SUPPORTING INFORMATION

A potent candidate against Zika virus infection: Synthesis, bioactivity, radiolabeling and biodistribution studies

Sumit Kumarr ${ }^{1, \#}$, Neha Sharma²,\#, Willyenne Dantas ${ }^{3}$, Jessica Catarine Frutuoso do Nascimento ${ }^{3}$, Hannah Maus ${ }^{4}$, Ronaldo Nascimento de Oliveira ${ }^{5}$, Unnat Pandit ${ }^{6}$, Agam, P Singh ${ }^{7}$, Tanja Schirmeister ${ }^{4}$, Puja Panwar Hazari ${ }^{8}$, Lindomar Pena ${ }^{3}$, Poonam ${ }^{1,9 *}$, Brijesh Rathi ${ }^{2,9 *}$
${ }^{1}$ Department of Chemistry, Miranda House, University of Delhi, Delhi - 110007 India ${ }^{2}$ Har Gobind Khorana Centre For Chemical Biology, Department of Chemistry, Hansraj College, University of Delhi, Delhi - 110007 India
${ }^{3}$ Department of Virology, Aggeu Magalhaes, Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife 50670-420, Pernambuco, Brazil
${ }^{4}$ Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55128
Mainz, Germany
${ }^{5}$ Department of Chemistry, Federal Rural University of Pernambuco, Dois Irm \sim aos, 52171900, Recife, Brazil
${ }^{6}$ Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi 110067, India ${ }^{7}$ Infectious Diseases Laboratory, National Institute of Immunology, New Delhi 110067, India
${ }^{8}$ Division of Cyclotron and Radiopharmaceutical Sciences Institute of Nuclear Medicine and Allied Sciences, New Delhi 110054, India
${ }^{9}$ Delhi School of Public Health, Institution of Eminence, University of Delhi, Delhi-1 10007

\#Both the authors contributed equally
*Corresponding Author:
Poonam, M.Phil., Ph.D.
poonam.chemistry@mirandahouse.ac.in
ORCID: 0000-0002-3759-1057

Brijesh Rathi, PhD

brijeshrathi@hrc.du.ac.in

ORCID: 0000-0003-2133-8847

SUPPORTING INFORMATION

Table of Content:

Entry	Page No.
Figure S1. ${ }^{1} \mathrm{H}$ NMR data of compound, VI in CDCl_{3}.	S3
Figure S2. ${ }^{1} \mathrm{H}$ NMR data of compound, VII in CDCl_{3}.	S4
Figure S3. ${ }^{19} \mathrm{~F}$ NMR data of compound, VI in CDCl_{3}.	S4
Figure S4. ${ }^{19} \mathrm{~F}$ NMR data of compound, VII in CDCl_{3}.	S5
Figure S5. ${ }^{13} \mathrm{C}$ NMR data of compound, VI in CDCl_{3}.	S5
Figure S6. ${ }^{13} \mathrm{C}$ NMR data of compound, VII in CDCl_{3}.	S6
Figure S7. ${ }^{1} \mathrm{H}$ NMR data of compound, $\mathbf{I V}$ in CDCl_{3}.	S6
Figure S8. ${ }^{13} \mathrm{C}$ NMR data of compound, IV in CDCl_{3}.	S7
Figure S9. ${ }^{1} \mathrm{H}$ NMR data of compound, \mathbf{V} in CDCl_{3}.	S7
Figure S10. ${ }^{13} \mathrm{C}$ NMR data of compound, \mathbf{V} in CDCl_{3}.	S8
Figure S11. ESI (HR-MS) spectrum of VI.	S8
Figure S12. ESI (HR-MS) spectrum of VII.	S9
Figure S13. HPLC purity analysis for first cycle of VI.	S9
Figure S14. HPLC purity analysis for second cycle of VI.	S10
Figure S15. HPLC purity analysis for third cycle of VI.	S10
Figure S16. HPLC purity analysis for fourth cycle of VI.	S11
Figure S17. HPLC purity analysis for fifth cycle of VI.	S11
Table S1. Average peak purity and retention time of calxinin (4) after five successive HPLC analysis with a flow $0.3 \mathrm{~mL} / \mathrm{min}$ started at 70:30:0.01 (acetonitrile:water:TFA) to 100:0:0.01 and a total run time of 30 min .	S12
Figure S18. HPLC purity analysis of compound VII.	S12
Figure S19. HPLC analysis for compound VI using four different non-polar solvent systems (n-hexane:EtOH:DEA (50:50:0.1), n-hexane:IPA:DEA (50:50:0.1), n-hexane:EtOH:MeOH:DEA (50:25:25:0.1), and EtOH:DEA (100:0.1) at flow rate of $1.0 \mathrm{~mL} / \mathrm{min}$ for a run time of 15 min with six chiral columns which are: (A) Amylose-C-Neo; (B) Amylose-SA; (C) Cellulose-SB; (D) Cellulose-SC; (E) Cellulose-SJ; and (F) Cellulose-SZ.	S13
Figure S20. HPLC analysis of compound VI using two different polar solvent systems (ACN:DEA (100:0.1) and Methanol:DEA (100:0.1)) at flow rate of 1.0 $\mathrm{mL} / \mathrm{min}$ for a run time of 15 min with six chiral columns which are: (A) Amylose-C-Neo; (B) Amylose-SA; (C) Cellulose-SB; (D) Cellulose-SC; (E) Cellulose-SJ; and (F) Cellulose-SZ.	S14
Figure S21. HPLC analysis of compound VII using two different polar solvent systems (ACN:DEA (100:0.1) and Methanol:DEA (100:0.1)) at flow rate of 1.0 $\mathrm{mL} / \mathrm{min}$ for a run time of 15 min with six chiral columns which are: (A) Amylose-C-Neo; (B) Amylose-SA; (C) Cellulose-SB; (D) Cellulose-SC; (E) Cellulose-SJ; and (F) Cellulose-SZ.	S15
Table S2. The molecular docking results for compound VI, with all three targeted proteins.	S16
Figure S22. Schematic representation of 2D interaction maps against protease enzyme of ZIKV infection. A) compound VI (identified potent analog). Root mean square deviations (RMSD) difference between the proteins of ZIKV infections and bound ligand VI during 100 ns MD simulation. B) compound VI-protease complex; C) compound VI-helicase complex; and D) compound VI-methyltransferase complex. The graph was obtained for the RMSD value of ligand (brown line) from the protein backbone (blue line). The compound VI-	S16

