Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022 This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting information

Performance Enhancement through a Positional Isomerism

Modification Strategy

Yong Hu,^a Zu-Jia Lu,^a Wen-Shuai Dong,^a Jian-Guo Zhang,^{*a} Valery P. Sinditskii^b

^a State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China.

^b D Mendeleev University of Chemical Technology of Russia, 9 Moskva Sq., Moscow, Russia

Computational Details	2
X-ray crystallographic Data	2
NMR spectra	9
DSC curves	12
References	13

Computational Details

Computations were performed by using the Gaussian09 suite of programs.¹ The geometric optimization and frequency analyses of the structures were calculated using B3LYP/6-31+G** level and single energy points were calculated at the MP2/6-311++G** level.²⁴ The gas phase heats of formation (HOF) for compounds **NPT** and **PTT** were calculated through designed isodesmic reactions (**Scheme S2**).

Scheme S1 Isodesmic reactions for calculating heats of formation for NPT and PTT

The solid-state enthalpy of formation for neutral compound can be estimated by subtracting the heat of sublimation from gasphase heat of formation.⁵ The heat of sublimation can be estimated with Trouton's rule according to supplementary equation 1: $\Delta H_{sub} = \frac{188}{J \cdot mol^{-1}K^{-1}} \times T \qquad (supplementary equation 1)$

where T represents either the melting point or the decomposition temperature when no melting occurs prior to decomposition.

X-ray crystallographic Data

Compound	2∙СН₃ОН	NPT·DMF	TPTO·NHMe ₂ ·H ₂ O	PTT·Mg _{0.5} ·9H ₂ O
formula	$C_7H_7N_7O_3$	$C_9H_{11}N_{11}O_3$	$C_{16}H_{23}N_{18}O_{10}\\$	$C_6H_{17}Mg_{0.5}N_{10}O_{10}$
Temperature [K]	298(2)	298(2)	298(2)	113.90(14)
Crystal system	orthorhombic	monoclinic	monoclinic	monoclinic
Space group	Pnma(62)	<i>P</i> 2 ₁ /c	$P2_1/m$	<i>P</i> 2 ₁ /c
A [Å]	12.8331(13)	6.9809(7)	9.1828(9)	9.323(2)
B [Å]	6.4142(7)	6.8761(7)	6.5037(8)	26.924(6)
C [Å]	12.1223(14)	28.243(3)	11.7685(13)	6.725(4)
α [°]	90.00	90.00	90.00	90.00
β[°]	90.00	92.736(2)	95.504(3)	108.46(4)
γ [°]	90.00	90.00	90.00	90.00
<i>V</i> [Å ³]	997.84(19)	1354.2(2)	699.60(13)	1601.2(11)
Z	4	4	1	4
$\rho \left[\text{g-cm}^{-3} \right]$	1.57884	1.576	1.492	1.665
F(000)	488.0	664.0	326.0	836
Crystal size [mm ³]	0.36 imes 0.20 imes 0.16	0.36 imes 0.30 imes 0.08	0.32 imes 0.27 imes 0.05	0.29 imes 0.12 imes 0.08

Table S1. Crystal parameters for compounds 2, NPT, TPTO and PTT

2 0 [°]	4.62 to 50.04	5.78 to 50.02	4.46 to 50.04	6.06 to 49.98
In day, non and	$-15 \le h \le 15, -5 \le k$	-6 \leq h \leq 8, -6 \leq k \leq	-10 \leq h \leq 8, -7 \leq k \leq	-11 \leq h \leq 7, -32 \leq k \leq
index ranges	\leq 7, -14 \leq 1 \leq 14	8, $-33 \le 1 \le 33$	7, $-14 \le 1 \le 12$	29, $-5 \le 1 \le 7$
Reflections collected	4706	6274	3498	6285
Independent reflections	962	2371	1335	2796
Goodness-of-fit on F ²	1.081	1.098	1.081	1.062
Final R indexes [I>=2σ	$R_1 = 0.0528, wR_2 =$	$R_1 = 0.0861, wR_2 =$	$R_1 = 0.0629, wR_2 =$	$R_1 = 0.0973, wR_2 =$
(1)]	0.1412	0.2121	0.1302	0.2214
	$R_1 = 0.0722, wR_2 =$	$R_1 = 0.1203, wR_2 =$	$R_1 = 0.1194, wR_2 =$	$R_1 = 0.1533, wR_2 =$
Final K indexes [all data]	0.1560	0.2279	0.1478	0.2571
CCDC	2168315	2168314	2168316	2133016

