.7497	$H \rightarrow L+3(16.57\%), H-1 \rightarrow L+2(15.97\%), H-6 \rightarrow L+2(5.73\%),$ $H-1 \rightarrow L+8(4.96\%), H \rightarrow L+2(4.77\%), H-7 \rightarrow L+3(4.58\%),$ $H \rightarrow L+9(4.53\%), H-1 \rightarrow L+3(3.98\%), H-7 \rightarrow L+9(3.08\%)$	1.09			
	13	3.8177 (ΔE _{S1Tn} =0.0493)	H-1→L+2(16.47%), H→L+3(8.61%), H-2→L+3(6.75%), H-7→L+9(5.93%), H-6→L+8(5.11%), H-5→L+2(4.71%), H-4→L+3(3.89%), H-2→L+9(3.56%), H→L(3.19%)	2.47			
Tn	14	3.8184 (ΔЕ _{SIIn} =0.0486)	H-1→L+3(14.34%), H→L+2(10.68%), H-2→L+2(7.25%), H-6→L+9(6.82%), H-2→L+8(4.31%), H-4→L+2(4.19%), H-5→L+3(4.08%), H-7→L+8(3.52%)	1.34			
	15	3.9451	H→L+1(19.69%), H-1→L(17.78%), H-7→L+2(7.51%), H-6→L+3(6.44%), H→L(5.24%), H-2→L+8(3.34%)	2.36			
	16	3.9456	H→L(19.67%), H-1→L+1(17.49%), H-6→L+2(7.53%), H-7→L+3(7.43%), H→L+1(4.53%)	1.02			
	17	3.9724	H-6→L+2(17.23%), H-7→L+3(15.68%), H-1→L+1(14.69%), H→L(9.61%), H-1→L(3.02%)	3.66			
	18	3.9730	H-7→L+2(16.90%), H-6→L+3(15.18%), H-1→L(14.03%), H→L+1(9.11%), H-2→L+1(3.60%), H-1→L+1(3.50%)	1.23			
	19	4.0016	H-2→L(16.43%), H-5→L+1(7.54%), H-3→L+1(6.38%), H-4→L(5.58%), H-1→L+8(4.08%)	1.18			
	20	4.0065	H-2→L+1(14.68%), H-5→L(6.65%), H-3→L(5.88%), H-4→L+1(5.05%), H-1→L+9(4.39%), H→L+2(3.63%), H-6→L(3.39%), H→L+1(3.10%)	0.65			

 $^{\rm b}$ 1d: Degenerated orbital or 1 $^{\rm st}$ excited state.