SUPPORTING INFORMATION

protease complex quickly stabilized to a very low energy state (within 25 ns) and was highly stable throughout the simulation.	
Table S3. Biodistribution of 99mTc-VI in different parts following intravenous injection in Strain-A (20-22g) mice at different time intervals (1h, 2h, 4h, and 24h). The data was compiled for accumulated amount (\% ID/g = $\%$ injected dose per gram).	$\mathbf{S 1 7}$
Figure S24. High resolution mass spectroscopy (HRMS) spectra of Rhodamine b (Rho) conjugated compound (VI).	$\mathbf{S 1 8}$
Figure S24. Saturation curve obtained from radioligand binding affinity experiment of the hippocampus of rat brain. Non-specific binding was determined with a 100-fold concentration of Rho-VI complex, where Kd of 7.54 nM was obtained for the 5-HT1A receptor.	$\mathbf{S 1 9}$
Figure S25. HRMS spectra of Re-VI adduct.	S20
Table S4. The calculated and observed mass from HRMS spectra of plausible Re-VI adduct.	$\mathbf{S 2 0}$

Figure S1. ${ }^{1} \mathrm{H}$ NMR data of compound, VI in CDCl_{3}.

SUPPORTING INFORMATION

Figure S2. ${ }^{1} \mathrm{H}$ NMR data of compound, VII in CDCl_{3}.

Figure S3. ${ }^{19} \mathrm{~F}$ NMR data of compound, VI in CDCl_{3}.

SUPPORTING INFORMATION

Figure S4. ${ }^{19} \mathrm{~F}$ NMR data of compound, VII in CDCl_{3}.

Figure S5. ${ }^{13} \mathrm{C}$ NMR data of compound, VI in CDCl_{3}.

Figure S6. ${ }^{13} \mathrm{C}$ NMR data of compound, VII in CDCl_{3}.

Figure S7. ${ }^{1} \mathrm{H}$ NMR data of compound, $\mathbf{I V}$ in CDCl_{3}.

SUPPORTING INFORMATION

Figure S8. ${ }^{13} \mathrm{C}$ NMR data of compound, IV in CDCl_{3}.

Figure S9. ${ }^{1} \mathrm{H}$ NMR data of compound, \mathbf{V} in CDCl_{3}.

SUPPORTING INFORMATION

Figure S10. ${ }^{13} \mathrm{C}$ NMR data of compound, \mathbf{V} in CDCl_{3}.

Figure S11. ESI (HR-MS) spectrum of VI.

SUPPORTING INFORMATION

Figure S12. ESI (HR-MS) spectrum of VII.