Crystal structure plots and tables

Figure S1 The crystal structure of 2·MeOH

Table S1 Bond L	engths for 2·MeOH
-----------------	-------------------

Atom 1	Atom 2	Length/Å	Atom 1	Atom 2	Length/Å
N1	C1	1.320(5)	N6	C6	1.136(5)
N1	C4	1.329(4)	N7	01	1.203(4)
N2	C3	1.300(4)	N7	O2	1.206(4)
N3	C3	1.353(4)	N7	C5	1.444(5)
N3	N4	1.365(3)	O3	C7	1.393(6)
N3	C4	1.373(4)	C1	C2	1.380(5)
N4	C5	1.300(4)	C2	C6	1.408(5)
N5	C4	1.320(5)	C2	C3	1.411(4)

Table S2 Bond Angles for 2·MeOH

Atom 1	Atom 2	Atom 3	Angle/°	Atom 1	Atom 2	Atom 3	Angle/°
C1	N1	C4	114.4(3)	C6	C2	C3	119.4(3)
C3	N3	N4	124.5(2)	N2	C3	N3	119.8(3)
C3	N3	C4	124.8(3)	N2	C3	C2	128.1(3)
N4	N3	C4	110.6(3)	N3	C3	C2	112.1(3)
C5	N4	N3	99.4(2)	N5	C4	N1	128.5(3)
C4	N5	C5	101.8(3)	N5	C4	N3	108.7(3)

01	N7	C5	117.8(3)	N4	C5	N5	119.5(3)		
N1	C1	C2	125.7(3)	N5	C5	N7	120.9(3)		
C1	C2	C6	120.4(3)	N6	C6	C2	179.8(3)		
Table S3 Torsion Angles for 2·MeOH									

T 11	63	т :	A 1	c	2 34	011
Table	33	Torsion	Angles	IOr	2.Me	UН

Atom 1	Atom 2	Atom 3	Atom 4	Angle/°	Atom 1	Atom 2	Atom 3	Atom 4	Angle/°
C3	N3	N4	C5	180	C1	N1	C4	N3	0
C4	N3	N4	C5	0	C3	N3	C4	N5	180
C4	N1	C1	C2	0.000(1)	N4	N3	C4	N5	0
N1	C1	C2	C6	180	C3	N3	C4	N1	0
N1	C1	C2	C3	0.000(1)	N4	N3	C4	N1	180
N4	N3	C3	N2	0	N3	N4	C5	N5	0
C4	N3	C3	N2	180	N3	N4	C5	N7	180
N4	N3	C3	C2	180	C4	N5	C5	N4	0
C4	N3	C3	C2	0	C4	N5	C5	N7	180
C1	C2	C3	N2	180	O1	N7	C5	N4	0

Figure S2 The crystal structure of NPT·DMF

Atom 1	Atom 2	Length/Å	Atom 1	Atom 2	Length/Å
N1	C1	1.317(5)	N7	C6	1.311(6)
N1	C4	1.324(5)	N7	N8	1.331(5)
N2	N3	1.348(4)	N8	N9	1.283(5)
N2	C3	1.354(5)	N9	N10	1.316(5)
N2	C4	1.364(6)	N10	C6	1.315(5)
N3	C5	1.312(5)	N11	C7	1.277(6)
N4	C5	1.307(5)	N11	C8	1.449(6)
N4	C4	1.340(5)	N11	С9	1.453(6)
N5	C3	1.318(5)	O3	C7	1.243(6)
N6	O2	1.188(5)	C1	C2	1.386(6)
N6	01	1.199(5)	C2	C3	1.395(5)
N6	C5	1.461(5)	C2	C6	1.458(5)

Table S4 Bond Lengths for	NPT·DMF
---------------------------	---------

Table S5 Bond Angles for NPT·DMF										
Atom 1	Atom 2	Atom 3	Angle/°	Atom 1	Atom 2	Atom 3	Angle/°			
C1	N1	C4	114.4(4)	C1	C2	C3	119.2(4)			
N3	N2	C3	125.6(3)	C1	C2	C6	120.1(4)			