State	No.	Energy (eV)	Transition Contributions (%) ^a	ξ _{Tn-S1} (cm ⁻¹)			
	1	3.6563	H→L+3(83.77%), H→L+7(6.03%), H→L+1(3.16%)				
	2	3.6921	H-1→L+1(72.99%), H-1→L+2(14.73%), H-1→L+4(7.39%)				
	3	3.7527	H→L(96.77%)	1			
	4	3.7606	H→L+2(60.74%), H→L+1(28.19%)	1			
	5	3.7839	H-1→L(92.15%)				
	6	3.8605	H→L+1(58.30%), H→L+2(34.38%)				
6			H-2→L+3(24.40%), H-4→L+2(11.44%), H→L+8(10.75%),	1			
S _n	7	3.9647	H-2→L+2(10.28%), H-2→L(10.20%), H-2→L+1(9.14%),				
			H-6→L+2(5.93%), H-4→L+1(3.63%)				
		2.0726	H-2→L(34.79%), H-2→L+3(20.63%), H→L+8(18.96%),				
	8	3.9726	H-2→L+2(5.64%), H-4→L+2(5.60%), H-6→L+2(3.41%)				
	_	2 001 4	H-1→L+5(56.37%), H-3→L(10.31%), H-5→L(8.43%),				
	9	3.9814	H-7→L(7.75%)				
	10	3.9858	H-2→L(50.48%), H-2→L+3(23.53%), H→L+8(13.14%)				
	1	3.1542	H-3→L+5(35.20%), H-3→L+6(28.56%), H-3→L+7(12.92%)	0.00			
	1d ^b	3.1559	H-2→L+9(56.60%), H-2→L+8(16.97%), H→L+19(7.13%)	0.52			
	_	0.0040	H-4→L+3(33.13%), H-4→L+7(6.44%), H-6→L+8(5.81%),				
-	3	3	3	3.3019	H→L+8(4.89%), H-4→L+8(4.29%)	2.40	
			H-5→L+1(23.30%), H-5→L+4(7.73%), H-6→L+1(5.24%),				
	4	3.3061	H-5→L+2(5.24%), H-7→L+5(4.91%), H-1→L+5(4.71%),	0.21			
			H-7→L+10(3.62%), H-7→L+6(3.52%), H-7→L(3.44%)				
	5	3.3625	H→L+9(57.82%), H→L+8(23.79%)	1.12			
	6	3.3652	H-1→L+5(46.14%), H-1→L+6(27.54%), H-1→L+7(12.18%)	0.02			
			H-4→L+12(13.82%), H-4→L+2(7.08%), H-8→L+13(5.45%),				
			H-6→L+3(4.63%), H-8→L+8(4.37%), H-8→L+15(3.59%),				
	7	7	7	7	/ 3.5022 H-8→L+12(3.57%), H-4→L+3(3.52	H-8→L+12(3.57%), H-4→L+3(3.52%), H-6→L+13(3.49%),	0.79
				H-4→L+11(3.26%)			
T _n			H-5→L+10(12.43%). H-5→L(6.99%). H-7→L+1(5.67%).				
	8	3.5054	H-10→L+10(4.29%). H-7→L+11(4.14%). H-10→L+11(4.00%).	0.28			
			H-5→L+11(3.75%), H-10→L+5(3.56%), H-10→L+14(3.52%)				
			H-6→I+2(18,63%), H-17→I+2(13,85%), H-4→I+2(7,55%),				
	9	3.5639	$H-12 \rightarrow I+2(6.43\%), H-12 \rightarrow I+7(5.53\%), H-6 \rightarrow I+1(4.23\%).$	1.25			
	9	5		H-5→L+2(3.84%). H-12→L+3(3.71%). H-12→L+6(3.04%)			
	10	3.5711	$H_{13} \rightarrow I(8, 20\%) H_{5} \rightarrow I(6, 42\%) H_{13} \rightarrow I_{14}(8, 43\%)$	0.08			
		0.5040					
	11	3.5949	$H \rightarrow L+3(70.05\%), H \rightarrow L+9(6.20\%), H \rightarrow L+7(4.86\%),$	1.24			
		(ΔE _{S1Tn} =0.0614)	H-b→L+3(3.6U%)				
	12	3.6270	H-1→L+1(61.94%), H-1→L+2(12.80%), H-1→L+4(6.28%), H-1→L+6(5.32%)	0.02			

 Table S12 Component analysis of the excited-state BrDBTCz configurated as dimer 3