Figure S13. HPLC purity analysis for first cycle of VI.

SUPPORTING INFORMATION

Figure S14. HPLC purity analysis for second cycle of VI.

Figure S15. HPLC purity analysis for third cycle of VI.

SUPPORTING INFORMATION

Figure S16. HPLC purity analysis for fourth cycle of VI.

Figure S17. HPLC purity analysis for fifth cycle of VI.

SUPPORTING INFORMATION

Table S1. Average peak purity and retention time of VI after five successive HPLC analysis with a flow $0.3 \mathrm{~mL} / \mathrm{min}$ started at 70:30:0.01 (acetonitrile:water:TFA) to 100:0:0.01 and a total run time of 30 min .

Entry No.	Peak Purity (\%)	Retention Time (min.)
1.	98.1	14.76
2.	98.0	15.08
3.	98.3	14.70
4.	98.4	14.75
5.	98.3	14.95
Average	$\mathbf{9 8 . 2}$	$\mathbf{1 4 . 8 4}$

Figure S18. HPLC purity analysis of compound VII.

SUPPORTING INFORMATION

Figure S19. HPLC analysis for compound VI using four different non-polar solvent systems (n-hexane:EtoH:DEA (50:50:0.1), n-hexane:IPA:DEA (50:50:0.1), nhexane:EtOH:MeOH:DEA (50:25:25:0.1), and EtOH:DEA (100:0.1)) at flow rate of 1.0 $\mathrm{mL} / \mathrm{min}$ for a run time of 15 min with six chiral columns which are: (A) Amylose-C-Neo; (B) Amylose-SA; (C) Cellulose-SB; (D) Cellulose-SC; (E) Cellulose-SJ; and (F) Cellulose-SZ.

SUPPORTING INFORMATION

Column Name	ACN:DEA $(100 / 0.1)$ at $1.0 \mathrm{~mL} / \mathrm{min}$	Methanol:DEA $(100 / 0.1)$ at $1.0 \mathrm{~mL} / \mathrm{min}$
(A) $\frac{\text { Amylose-C- }}{\underline{\text { Neo }}}$	Data File:21022021_02_002	Data File:21022021 02020
(B) Cellulose-C	 Data File:21022021_02_005	
$\begin{gathered} \text { (C) } \\ \text { Amylose-SA } \end{gathered}$		
(D) Cellulose-SC		
(E) Cellulose-SJ		Data File: 18022021_02_032
(F) Cellulose-SZ		

Figure S20. HPLC analysis of compound VI using two different polar solvent systems (ACN:DEA (100:0.1) and Methanol:DEA (100:0.1) at flow rate of $1.0 \mathrm{~mL} / \mathrm{min}$ for a run time of 15 min with six chiral columns which are: (A) Amylose-C-Neo; (B) Amylose-SA; (C) Cellulose-SB; (D) Cellulose-SC; (E) Cellulose-SJ; and (F) Cellulose-SZ.

SUPPORTING INFORMATION

Figure S21. HPLC analysis of compound VII using two different polar solvent systems (ACN:DEA (100:0.1) and Methanol:DEA (100:0.1) at flow rate of $1.0 \mathrm{~mL} / \mathrm{min}$ for a run time of 15 min with six chiral columns which are: (A) Amylose-C-Neo; (B) Amylose-SA; (C) Cellulose-SB; (D) Cellulose-SC; (E) Cellulose-SJ; and (F) Cellulose-SZ.

SUPPORTING INFORMATION

Table S2. The molecular docking results for compound VI, with all three targeted proteins.

Entry	Protein	Docking Score in	XP Gscore in	MMGBSA ($\mathbf{\Delta G}$)
No.		Kcal/mol	Kcal/mol	in Kcal/mol
1.	Helicase	-2.381	-3.065	-38.15
2.	Protease	-6.039	-6.857	-44.53
3.	Methyltransferase	-4.027	-4.711	-49.67

Figure S22. Schematic representation of 2D interaction maps against protease enzyme of ZIKV infection. A) compound VI (identified potent analog). Root mean square deviations (RMSD) difference between the proteins of ZIKV infections and bound ligand VI during 100 ns MD simulation. B) compound VI-protease complex; C) compound VI-helicase complex; and D) compound VI-methyltransferase complex. The graph was obtained for the RMSD value of ligand (brown line) from the protein backbone (blue line). The compound VI-protease complex quickly stabilized to a very low energy state (within 25 ns) and was highly stable throughout the simulation.

