Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

SUPPORTING INFORMATION

A potent candidate against Zika virus infection: Synthesis, bioactivity, radiolabeling and biodistribution studies

Sumit Kumar^{1,#}, Neha Sharma^{2,#}, Willyenne Dantas³, Jessica Catarine Frutuoso do Nascimento³, Hannah Maus⁴, Ronaldo Nascimento de Oliveira⁵, Unnat Pandit⁶, Agam, P Singh⁷, Tanja Schirmeister⁴, Puja Panwar Hazari⁸, Lindomar Pena³, Poonam^{1,9*}, Brijesh Rathi^{2,9*}

¹Department of Chemistry, Miranda House, University of Delhi, Delhi – 110007 India ²Har Gobind Khorana Centre For Chemical Biology, Department of Chemistry, Hansraj College, University of Delhi, Delhi – 110007 India

³Department of Virology, Aggeu Magalhaes, Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife 50670-420, Pernambuco, Brazil

⁴Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55128

Mainz, Germany

⁵Department of Chemistry, Federal Rural University of Pernambuco, Dois Irm~aos, 52171-900, Recife, Brazil ⁶Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi 110067, India

⁷Infectious Diseases Laboratory, National Institute of Immunology, New Delhi 110067, India

⁸Division of Cyclotron and Radiopharmaceutical Sciences Institute of Nuclear Medicine and Allied Sciences, New Delhi 110054, India

⁹Delhi School of Public Health, Institution of Eminence, University of Delhi, Delhi-110007

#Both the authors contributed equally

*Corresponding Author:

Poonam, M.Phil., Ph.D.

poonam.chemistry@mirandahouse.ac.in

ORCID: 0000-0002-3759-1057

Brijesh Rathi, PhD

brijeshrathi@hrc.du.ac.in

ORCID: 0000-0003-2133-8847

Table of Content:

Entry	Page No.
Figure S1. ¹ H NMR data of compound, VI in CDCl ₃ .	S 3
Figure S2. ¹ H NMR data of compound, VII in CDCl ₃ .	S4
Figure S3. ¹⁹ F NMR data of compound, VI in CDCl ₃ .	S4
Figure S4. ¹⁹ F NMR data of compound, VII in CDCl ₃ .	S5
Figure S5. ¹³ C NMR data of compound, VI in CDCl ₃ .	S5
Figure S6. ¹³ C NMR data of compound, VII in CDCl ₃ .	S6
Figure S7. ¹ H NMR data of compound, IV in CDCl ₃ .	S6
Figure S8. ¹³ C NMR data of compound, IV in CDCl ₃ .	S7
Figure S9. ¹ H NMR data of compound, V in CDCl ₃ .	S7
Figure S10. ¹³ C NMR data of compound, V in CDCl ₃ .	S8
Figure S11. ESI (HR-MS) spectrum of VI.	S8
Figure S12. ESI (HR-MS) spectrum of VII.	S9
Figure S13. HPLC purity analysis for first cycle of VI.	S9
Figure S14. HPLC purity analysis for second cycle of VI.	S10
Figure S15. HPLC purity analysis for third cycle of VI.	S10
Figure S16. HPLC purity analysis for fourth cycle of VI.	S11
Figure S17. HPLC purity analysis for fifth cycle of VI.	S11
Table S1. Average peak purity and retention time of calxinin (4) after five	S12
successive HPLC analysis with a flow 0.3 mL/min started at 70:30:0.01	
(acetonitrile:water:TFA) to 100:0:0.01 and a total run time of 30 min.	
Figure S18. HPLC purity analysis of compound VII.	S12
Figure S19. HPLC analysis for compound VI using four different non-polar	S13
solvent systems (n-hexane:EtOH:DEA (50:50:0.1), n-hexane:IPA:DEA	
(50:50:0.1), n-hexane:EtOH:MeOH:DEA (50:25:25:0.1), and EtOH:DEA	
(100:0.1) at flow rate of 1.0 mL/min for a run time of 15 min with six chiral	
columns which are: (A) Amylose-C-Neo; (B) Amylose-SA; (C) Cellulose-SB;	
(D) Cellulose-SC; (E) Cellulose-SJ; and (F) Cellulose-SZ.	
Figure S20. HPLC analysis of compound VI using two different polar solvent	S14
systems (ACN:DEA (100:0.1) and Methanol:DEA (100:0.1)) at flow rate of 1.0	
mL/min for a run time of 15 min with six chiral columns which are: (A)	
Amylose-C-Neo; (B) Amylose-SA; (C) Cellulose-SB; (D) Cellulose-SC; (E)	
Cellulose-SJ; and (F) Cellulose-SZ.	
Figure S21. HPLC analysis of compound VII using two different polar solvent	S15
systems (ACN:DEA (100:0.1) and Methanol:DEA (100:0.1)) at flow rate of 1.0	
mL/min for a run time of 15 min with six chiral columns which are: (A)	
Amylose-C-Neo; (B) Amylose-SA; (C) Cellulose-SB; (D) Cellulose-SC; (E)	
Cellulose-SJ; and (F) Cellulose-SZ.	
Table S2. The molecular docking results for compound VI, with all three	S16
targeted proteins.	
Figure S22. Schematic representation of 2D interaction maps against protease	S16
enzyme of ZIKV infection. A) compound VI (identified potent analog). Root	
mean square deviations (RMSD) difference between the proteins of ZIKV	
infections and bound ligand VI during 100 ns MD simulation. B) compound	
VI-protease complex; \overline{C}) compound \overline{VI} -helicase complex; and D) compound	
VI-methyltransferase complex. The graph was obtained for the RMSD value of	
ligand (brown line) from the protein backbone (blue line). The compound VI-	