State	No.	Energy (eV)	Transition Contributions (%) ^a	ξ _{Tn-S1} (cm ⁻¹)
	12	3.7243	H→L+2(41.81%), H→L+1(19.77%), H-4→L+3(6.88%),	2 5 6
	13	(ΔE_{S1Tn} =0.0680)	H→L+8(6.37%), H→L+3(5.29%)	3.50
	1/1	2 7/2/	H-1→L(62.18%), H-1→L+5(4.72%), H-5→L+1(4.69%),	0.12
	14	5.7454	H-1→L+6(3.14%)	0.15
	15	3.7527	H→L(98.76%)	2.61
	16	2 9207	H→L+2(29.51%), H-4→L+3(14.01%), H-4→L+8(8.80%),	2.49
	10	5.8297	H-6→L+8(7.02%), H-2→L+3(4.35%), H→L+8(4.22%)	2.40
			H-1→L(28.68%), H-5→L+1(9.52%), H-7→L+5(6.74%),	
Tn	17	3.8549	H-5→L+5(6.39%), H-7→L+6(4.87%), H-3→L+1(3.37%),	0.93
'n			H-1→L+5(3.11%)	
	18	3.8624	H→L+1(66.66%), H→L+2(22.85%)	3.11
			H→L+8(16.94%), H-4→L+2(10.81%), H-6→L+3(10.37%),	
	19	3.9518	H-2→L+2(9.22%), H→L+9(7.61%), H→L+1(3.99%),	2.65
			H-2→L+1(3.90%)	
			H-2→L+3(23.93%), H-6→L+3(23.61%), H-4→L+8(6.44%),	
	20	3.9597	H-5→L+3(6.17%), H-2→L(5.60%), H→L+8(3.84%),	2.63
			H-2→L+1(3.43%)	

 $^{\rm b}$ 1d: Degenerated orbital or 1 $^{\rm st}$ excited state.

State	No.	Energy (eV)	Transition Contributions (%) ^a	ξ _{Tn-S1} (cm ⁻¹)	
	1	3.7691	H→L+2(46.16%), H-1→L+3(42.47%)		
	1d ^b	3.7709	H-1→L+2(45.09%), H→L+3(42.95%)		
	3	3.8843	H-1→L(44.76%), H→L+1(38.74%), H→L(3.86%)	-	
	4	3.8846	H-1→L+1(41.35%), H→L(38.12%), H→L+1(7.39%)		
			H→L(29.37%), H-1→L+1(20.87%), H-1→L+5(19.02%),	-	
	5	3.9909	H→L+4(15.09%), H→L+7(5.46%)		
	6	2 0011	H-1→L(26.82%), H→L+1(21.10%), H→L+5(19.10%),		
	6	3.9911	H-1→L+4(15.89%), H-1→L+7(5.26%), H-1→L+1(3.12%)		
			H→L(18.79%), H-1→L+5(12.15%), H-1→L(10.85%),		
C C	7	4.0114	H→L+5(10.45%), H-1→L+1(10.38%), H→L+4(9.62%),		
S _n			H→L+1(6.87%), H-1→L+4(4.94%), H→L+7(4.50%)		
			H→L+1(19.06%), H-1→L+1(17.05%), H-1→L+4(11.50%),	1	
	8	4.0115	H→L+5(11.38%), H-1→L(8.98%), H-1→L+5(8.24%),		
			H→L+4(5.51%), H-1→L+7(4.15%), H→L(3.40%)		
			H-4→L(19.27%), H-5→L+1(18.56%), H-7→L(12.30%),		
	9	4.0281	H-6→L+1(12.24%), H-2→L+1(6.70%), H-3→L(5.97%),		
			H→L+9(5.37%), H-1→L+8(5.09%)		
			H-4→L+1(18.64%), H-5→L(17.73%), H-7→L+1(13.30%),		
	10	4.0326	H-6→L(12.82%), H-2→L(6.82%), H-3→L+1(5.73%), H-		
			1→L+9(4.87%), H→L+8(4.48%)		
		2.4567	H-2→L+4(16.26%), H-2→L+5(14.03%), H-3→L+4(13.93%),	0.00	
		3.1567	H-3→L+5(12.00%), H-2→L+7(3.35%)	0.28	
	a ih	2 4 5 7 2	H-3→L+5(16.40%), H-3→L+4(14.10%), H-2→L+5(13.74%),	0.05	
	100	3.1573	H-2→L+4(11.82%), H-3→L+7(3.84%), H-2→L+7(3.22%)	0.35	
	2	2 2046	H-4→L+2(9.54%), H-5→L+2(9.31%), H-5→L+3(8.62%),	1.40	
	3	3.3046	H-4→L+3(8.41%), H-7→L+9(3.07%)	1.40	
		2 2049	H-4→L+3(9.85%), H-5→L+3(9.23%), H-4→L+2(8.45%),	1.10	
	4	3.3048	H-5→L+2(8.32%)	1.10	
			H-1→L+4(21.23%), H-1→L+5(16.68%), H→L+4(16.05%),		
I I N	5	3.3484	H→L+5(14.10%), H-1→L+7(3.98%), H-1→L+6(3.78%),	0.60	
			H→L+6(3.17%)		
			H→L+5(19.52%), H→L+4(18.42%), H-1→L+5(16.28%),		
	6	3.3487	H-1→L+4(13.75%), H→L+7(4.56%), H-1→L+7(3.43%),	0.73	
			H→L+6(3.25%)		
	7	3 5070	H-5→L+11(5.67%), H-4→L+10(5.45%), H-4→L+11(4.15%),	0.51	
		5.5070	H-5→L+10(3.59%), H-4→L(3.12%)	0.51	
	Q	3 5070	H-4→L+11(5.59%), H-5→L+10(5.54%), H-4→L+10(3.90%),	0.77	
8		°	3.3070	H-5→L+11(3.84%), H-4→L+1(3.06%)	0.77