SUPPORTING INFORMATION

Table S3. Biodistribution of ${ }^{99 \mathrm{~m}} \mathrm{Tc}$-VI in different parts following intravenous injection in Strain-A (20-22g) mice at different time intervals (1h, 2h, 4h, and 24h). The data was compiled for accumulated amount ($\% \mathrm{ID} / \mathrm{g}=\%$ injected dose per gram).

	1 h	2 h		4 h			24 h		
Organ	$\% \mathrm{ID} / \mathrm{g}$	Std. Dev.							
Blood	0.015766	0.001183	0.041195	0.018306	0.03415	0.015344	0.002116	0.000827	
Heart	0.048525	0.024040	0.042936	0.024344	0.036391	0.027395	0.006355	0.002483	
Lungs	0.070367	0.074480	0.048432	0.034486	0.100061	0.063476	0.012828	0.005013	
Liver	1.239575	0.025000	0.756882	0.019798	0.396096	0.172023	0.131663	0.051451	
Spleen	0.045015	0.001877	0.048843	0.023902	0.045241	0.042199	0.061509	0.024037	
Kidney	1.326025	0.014000	0.783219	0.018000	0.735649	0.023000	0.203914	0.079686	
Stomach	0.026136	0.013340	0.028316	0.019614	0.024178	0.024476	0.005165	0.006521	
Brain	0.094422	0.086989	0.141614	0.128695	0.128198	0.150255	0.011689	0.014757	
Muscle	0.039236	0.001966	0.047576	0.029294	0.03047	0.025978	0.040164	0.015696	
Intestine	0.29434	0.063365	0.243789	0.010000	0.152077	0.015855	0.010414	0.004069	
Bone	0.003382	0.002073	0.025825	0.004256	0.004165	0.001438	0.006311	0.002466	
Lung/Blood	4.4644	-	1.1756	-	2.9300	-	6.0723	-	
Lungs/Muscle	1.7937	-	1.0198	-	3.283	-	3.1942	-	
Brain/Blood	6.012	-	3.44	-	3.76	-	5.844	-	

SUPPORTING INFORMATION

Figure S23. High-resolution mass spectroscopy (HRMS) spectra of Rhodamine b (Rho) conjugated compound (VI) indicated the formation of complex with characteristics mass peak at 832.42670 (expected peak: 832.4408).

Figure S24. Saturation curve obtained from radioligand binding affinity experiment of the hippocampus of rat brain. Non-specific binding was determined with a 100 -fold concentration of Rho-VI complex, where K_{d} of 7.54 nM was obtained for the $5-\mathrm{HT} 1 \mathrm{~A}$ receptor.

Preparation of VI-rhenium (Re) adduct.

Reports are available stating the similar coordination chemistry of Re and ${ }^{99 m} \mathrm{Tc} .{ }^{1}$ Therefore, Re as an analogue of Tc could be used as a useful tool to direct studies toward radioactive ${ }^{99 \mathrm{~m}} \mathrm{Tc}$ adduct. We have adopted the same methodology to establish the structure of radiolabeled VI using $\mathrm{Re}(\mathrm{III})$ chloride, $\left[\mathrm{Re}(\mathrm{III}) \mathrm{Cl}_{3}\right]$. The surrogate Re adduct of ${ }^{99 \mathrm{~m}} \mathrm{Tc}$-VI was prepared. Equimolar concentrations of Re(III) chloride ($4.6 \mathrm{mg} ; 16.05 \mu \mathrm{~mol}$) and $5 \mathrm{mg}(16.05 \mu \mathrm{~mol})$ of the unlabeled compound VI were dissolved in 0.5 M sodium hydroxide (1 mL). The reaction mixture was then heated at $90^{\circ} \mathrm{C}$ for 1 hour under basic conditions ($\sim 14 \mathrm{pH}$). We observed a clear change from blackish-brown to the transparent solution. The crude reaction mixture of Re-VI adduct was characterized from High Resolution Mass Spectroscopy (HRMS) as shown in Figure S25. In the HRMS, the calculated and observed mass values indicated the formation of the plausible 1:1 adduct of Re-VI (Table S4).

SUPPORTING INFORMATION

Figure S25. HRMS spectra of Re-VI adduct.

Table S4. The calculated and observed mass from HRMS spectra of plausible Re-VI adduct.

 Chemical Formula: $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{Cl}_{3} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{ORe}$ m/z: 697.0651 (100.0\%), 699.0622 (95.9\%),	Found: 701.48477

References

1. J. R. Dilworth and S. J. Parrott, Chem. Soc. Rev., 1998, 27, 43-55.