protease complex quickly stabilized to a very low energy state (within 25 ns)			
and was highly stable throughout the simulation.			
Table S3. Biodistribution of ^{99m} Tc-VI in different parts following intravenous	S17		
injection in Strain-A (20-22g) mice at different time intervals (1h, 2h, 4h, and			
24h). The data was compiled for accumulated amount (% $ID/g = \%$ injected			
dose per gram).			
Figure S24. High resolution mass spectroscopy (HRMS) spectra of Rhodamine	S18		
b (Rho) conjugated compound (VI).			
Figure S24. Saturation curve obtained from radioligand binding affinity	S19		
experiment of the hippocampus of rat brain. Non-specific binding was			
determined with a 100-fold concentration of Rho-VI complex, where K _d of 7.54			
nM was obtained for the 5-HT1A receptor.			
Figure S25. HRMS spectra of Re-VI adduct.	S20		
Table S4. The calculated and observed mass from HRMS spectra of plausible			
Re-VI adduct.			

Figure S1. ¹H NMR data of compound, VI in CDCl₃.

Figure S2. ¹H NMR data of compound, VII in CDCl₃.

Figure S3. ¹⁹F NMR data of compound, VI in CDCl₃.

Figure S4. ¹⁹F NMR data of compound, VII in CDCl₃.

Figure S5. ¹³C NMR data of compound, VI in CDCl₃.

Figure S6. ¹³C NMR data of compound, VII in CDCl₃.

Figure S7. ¹H NMR data of compound, IV in CDCl₃.

Figure S8. ¹³C NMR data of compound, IV in CDCl₃.

Figure S9. ¹H NMR data of compound, V in CDCl₃.

Figure S11. ESI (HR-MS) spectrum of VI.

Figure S12. ESI (HR-MS) spectrum of VII.

Figure S13. HPLC purity analysis for first cycle of VI.

Figure S14. HPLC purity analysis for second cycle of VI.

Figure S15. HPLC purity analysis for third cycle of VI.

Figure S16. HPLC purity analysis for fourth cycle of VI.

Figure S17. HPLC purity analysis for fifth cycle of VI.

Table S1. Average peak purity and retention time of **VI** after five successive HPLC analysis with a flow 0.3 mL/min started at 70:30:0.01 (acetonitrile:water:TFA) to 100:0:0.01 and a total run time of 30 min.

Entry No.	Peak Purity (%)	Retention Time (min.)
1.	98.1	14.76
2.	98.0	15.08
3.	98.3	14.70
4.	98.4	14.75
5.	98.3	14.95
Average	98.2	14.84

Figure S18. HPLC purity analysis of compound VII.

Figure S19. HPLC analysis for compound **VI** using four different non-polar solvent systems (n-hexane:EtoH:DEA (50:50:0.1), n-hexane:IPA:DEA (50:50:0.1), n-hexane:EtOH:MeOH:DEA (50:25:25:0.1), and EtOH:DEA (100:0.1)) at flow rate of 1.0 mL/min for a run time of 15 min with six chiral columns which are: (A) Amylose-C-Neo; (B) Amylose-SA; (C) Cellulose-SB; (D) Cellulose-SC; (E) Cellulose-SJ; and (F) Cellulose-SZ.

Figure S20. HPLC analysis of compound **VI** using two different polar solvent systems (ACN:DEA (100:0.1) and Methanol:DEA (100:0.1) at flow rate of 1.0 mL/min for a run time of 15 min with six chiral columns which are: (A) Amylose-C-Neo; (B) Amylose-SA; (C) Cellulose-SB; (D) Cellulose-SC; (E) Cellulose-SJ; and (F) Cellulose-SZ.

Figure S21. HPLC analysis of compound **VII** using two different polar solvent systems (ACN:DEA (100:0.1) and Methanol:DEA (100:0.1) at flow rate of 1.0 mL/min for a run time of 15 min with six chiral columns which are: (A) Amylose-C-Neo; (B) Amylose-SA; (C) Cellulose-SB; (D) Cellulose-SC; (E) Cellulose-SJ; and (F) Cellulose-SZ.