 Table S13 Component analysis of the excited-state BrDBTCz configurated as dimer 4

State	No.	Energy (eV)	Transition Contributions (%) ^a	ξ _{Tn-S1} (cm ⁻¹)
	9	3.5751	H-6→L(11.75%), H-7→L(6.91%), H-16→L(5.52%), H-17→L(4.94%), H-6→L+1(4.85%), H-7→L+1(3.38%), H-5→L(3.02%)	0.80
	10	3.5753	H-7→L+1(11.33%), H-6→L+1(7.40%), H-17→L+1(6.10%), H-7→L(5.27%), H-16→L+1(4.33%), H-5→L+1(3.11%)	1.03
	11	3.6880 (∆E _{S1Tn} =0.0811)	H→L+2(20.56%), H→L+3(18.39%), H-1→L+2(15.90%), H-1→L+3(14.74%)	1.22
	12	3.6882 (∆E _{S1Tn} =0.0809)	H-1→L+3(20.42%), H-1→L+2(18.16%), H→L+3(16.65%), H→L+2(14.29%)	1.00
	13	3.7988 (∆Е _{S1Tn} =0.0297)	H→L+1(9.35%), H-1→L+1(6.66%), H-5→L+2(4.45%), H-4→L+2(4.09%), H-4→L+3(3.86%), H→L(3.71%), H-5→L+3(3.44%), H-1→L(3.28%), H→L+2(3.18%)	3.53
T _n	14	3.7989 (ΔЕ _{S1Tn} =0.0298)	H-1→L(8.49%), H→L(7.52%), H-5→L+3(4.18%), H-4→L+2(4.11%), H-1→L+1(4.11%), H-4→L+3(4.01%), H-5→L+2(3.52%), H-1→L+3(3.08%)	2.83
	15	3.9023	H→L(23.16%), H-1→L(18.23%), H-1→L+1(14.56%), H→L+1(3.99%), H-5→L+8(3.68%), H-6→L+8(3.43%), H-4→L+9(3.26%)	1.38
	16	3.9023	H→L+1(27.39%), H-1→L+1(13.48%), H-1→L(13.04%), H→L(6.07%), H-5→L+9(3.67%), H-4→L+8(3.28%)	2.38
	17	3.9803	H-7→L+2(22.43%), H-6→L+3(15.52%), H-7→L+3(9.18%), H-6→L+2(5.08%)	2.27
	18	3.9804	H-6→L+2(20.71%), H-7→L+3(16.52%), H-6→L+3(10.80%), H-7→L+2(4.07%)	3.04
	19	4.0005	H-1→L(34.03%), H→L(28.01%), H→L+1(26.06%), H-1→L+1(5.40%)	0.17
	20	4.0009	H-1→L+1(42.61%), H→L(22.34%), H→L+1(21.28%), H-1→L(7.47%)	0.18

 $^{\rm b}$ 1d: Degenerated orbital or $1^{\rm st}$ excited state.