N3	N2	C4	110.6(3)	C3	C2	C6	120.7(4)	
C3	N2	C4	123.8(3)	N5	C3	N2	118.1(3)	
C5	N3	N2	99.2(3)	N5	C3	C2	128.3(4)	
C5	N4	C4	100.6(4)	N2	C3	C2	113.6(4)	
02	N6	01	124.4(4)	N1	C4	N4	127.8(4)	
02	N6	C5	117.8(4)	N1	C4	N2	123.1(4)	
01	N6	C5	117.9(4)	N4	C4	N2	109.0(3)	
C6	N7	N8	106.8(3)	N4	C5	N3	120.6(4)	
N9	N8	N7	104.8(4)	N4	C5	N6	121.7(4)	
N8	N9	N10	114.8(3)	N3	C5	N6	117.7(4)	
C6	N10	N9	101.5(4)	N7	C6	N10	112.1(4)	
C7	N11	C8	120.7(4)	N7	C6	C2	123.7(4)	
C7	N11	С9	122.6(4)	N10	C6	C2	124.2(4)	
C8	N11	С9	116.7(4)	03	C7	N11	124.8(5)	
N1	C1	C2	125.8(4)					

Table S6 Torsion Angles for NPT·DMF

Atom 1	Atom 2	Atom 3	Atom 4	Angle/°	Atom 1	Atom 2	Atom 3	Atom 4	Angle/°
C3	N2	N3	C5	-177.9(4)	C3	N2	C4	N1	-2.4(6)
C4	N2	N3	C5	0.5(4)	N3	N2	C4	N4	0.2(4)
C6	N7	N8	N9	-0.1(5)	C3	N2	C4	N4	178.7(3)
N7	N8	N9	N10	0.1(5)	C4	N4	C5	N3	1.4(5)
N8	N9	N10	C6	-0.1(5)	C4	N4	C5	N6	178.4(3)
C4	N1	C1	C2	0.3(6)	N2	N3	C5	N4	-1.2(5)
N1	C1	C2	C3	-0.6(7)	N2	N3	C5	N6	-178.4(3)
N1	C1	C2	C6	179.6(4)	02	N6	C5	N4	1.8(6)
N3	N2	C3	N5	1.0(6)	01	N6	C5	N4	-178.9(4)
C4	N2	C3	N5	-177.2(4)	02	N6	C5	N3	178.9(4)
N3	N2	C3	C2	-179.9(3)	01	N6	C5	N3	-1.7(6)
C4	N2	C3	C2	1.9(5)	N8	N7	C6	N10	0.1(5)
C1	C2	C3	N5	178.5(4)	N8	N7	C6	C2	179.8(4)
C6	C2	C3	N5	-1.7(6)	N9	N10	C6	N7	0.0(5)
C1	C2	C3	N2	-0.5(5)	N9	N10	C6	C2	-179.8(4)
C6	C2	C3	N2	179.3(3)	C1	C2	C6	N7	177.5(4)
C1	N1	C4	N4	179.9(4)	C3	C2	C6	N7	-2.3(6)
C1	N1	C4	N2	1.1(6)	C1	C2	C6	N10	-2.7(6)
C5	N4	C4	N1	-179.7(4)	C3	C2	C6	N10	177.5(4)
C5	N4	C4	N2	-0.9(4)	C8	N11	C7	03	1.6(7)
N3	N2	C4	N1	179.2(4)	С9	N11	C7	03	-179.5(5)

Figure S3 The crystal structure of $TPTO{\cdot}NHMe_{2}{\cdot}H_{2}O$

Table S7 Bond Lengths for TPTO·NHMe2·H2	0
---	---

Atom 1	Atom 2	Length/Å	Atom 1	Atom 2	Length/Å
O1	N2	1.259(4)	N5	C4	1.354(4)
02	C1	1.260(4)	N6	C5	1.312(4)
O3	N8	1.216(4)	N6	N7	1.383(4)
N1	C6	1.345(4)	N7	C6	1.396(4)
N1	N2	1.372(4)	N8	C5	1.489(5)
N2	N3	1.344(4)	C1	C2	1.452(5)
N3	C1	1.390(5)	C2	C6	1.403(5)
N4	C3	1.336(4)	C2	C3	1.413(5)
N5	C5	1.350(5)	N9	C7	1.473(4)

