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The experiment section

1. Chemical and reagents

Zinc nitrate (Zn(NO3)2·6H2O), ferric nitrate hexahydrate (Fe(NO3)3·9H2O), N, N'-carbonyldiimidazole (CDI), 

dicyandiamide (DICY), PEG 2000, and phytic acid (PA) were purchased from Aladdin (Shanghai, China). 

Nafion (5 wt.%) and commercial platinum/carbon (20 wt.% Pt/C) were purchased from Alfa Aesar Co. Ltd. 

2. Preparation process of precursor 1

Initially, 40 mmol CDI was dissolved into 100 mL ethanol and 10 mmol Zn(NO3)2·6H2O was dissolved into 50 

mL ethanol, respectively. At room temperature, above-prepared solutions were mixed rapidly and stirred 

vigorously for 24 h. 3 mmol Fe(NO)3·9H2O was then added. The mixture was kept stirring for another 12 h at 

room temperature. The mixed liquid was then centrifuged at 6000 rpm for 10 min. The precipitate was 

washed three times with ethanol and was dried under vacuum at 60°C. The bimetallic polymer (denoted as 

Fe/Zn-ZIFs@ZnCO3) of precursor 1 was acquired.

3. Preparation process of precursor 2

For precursor 2, in a typical process, 5 g of dicyandiamide (DICY), 0.5 g of PEG 2000 and 2 mL of phytic acid 

(PA) were added into 40 mL of distilled water. Then the mixed solution was stirred at 60°C for 30 min and 

dried at 80°C.

4. Material characterization

Laboratory powder X-ray diffraction patterns were collected for the samples on a Rigaku Ultima IV X-ray 

diffractometer with Cu K source (40 kV, 40 mA). The morphology and structure of the samples were 

observed on field-emission scanning electron microscope (FE-SEM, Quant 250FEG) and high-resolution 

transmission electron microscopy at an acceleration voltage of 200 kV (TEM, JEM-2100F). Micromeritics 

Belsorp-max analyzer was applied to measure the Brunauer Emmett Teller (BET) surface area and pore size 

distribution (PSD). X-ray photoelectron spectroscopic (XPS) measurements were conducted on an Axis Ultra 

instrument from Kratos using monochromatic Al K radiation. 

5. Electrochemical measurements

All electrochemical measurements were carried out by using a standard three-electrode configuration on a 

Gamry (RDE710) electrochemical workstation, where the Ag/AgCl (KCl-saturated) electrode and a carbon 

rod were used as reference and counter electrodes, respectively. To ensure the repeatability of the 

experiment, the working electrode for each of the four catalysts was prepared by using under uniform 

condition. The procedure for the preparation of a working electrode was as following: the catalyst powder 

(5 mg) was dispersed in 0.8 mL of ethyl alcohol with 40 µL of Nafion solution (5 wt %, Sigma-Aldrich) under 
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sonication to obtain a homogeneous suspension. Then, the catalyst ink (10 μL, 0.30 mg·cm-2) was droped on 

the glass carbon electrode surface. For ORR tests, Cyclic voltammetry (CV) curves were collected in a N2-

saturated or O2-saturated 0.1 M KOH electrolyte at a scan rate of 50 mV·s-1. Additionally, the activity for 

ORR was also evaluated via the RDE method by LSV from 0.2 to -0.8 V in O2-saturated 0.1 M KOH 

electrolyte. The ORR stability in O2-saturated 0.1 M KOH solution was tested by current versus time (i-t) test 

with a rotating speed of 1600 rpm. The ORR performance of the as-prepared catalysts were make a 

comparison with the state-of-the-art commercial Pt/C (20 wt%) electrocatalyst  (HiSPEC 3000, Alfa ○R

Aesar). 
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Supplementary figures

Fig. S1 Representative SEM images of the Fe3C@NC.

Fig. S2 Representative SEM images of the precursor 1.

Fig. S3 Representative SEM images of the γ-Fe2O3@NPC (a) and the α-Fe2O3/γ-Fe2O3@NPC (b).
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Fig. S4 XPS survey spectrum of Fe3C@NC.

Fig. S5 High-resolution XPS spectrum of C 1s core level for α-Fe2O3/Fe@NPC. 

Fig. S6 High-resolution XPS spectrum of P 2p core level for α-Fe2O3/Fe@NPC. 
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Fig. S7 The corresponding EDS image of α-Fe2O3/Fe@NPC.

Fig. S8 SEM images of α-Fe2O3/Fe@NPC used in the EDS mapping area revealing the elemental distribution 
of C, N, O, P, and Fe.

Fig. S9 N2 adsorption-desorption isotherm of α-Fe2O3/Fe@NPC.
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Fig. S10 LSV curves of Fe3C@NC catalyst in O2-saturated 0.1 M KOH, respectively. (Inset: K–L plots of 

Fe3C@NC at various potentials.)

Fig. S11 LSV curves of γ-Fe2O3@NPC catalyst in O2-saturated 0.1 M KOH, respectively. (Inset: K–L plots of γ-

Fe2O3@NPC at various potentials.)
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Fig. S12 LSV curves of α-Fe2O3/γ-Fe2O3@NPC catalyst in O2-saturated 0.1 M KOH, respectively. (Inset: K–L 

plots of α-Fe2O3/γ-Fe2O3@NPC at various potentials.)