Entry	Protein	Docking Score in	XP Gscore in	MMGBSA (ΔG)
No.		Kcal/mol	Kcal/mol	in Kcal/mol
1.	Helicase	-2.381	-3.065	-38.15
2.	Protease	-6.039	-6.857	-44.53
3.	Methyltransferase	-4.027	-4.711	-49.67

Table S2. The molecular docking results for compound VI, with all three targeted proteins.

Figure S22. Schematic representation of 2D interaction maps against protease enzyme of ZIKV infection. A) compound **VI** (identified potent analog). Root mean square deviations (RMSD) difference between the proteins of ZIKV infections and bound ligand **VI** during 100 ns MD simulation. B) compound **VI**-protease complex; C) compound **VI**-helicase complex; and D) compound **VI**-methyltransferase complex. The graph was obtained for the RMSD value of ligand (brown line) from the protein backbone (blue line). The compound **VI**-protease complex quickly stabilized to a very low energy state (within 25 ns) and was highly stable throughout the simulation.

Table S3. Biodistribution of 99m Tc-VI in different parts following intravenous injection in Strain-A (20-22g) mice at different time intervals (1h, 2h, 4h, and 24h). The data was compiled for accumulated amount (% ID/g = % injected dose per gram).

	1h		2h		4h		24h	
Organ	%ID/g	Std. Dev.						
Blood	0.015766	0.001183	0.041195	0.018306	0.03415	0.015344	0.002116	0.000827
Heart	0.048525	0.024040	0.042936	0.024344	0.036391	0.027395	0.006355	0.002483
Lungs	0.070367	0.074480	0.048432	0.034486	0.100061	0.063476	0.012828	0.005013
Liver	1.239575	0.025000	0.756882	0.019798	0.396096	0.172023	0.131663	0.051451
Spleen	0.045015	0.001877	0.048843	0.023902	0.045241	0.042199	0.061509	0.024037
Kidney	1.326025	0.014000	0.783219	0.018000	0.735649	0.023000	0.203914	0.079686
Stomach	0.026136	0.013340	0.028316	0.019614	0.024178	0.024476	0.005165	0.006521
Brain	0.094422	0.086989	0.141614	0.128695	0.128198	0.150255	0.011689	0.014757
Muscle	0.039236	0.001966	0.047576	0.029294	0.03047	0.025978	0.040164	0.015696
Intestine	0.29434	0.063365	0.243789	0.010000	0.152077	0.015855	0.010414	0.004069
Bone	0.003382	0.002073	0.025825	0.004256	0.004165	0.001438	0.006311	0.002466
Lung/Blood	4.4644	-	1.1756	-	2.9300	-	6.0723	-
Lungs/Muscle	1.7937	-	1.0198	-	3.283	-	3.1942	-
Brain/Blood	6.012	-	3.44	-	3.76	-	5.844	-

Figure S23. High-resolution mass spectroscopy (HRMS) spectra of Rhodamine b (Rho) conjugated compound (VI) indicated the formation of complex with characteristics mass peak at 832.42670 (expected peak: 832.4408).

Figure S24. Saturation curve obtained from radioligand binding affinity experiment of the hippocampus of rat brain. Non-specific binding was determined with a 100-fold concentration of Rho-VI complex, where K_d of 7.54 nM was obtained for the 5-HT1A receptor.

Preparation of VI-rhenium (Re) adduct.

Reports are available stating the similar coordination chemistry of Re and ^{99m}Tc.¹ Therefore, Re as an analogue of Tc could be used as a useful tool to direct studies toward radioactive ^{99m}Tc adduct. We have adopted the same methodology to establish the structure of radiolabeled **VI** using Re(III)chloride, [Re(III)Cl₃]. The surrogate Re adduct of ^{99m}Tc-**VI** was prepared. Equimolar concentrations of Re(III) chloride (4.6 mg; 16.05 µmol) and 5 mg (16.05 µmol) of the unlabeled compound **VI** were dissolved in 0.5 M sodium hydroxide (1 mL). The reaction mixture was then heated at 90 °C for 1 hour under basic conditions (~14 pH). We observed a clear change from blackish-brown to the transparent solution. The crude reaction mixture of Re–**VI** adduct was characterized from High Resolution Mass Spectroscopy (HRMS) as shown in Figure S25. In the HRMS, the calculated and observed mass values indicated the formation of the plausible 1:1 adduct of Re–**VI** (Table S4).

Figure S25. HRMS spectra of Re-VI adduct.

Table S4. The calculated and observed mass from HRMS spectra of plausible Re-VI adduct.

References

1. J. R. Dilworth and S. J. Parrott, Chem. Soc. Rev., 1998, 27, 43-55.