State	No.	Energy (eV)	Transition Contributions (%) ^a	ξ _{Tn-S1} (cm ⁻¹)
	1	3.6905	H-1→L(47.39%), H→L+1(29.94%), H→L+3(10.99%), H-1→L+2(6.18%)	
	1d ^b	3.6909	H→L(47.94%), H-1→L+1(29.38%), H-1→L+3(11.03%), H→L+2(6.14%)	
	3	3.9086	H-1→L+1(18.25%), H→L(15.02%), H→L+1(14.92%), H-1→L+3(6.79%), H-1→L(6.14%), H→L+3(5.88%), H→L+4(5.88%), H→L+2(4.63%), H-1→L+7(3.02%)	-
	4	3.9089	H→L+1(18.50%), H-1→L+1(15.02%), H-1→L(14.88%), H→L+3(7.33%), H→L(6.04%), H-1→L+4(5.85%), H-1→L+3(5.62%), H-1→L+2(4.31%)	
S _n	5	3.9936	H-3→L(34.99%), H-2→L+1(23.67%), H-2→L+3(7.94%), H-2→L(7.88%), H-4→L(4.53%)	
	6	3.9943	H-2→L(33.36%), H-3→L+1(22.61%), H-3→L(7.82%), H-3→L+3(7.62%), H-1→L+5(5.76%), H→L+4(4.06%), H-5→L(3.31%)	-
	7	4.0110	$H \rightarrow L+5(35.01\%), H-1 \rightarrow L+4(30.94\%), H \rightarrow L+1(10.16\%),$ H-1→L+6(5.05%), H-1→L(4.31%)	
	8	4.0137	H-1→L+5(30.56%), H→L+4(29.43%), H-1→L+1(10.74%), H→L(5.37%), H-3→L+1(4.48%), H→L+6(3.21%)	
	9	4.0337	H→L+2(38.68%), H-1→L+3(34.26%), H→L(13.49%), H-1→L+1(4.06%), H→L+6(3.50%)	
	10	4.0351	H-1→L+2(38.60%), H→L+3(35.55%), H-1→L(15.48%)	-
	1	3.1520	H-2→L+5(21.06%), H-2→L+6(15.64%), H-3→L+5(10.08%), H-2→L+4(9.96%), H-3→L+6(7.47%), H-3→L+4(4.76%), H-2→L+7(4.15%)	0.32
	1d ^b	3.1528	H-3→L+5(21.13%), H-3→L+6(16.07%), H-2→L+5(10.11%), H-3→L+4(9.41%), H-2→L+6(7.68%), H-2→L+4(4.49%), H-3→L+7(4.19%)	0.30
	3	3.2888	H-4→L(15.31%), H-5→L+3(14.79%), H-5→L+1(4.64%), H-4→L+4(3.36%), H-6→L+3(3.18%)	1.79
T _n	4	3.2889	H-5→L(15.05%), H-4→L+3(15.03%), H-4→L+1(4.64%), H-5→L+4(3.26%), H-7→L+3(3.04%), H-6→L+4(3.02%)	0.60
	5	3.3623	H-1→L+5(23.32%), H→L+5(14.66%), H-1→L+6(13.23%), H→L+6(10.83%), H-1→L+4(10.53%), H→L+4(8.54%)	0.62
	6	3.3625	H→L+5(23.43%), H-1→L+5(14.73%), H→L+6(13.68%), H-1→L+6(11.11%), H→L+4(9.93%), H-1→L+4(8.14%)	0.59
	7	3.5096	H-5→L+10(4.68%), H-4→L+10(4.52%), H-4→L+11(4.17%), H-5→L+11(3.91%)	0.74
	8	3.5098	H-4→L+10(4.68%), H-5→L+10(4.51%), H-5→L+11(4.19%),	0.82