Table S8 Bond Angles for $TPTO{\cdot}NHMe_2{\cdot}H_2O$

Atom 1	Atom 2	Atom 3	Angle/°	Atom 1	Atom 2	Atom 3	Angle/°
C6	N1	N2	111.5(3)	N3	C1	C2	118.5(3)
01	N2	N3	116.7(3)	C6	C2	C3	120.0(3)
01	N2	N1	115.0(3)	C6	C2	C1	114.8(3)
N3	N2	N1	128.3(3)	C3	C2	C1	125.2(4)
N2	N3	C1	118.4(3)	N4	C3	C2	125.0(4)
C3	N4	C4	114.7(3)	N5	C4	N4	127.8(4)
C5	N5	C4	101.6(3)	N5	C4	N7	108.3(3)
C5	N6	N7	99.8(3)	N4	C4	N7	123.9(3)
C4	N7	N6	110.7(3)	N6	C5	N5	119.5(3)
C4	N7	C6	122.3(3)	N6	C5	N8	119.5(4)
N6	N7	C6	127.0(3)	N5	C5	N8	121.0(3)
03	N8	04	125.0(4)	N1	C6	N7	117.4(3)
03	N8	C5	118.1(3)	N1	C6	C2	128.4(3)
04	N8	C5	117.0(4)	N7	C6	C2	114.2(3)
02	C1	N3	117.9(4)	C71	N9	C7	111.6(4)

Table S9 Torsion Angles for $TPTO{\cdot}NHMe_{2}{\cdot}H_{2}O$

Atom 1	Atom 2	Atom 3	Atom 4	Angle/°	Atom 1	Atom 2	Atom 3	Atom 4	Angle/°
C6	N1	N2	01	180	N6	N7	C4	N4	180
C6	N1	N2	N3	0	C6	N7	C4	N4	0
01	N2	N3	C1	180	N7	N6	C5	N5	0

N1	N2	N3	C1	0	N7	N6	C5	N8	180
C5	N6	N7	C4	0	C4	N5	C5	N6	0
C5	N6	N7	C6	180	C4	N5	C5	N8	180
N2	N3	C1	02	180	03	N8	C5	N6	0
N2	N3	C1	C2	0	04	N8	C5	N6	180
02	C1	C2	C6	180	03	N8	C5	N5	180
N3	C1	C2	C6	0	04	N8	C5	N5	0
02	C1	C2	C3	0	N2	N1	C6	N7	180
N3	C1	C2	C3	180	N2	N1	C6	C2	0
C4	N4	C3	C2	0	C4	N7	C6	N1	180
C6	C2	C3	N4	0	N6	N7	C6	N1	0
C1	C2	C3	N4	180	C4	N7	C6	C2	0
C5	N5	C4	N4	180	N6	N7	C6	C2	180
C5	N5	C4	N7	0	C3	C2	C6	N1	180
C3	N4	C4	N5	180	C1	C2	C6	N1	0
C3	N4	C4	N7	0	C3	C2	C6	N7	0
N6	N7	C4	N5	0	C1	C2	C6	N7	180
C6	N7	C4	N5	180					

_

Figure S4 The asymmetric structure of TPTO·NHMe2·H2O

80.5 2

Atom 1	Atom 2	Length/Å	Atom 1	Atom 2	Length/Å
Mgl	O6	2.127(5)	N3	N4	1.341(7)
Mgl	04	2.156(5)	N10	02	1.242(7)
Mgl	05	2.055(5)	N10	C5	1.393(8)
N9	C3	1.311(8)	N1	C1	1.350(8)
N7	N8	1.376(7)	N4	C1	1.336(8)
N7	C3	1.331(8)	N5	C2	1.334(8)
N7	C4	1.404(7)	C2	C3	1.444(9)
01	C6	1.274(7)	C2	C1	1.463(8)
N8	C6	1.368(8)	C4	C5	1.398(8)
N6	N5	1.345(7)	C5	C6	1.445(9)
N6	C4	1.327(8)			

Table S11 Bond Angles for $PTT{\cdot}Mg_{0.5}{\cdot}9H_2O$

Atom 1	Atom 2	Atom 3	Angle/°	Atom 1	Atom 2	Atom 3	Angle/°
O6	Mg1	04	91.47(17)	C1	N4	N3	104.2(5)
N8	N7	C4	112.9(4)	C3	C2	C1	120.5(5)
C3	N7	N8	124.8(5)	N9	C3	N7	121.4(6)
C3	N7	C4	122.3(5)	N7	C3	C2	113.9(5)
C6	N8	N7	106.0(5)	N6	C4	N7	122.0(5)
C4	N6	N5	117.4(5)	N6	C4	C5	133.5(5)
N2	N3	N4	109.8(5)	C5	C4	N7	104.4(5)
03	N10	02	122.2(5)	N1	C1	C2	124.4(5)
03	N10	C5	118.1(5)	N4	C1	N1	112.3(5)
01	C6	N8	122.5(6)	N4	C1	C2	123.3(5)
01	C6	C5	128.6(6)	N10	C5	C4	125.6(6)
N8	C6	C5	108.9(5)	N10	C5	C6	126.6(6)
C4	C5	C6	107.8(5)				