Fig. S13 LSV curves of α-Fe2O3/Fe@NPC-800 in O2-saturated 0.1 M KOH, respectively. (Inset: K–L plots of α-

Fe2O3/Fe@NPC-800 at various potentials.)
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Fig. S14 LSV curves of α-Fe2O3/Fe@NPC-1000 in O2-saturated 0.1 M KOH, respectively. (Inset: K–L plots of α-

Fe2O3/Fe@NPC-1000 at various potentials.)

Fig. S15 Representative SEM images of the α-Fe2O3/Fe@NPC-800.

Fig. S16 Representative SEM images of the α-Fe2O3/Fe@NPC-1000.
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Fig. S17 (a) Amperometric i–t curves of α-Fe2O3/Fe@NPC and 20 wt% Pt/C and (b) upon the addition of 3 M 

methanol in O2-saturated 0.1 M KOH solution with the rotation speed of 1600 rpm.
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Table S1 Levels of C, N, O, P, and Fe of the Fe3C@NC, γ-Fe2O3@NPC, α-Fe2O3/Fe@NPC, and α-Fe2O3/γ-

Fe2O3@NPC, respectively.

Atomic percentage (at%)

Sample C N O P Fe

Fe3C@NC 89.61 2.87 6.52 0 1.00

γ-Fe2O3@NPC 89.83 5.74 3.43 0.12 0.88

α-Fe2O3/Fe@NPC 90 5.16 4.41 0.14 0.31

α-Fe2O3/γ-Fe2O3@NPC 88.98 3.75 5.68 0.04 0.10

Table S2 Atomic percentage of different Fe, N, and O species obtained by XPS spectroscopy.

Atomic percentage (at%)

Sample Fe0 Fe3+ Fe2O3

γ-Fe2O3@NPC 21.3 47.3 31.3

α-Fe2O3/Fe@NPC 19.4 54.6 26.0

α-Fe2O3/γ-Fe2O3@NPC 0 70.4 29.6

Atomic percentage (at%)

Sample Pyridinic N Pyrrolic N Graphitic N
Quaternary N+-

O-

γ-Fe2O3@NPC 25.2 16.9 36.7 21.2

α-Fe2O3/Fe@NPC 29.3 18.6 30.1 21.2

α-Fe2O3/γ-Fe2O3@NPC 30.7 21.6 33.5 14.2

Atomic percentage (at%)

Sample C=O/P=O C-O-P O-H

γ-Fe2O3@NPC 44.0 34.5 21.5

α-Fe2O3/Fe@NPC 73.1 16.6 10.3

α-Fe2O3/γ-Fe2O3@NPC 42.9 39.1 18.0
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Table S3. The ORR performance of the Fe3C@NC, γ-Fe2O3@NPC, α-Fe2O3/Fe@NPC, α-Fe2O3/Fe@NPC-800, 

α-Fe2O3/Fe@NPC-1000, α-Fe2O3/γ-Fe2O3@NPC, and 20 wt% Pt/C in alkaline media at 1600 rpm, respectively.

Sample Eonset (V) E1/2 (V) JL (mA cm-2) n

Fe3C@NC 0.93 0.84 4.01 2.96

γ-Fe2O3@NPC 0.75 0.59 2.37 1.62

α-Fe2O3/Fe@NPC 1.01 0.88 5.06 3.60

α-Fe2O3/Fe@NPC-800 0.97 082 5.45 2.95

α-Fe2O3/Fe@NPC-1000 0.93 0.77 5.05 2.64

α-Fe2O3/γ-Fe2O3@NPC 0.97 0.86 5.13 3.62

20 wt% Pt/C 0.96 0.86 5.61 4.00



S13

Table S4. Comparison of the ORR performance for α-Fe2O3/Fe@NPC catalyst at 1600 rpm in 0.1 M KOH. 

Catalyst E1/2 (V) JL (mA cm-2) Eonset (V) Tafel slope (mV 
dec-1)

n Reference

α-Fe2O3/Fe@NPC 0.88 5.06 1.01 3.60 This work

α-Fe2O3/N-CNTs 0.80 3.1 1.16 90 3.37 Sci. China Mater.,2015 [1]
FNTAs 0.79 5.40 0.97 91.0 3.92 RSC Adv., 2016 [2]

α-Fe2O3@N-C 0.83 5.67 0.80 115.9 3.46-3.79 Int. J. Hydrog. Energy.,2017 [3]
Fe-Fe2O3@NC 0.72 2.23 0.92 51.0 3.51-3.92 Electrochim. Acta,2017 [4]

a-Fe2O3/Fe3O4/hNCNC 0.838 6.02 1.03 92.6 3.60-3.90 J. Mater. Chem. A, 2018 [5]
Fe2O3@NC 0.856 6.492 1.004 74.5 3.976 Catal. Sci. Technol., 2019 [6]
Fe2O3@NC&bio-C 0.85 6.0 0.96 3.94 J. Energy Chem.,2020 [7]

FeNx/Fe2O3-CNFs 0.81 6.0 0.95 4.0 J. Mater. Chem. A, 2020 [8]
γ-Fe2O3@CNFs 0.905 4.8 0.915 63.3 4.0 Chem. Eng.J.,2021 [9]

Fe2O3/G 0.804 6.45 0.92 89.96 3.98-4.0 New J. Chem., 2021 [10]
Fe–CNSs–N 0.835 5.17 0.948 70.6 3.85 J. Mater. Chem. A, 2021 [11]

α-Fe2O3/A-C3N4 0.81 5.2 0.82 3.7 J Mater Sci,2022 [12]
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