т	able	S14 Co	omponent and	lysis	of the	e excite	d-state	BrDE	BTCz	cont	figurate	ed a	as d	limer	5
				-											

State	No.	Energy (eV)	Transition Contributions (%) ^a						
			H-4→L+11(3.93%)						
			H-6→L+1(12.44%), H-7→L+2(8.06%), H-13→L+9(7.40%),						
		2 5 2 2 2	H-16→L(6.85%), H-5→L+1(4.85%), H-12→L+8(4.84%),	0.74					
	9	3.5933	H-17→L+1(4.33%), H-12→L+2(4.27%), H-16→L+2(3.48%),	0.71					
			H-17→L+3(3.47%)						
			H-7→L+1(11.53%), H-6→L+2(10.01%), H-13→L+8(6.26%),						
	10	2 5057	H-17→L(5.76%), H-12→L+9(5.71%), H-13→L+2(5.08%),	0.02					
	10	3.5957	H-16→L+1(5.04%), H-4→L+1(4.73%), H-16→L+3(3.99%),	0.02					
			H-5→L+2(3.36%), H-17→L+2(3.08%)						
	11	3.6241	H→L(33.21%), H-1→L+1(27.08%), H-1→L+3(8.50%),	0.22					
	11	(ΔE_{S1Tn} =0.0664)	H→L+2(6.91%), H-1→L+7(4.08%)	0.22					
	12	3.6243	H-1→L(32.29%), H→L+1(27.48%), H→L+3(8.73%),	1.20					
	12	(ΔE _{S1Tn} =0.0662)	H-1→L+2(6.95%), H→L+7(4.16%)	1.28					
		2 7600	H-1→L(11.18%), H-4→L(9.15%), H→L+3(7.61%),						
-	13	3.7600 (ΔE _{S1Tn} =0.0695)	H-5→L+1(7.17%), H-6→L+7(4.71%), H-1→L+4(4.36%),	4.11					
			H-6→L+1(4.23%), H-5→L+7(4.17%), H→L+7(3.17%)						
-		2 7 6 1 9	H→L(10.59%), H-5→L(8.99%), H-1→L+3(7.69%),						
I _n	14	3.7618	H-4→L+1(7.26%), H-7→L+7(4.71%), H→L+4(4.63%),	0.56					
		(\(\(\Delta\)L_{S1Tn}=0.0713)	H-4→L+7(4.39%), H-7→L+1(3.83%), H-1→L+7(3.04%)						
			H→L+1(19.56%), H-1→L(12.47%), H→L+3(7.76%), H→L(4.37%),						
	15	3.9061	H-5→L+7(3.62%), H-1→L+2(3.42%), H-1→L+1(3.01%),	1.67					
			H-4→L+4(3.00%)						
			H-1→L+1(20.22%), H→L(12.37%), H-1→L+3(7.69%),						
	16	3.9065	H-1→L(4.32%), H-4→L+7(3.67%), H→L+2(3.60%),	0.94					
			H-1→L+7(3.01%)						
	17	2 0 2 1 9	H-7→L(26.14%), H-6→L+1(16.14%), H-6→L+3(12.76%),	2 4 2					
	1/	5.9516	H-7→L+2(6.19%), H→L+1(3.79%)	5.42					
	10	2 0210	H-6→L(27.51%), H-7→L+1(15.11%), H-7→L+3(13.21%),	0.16					
	10	5.9519	H-6→L+2(5.89%), H-1→L+1(4.02%)	0.10					
	10	4 005 2	H-2→L(26.14%), H-2→L+1(13.93%), H-3→L(10.44%),	0.42					
	19	4.0032	H-3→L+1(8.40%), H-2→L+3(4.01%)	0.45					
	20	4 0055	H-3→L(26.35%), H-3→L+1(14.28%), H-2→L(9.80%),	0.30					
	20	4.0055	H-2→L+1(8.15%), H-3→L+3(3.90%)	0.59					

 $^{\rm b}$ 1d: Degenerated orbital or 1 $^{\rm st}$ excited state.