Table S12 Torsion Angles for PTT·Mg_{0.5}·9H₂O

Atom 1	Atom 2	Atom 3	Atom 4	Angle/°	Atom 1	Atom 2	Atom 3	Atom 4	Angle/°
N7	N8	C6	01	-178.9(6)	C4	N7	N8	C6	0.4(7)
N7	N8	C6	C5	0.0(7)	C4	N7	C3	N9	-178.8(6)
N7	C4	C5	N10	-178.9(6)	C4	N7	C3	C2	0.8(8)
N7	C4	C5	C6	0.6(7)	C4	N6	N5	C2	-0.8(9)
N8	N7	C3	N9	0.6(9)	C4	C5	C6	01	178.4(7)
N8	N7	C3	C2	-179.8(5)	C4	C5	C6	N8	-0.4(7)
N8	N7	C4	N6	179.2(6)	02	N10	C5	C4	-178.0(6)
N8	N7	C4	C5	-0.6(7)	02	N10	C5	C6	2.6(10)
N6	N5	C2	C3	0.3(9)	C1	N1	N2	N3	-1.0(7)
N6	N5	C2	C1	179.6(5)	C1	C2	C3	N9	0.0(10)
N6	C4	C5	N10	1.3(12)	C1	C2	C3	N7	-179.6(6)
N6	C4	C5	C6	-179.2(7)	N5	C2	C3	N9	179.3(6)
O3	N10	C5	C4	0.8(10)	N5	C2	C3	N7	-0.3(9)
O3	N10	C5	C6	-178.6(6)	N5	C2	C1	N1	3.3(10)
N3	N4	C1	N1	-0.6(7)	N5	C2	C1	N4	-176.9(6)
N3	N4	C1	C2	179.5(6)	N2	N3	N4	C1	0.0(7)
N10	C5	C6	01	-2.1(11)	N2	N1	C1	N4	1.0(7)
N10	C5	C6	N8	179.1(6)	N2	N1	C1	C2	-179.2(6)
N4	N3	N2	N1	0.7(8)	C3	N7	N8	C6	-179.1(6)
N5	N6	C4	N7	1.2(9)	C3	N7	C4	N6	-1.3(9)

NMR spectra

Figure S5 ¹³C NMR spectra in DMSO- d_6 for compound 2.

Figure S6 ¹H NMR spectra in DMSO- d_6 for compound NPT

Figure S7 ¹³C NMR spectra in DMSO- d_6 for compound NPT.

Figure S8 ¹³C NMR spectra in DMSO-*d*₆ for compound TPTO.

Figure S9 ¹³C NMR spectra in DMSO- d_6 for compound 4.

Figure S10 ¹³C NMR spectra in DMSO-*d*₆ for compound PTT.

Figure S11 13 C NMR spectra in DMSO- d_6 for nitration compound obtained from compound 2.

Figure S12 DSC curve of NPT measured at a heating rate of 5 °C·min⁻¹ (exo up).

Figure S13 DSC curve of PTT measured at a heating rate of 5 °C·min⁻¹ (exo up).

References

 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G.Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D.Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B.Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Laham, C. Y. Peng, A.Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle and J. A. Pople, Gaussian 09, revision A. 01; Gaussian, Inc.: Wallingford, CT, 2009.

2 (a) A. D. Becke, J. Chem. Phys., 1993, **98**, 5648–5652; (b) P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem., 1994, **98**, 11623-11627.

3 P. C. Hariharan and J. A. Pople, Theor. Chim. Acta., 1973, 28, 213-222.

4 J. W. Ochterski, G. A. Petersson, J. A. Montgomery, J. Chem. Phys., 1996, 104, 2598-2619.

5 (a) F. Trouton and Philos. Mag. 1884, 18, 54-57; (b) M. S. Westwell, M. S. Searle, D. J. Wales and D. H. Williams, J. Am. Chem. Soc., 1995, 117, 5013-5015.