Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Selective deposition of cocatalyst NiS on g-C₃N₄/ZnIn₂S₄ heterojunction for exceptional photocatalytic H₂ evolution

Yuzhou Xia, ^{a, b} Yunfeng He, ^{a, b} Xiyao Liu, ^{a, b} Renkun Huang, ^{a, b} Ruowen Liang, ^{a, b}

Feng Chen^{a, b} and Guiyang Yan^{*a, b}

a: Fujian Province University Key Laboratory of Green Energy and Environment

Catalysis, Ningde Normal University, Ningde, Fujian, 352100, P. R. China

b: Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Ningde Normal University, Ningde, Fujian, 352100, P. R. China

*Corresponding author: Dr. Ruowen Liang (rwliang@ndnu.edu.cn); Prof. Guiyang Yan (ygyfjnu@163.com)

Figure. S1. TEM of g-C₃N₄.

Figure S2. TEM of NiS-g-C₃N₄/ZnIn₂S₄.

Figure S3. UV-vis DRS of as-prepared products.

Figure S4. UPS spectra of ZnIn₂S₄ (a) and g-C₃N₄ (b).

Photocatalyst	Cocatalyst	Activity (µmol g ⁻¹ h ⁻¹)	Reference
CCN	-	758.8	[1]
Cu_3P/g - C_3N_4	-	808	[2]
$WO_3/g-C_3N_4$	-	982	[3]
MoS_2/g - C_3N_4	-	1155	[4]
$Ba_5Nb_4O_{15}/g\text{-}C_3N_4$	Pt	2673	[5]
GCN-Pt ₃ Co	-	2910	[6]
g-C ₃ N ₄ -AQ-MoO ₃	-	2999	[7]
CdS/PdAg/g-C ₃ N ₄	-	3098.3	[8]
ZnIn ₂ S ₄ @PCN-224	Pt	5675	[9]
g-C ₃ N ₄ /ZnIn ₂ S ₄ /NiS	-	4077.5	This work

Table S1. Comparison of the photocatalytic H_2 generation achieved by the g-C₃N₄-based photocatalysts.

Table S2. Lifetimes of time-resolved fluorescence decays on $g-C_3N_4$, $ZnIn_2S_4$, $g-C_3N_4/ZnIn_2S_4$ and $g-C_3N_4/ZnIn_2S_4/NiS$.

Sample	$\tau_1(ns)$	a ₁ (%)	$\tau_2(ns)$	a ₂ (%)	$\tau_3(ns)$	a ₃ (%)	$\tau_{ave}(ns)$
g-C ₃ N ₄	1.00	56.00	3.42	35.52	20.00	8.49	3.47
$ZnIn_2S_4$	1.24	31.23	4.11	52.67	20.90	16.10	5.92
g-C ₃ N ₄ /ZnIn ₂ S ₄	1.30	34.43	4.59	51.93	24.19	13.65	6.13
g-C ₃ N ₄ /ZnIn ₂ S ₄ /NiS	1.26	26.99	4.48	53.50	26.97	19.51	8.00

Reference

- [1] H. Yu, H. Ma, X. Wu, X. Wang, J. Fan and J. Yu, Sol. RRL, 2020, 2000372.
- [2] S. Hua, D. Qu, L. An, W. Jiang, Y. Wen, X. Wang and Z. Sun, *Appl. Catal.*, *B*, 2019, 240, 253-261.
- [3] J. Fu, Q. Xu, J. Low, C. Jiang and J. Yu, Appl. Catal., B, 2019, 243, 556-565.
- [4] Y. Yuan, Z. Shen, S. Wu, Y. Su, L. Pei, Z. Ji, M. Ding, W. Bai, Y. Chen, Z. Yu andZ. Zou, *Appl. Catal.*, *B*, 2019, 246, 120-128.
- [5] K. Wang, Y. Li, J. Li and G. Zhang, Appl. Catal., B, 2020, 263, 117730.
- [6] H. Cai, B. Wang, L. Xiong, J. Bi, H. Hao, X. Yu, C. Li, J. Liu and S. Yang, Nano Res., 2022, 15, 1128-1134.
- [7] X. Ma, G. Wang, L. Qin, J. Liu, B. Li, Y. Hu and H. Cheng, *Appl. Catal.*, *B*, 2021, 288, 120025.
- [8] J. Gao, F. Zhang, H. Xue, L. Zhang, Y. Peng, X. Li, Y. Gao, N. Li and L. Ge, *Appl. Catal.*, *B*, 2021, **281**, 119509.
- [9] P. Jin, L. Wang, X. Ma, R. Lian, J. Huang, H. She, M. Zhang and Q. Wang, *Appl. Catal.*, *B*, 2021, **284**, 119762.