State	No.	Energy (eV)	Transition Contributions (%) ^a	ξ _{Tn-S} (cm⁻
	1	3.7030	H→L+2(45.79%), H-1→L+3(42.45%), H→L+4(3.62%)	
	1d ^b	3.7046	H-1→L+2(44.71%), H→L+3(43.67%), H-1→L+4(3.61%)	
	3	3.8025	H→L(50.52%), H-1→L+1(39.68%)	
	4	3.8032	H→L+1(48.67%), H-1→L(41.35%)	
	5	3.8512	H-1→L(46.18%), H→L+1(34.56%), H→L(11.54%), H-1→L+1(6.96%)	
	6	3.8514	H-1→L+1(47.18%), H→L(33.41%), H→L+1(12.21%), H-1→L(6.42%)	
S _n	7	3.9810	H→L+3(38.39%), H-1→L+2(28.34%), H-1→L+6(12.25%), H→L+7(9.17%)	
	8	3.9812	H-1→L+3(42.39%), H→L+2(31.33%), H→L+6(9.74%), H-1→L+7(6.73%)	
	9	3.9906	H-1→L+6(23.97%), H→L+7(20.12%), H-1→L+2(19.44%), H→L+3(10.30%), H-2→L+1(3.76%), H-4→L(3.18%), H-5→L+1(3.10%)	
	10	3.9916	H→L+6(26.66%), H-1→L+7(21.40%), H→L+2(13.31%), H-1→L+3(6.04%), H-2→L(5.58%), H-4→L+1(4.07%), H-5→L(3.88%)	
			H-2→L+6(17.23%), H-3→L+8(16.36%), H-3→L+7(13.30%),	
	1	3.1535	H-2→L+9(12.62%), H-3→L+6(4.57%), H-2→L+8(4.45%), H-2→L+7(3.57%), H-3→L+9(3.29%)	0.4
			$H_3 \rightarrow I + 6(16, 73\%) + 2 \rightarrow I + 8(16, 67\%) + 2 \rightarrow I + 7(13, 70\%)$	
	1d ^b	3.1537	$H-3 \rightarrow L+9(12.43\%), H-2 \rightarrow L+6(4.57\%), H-3 \rightarrow L+8(4.27\%).$	0.1
		0.2007	H-3→L+7(3.56%), H-2→L+9(3.46%)	
	3	3.3105	H-4→L+3(10.93%), H-5→L+2(10.56%), H-4→L+2(7.18%), H-5→L+3(6.54%), H-4→L+5(3.27%)	1.2
	4	3.3105	H-5→L+3(10.78%), H-4→L+2(10.74%), H-5→L+2(6.99%), H-4→L+3(6.75%), H-5→L+5(3.09%)	0.9
T _n	5	3.3659	$H \rightarrow L+6(21.14\%), H-1 \rightarrow L+7(16.70\%), H-1 \rightarrow L+8(15.26\%),$ $H \rightarrow L+9(11.17\%), H-1 \rightarrow L+6(6.24\%), H \rightarrow L+7(5.26\%),$ $H \rightarrow L+8(4.87\%), H-1 \rightarrow L+9(3.24\%)$	1.0
	6	3.3662	H-1→L+6(20.58%), H→L+7(17.17%), H→L+8(15.53%), H-1→L+9(11.03%), H→L+6(6.24%), H-1→L+7(5.26%),	0.5
	7	3.5083	H-4→L+10(8.98%), H-5→L+11(8.67%), H-4→L+1(4.16%),	0.5
	8	3.5083	H-4→L+11(8.87%), H-5→L+10(8.78%), H-4→L(4.16%), H-5→L+1(3.95%), H-7→L+3(3.72%), H-6→L+2(3.66%)	0.5
	9	3.5732	H-7→L(7.81%), H-6→L(7.61%), H-6→L+1(5.69%), H-18→L(5.64%), H-7→L+1(5.26%), H-19→L(4.77%),	0.6

I dDie 315 Component analysis of the excited-state Diddicz comigurated as unite	he excited-state BrDBTCz configurated as o	Jimer 6
---	---	---------

State	No.	Energy (eV)	Transition Contributions (%) ^a	ξ _{Tn-S1} (cm ⁻¹)
Tn	10	3.5733	H-7→L+1(7.90%), H-6→L+1(7.57%), H-6→L(5.62%),	0.58
			H-7→L(5.29%), H-18→L+1(5.18%), H-19→L+1(5.16%),	
			H-19→L(3.88%), H-18→L(3.50%)	
	11	3.6368	H→L+3(19.82%), H-1→L+2(18.91%), H→L+2(18.59%),	0.78
		(ΔE _{S1Tn} =0.0662)	H-1→L+3(17.80%)	
	12	3.6369	H-1→L+3(19.37%), H→L+2(19.36%), H→L+3(18.47%),	0.76
		$(\Delta E_{S1Tn} = 0.0661)$	H-1→L+2(17.94%)	
	13	3.7578	H→L(25.85%), H-1→L+1(18.46%), H-1→L(8.50%),	4.28
			H→L+1(4.95%), H-5→L+2(3.19%), H-4→L+3(3.18%)	
	14	3.7580	H→L+1(24.79%), H-1→L(19.42%), H-1→L+1(8.49%),	2.33
			H→L(5.04%), H-4→L+2(3.23%), H-5→L+3(3.15%)	
	15	3.8511	H→L(45.37%), H-1→L+1(33.18%), H-1→L(13.33%),	0.29
			H→L+1(6.56%)	
	16	3.8512	H→L+1(43.62%), H-1→L(35.74%), H-1→L+1(12.29%),	0.21
			H→L(7.31%)	
	17	3.8652	H-1→L(16.11%), H→L+1(11.93%), H-4→L+2(5.97%),	1.43
			H-5→L+3(5.58%), H-5→L+7(3.63%), H-6→L+9(3.59%)	
	18	3.8654	H-1→L+1(20.21%), H→L(8.59%), H-5→L+2(5.79%),	2.50
			H-4→L+3(5.59%), H-4→L+7(3.56%), H-7→L+9(3.51%),	
			H-5→L+9(3.03%)	
	19	3.9734	H-2→L(7.66%), H→L+9(7.60%), H-1→L+8(7.24%),	1.62
			H-5→L(7.01%), H-4→L+1(6.92%), H-6→L+3(5.32%),	
			H-7→L+2(5.27%), H→L+2(5.00%), H-1→L+7(4.58%),	
			H→L+6(4.29%), H-3→L+1(3.72%), H-1→L+3(3.18%)	
	20	3.9738	H-1→L+9(7.85%), H→L+8(7.75%), H-2→L+1(7.41%),	0.09
			H-5→L+1(7.35%), H-4→L(7.16%), H-7→L+3(4.77%),	
			H-6→L+2(4.77%), H→L+7(4.74%), H-1→L+6(4.38%),	
			H-3→L(4.12%), H-1→L+2(4.12%)	

^b 1d: Degenerated orbital or 1st excited state.

Figure S10 The HPLC spectra of the THF-dissolved **BrDBTCz** monitored at 346 nm with the acetonitrile-water mixed eluent. Generally, 5 mg of **BrDBTCz** was dissolved in 5 mL of THF, 10 uL of the solution was then added into the 1 mL of eluent with certain ratio.