SUPPORTING INFORMATION

Ag-SPR and Semiconductor Interface Effect on Ternary CuO@Ag@Bi₂S₃

Z-Scheme Catalyst for Enhanced Removal of HIV Drugs and (Photo)Catalytic Activity

Dasari Ayodhya*

Department of Chemistry, University College of Science, Osmania University,

Hyderabad-500007, Telangana State, India

Corresponding author E-mail:

*E-mail: ayodhyadasari@gmail.com

Tel: +91 9010877323

ORCID: https://orcid.org/0000-0001-9831-9068

List of Supplementary Figures

Scheme S1. Schematic representation of $CuO@Ag@Bi_2S_3$ ternary composite prepared by uttrasonication method

Figure S1. XPS spectra of the synthesized CuO@Ag@Bi₂S₃ ternary composite: (a) Cu 2p,
(b) Bi 4f, (c) Ag 3d, (d) C1s, (e) S 2p, and (f) O 1s.

Figure S2. UV-vis diffuse reflectance spectra (a) and photoluminescence spectra (b) of the synthesized CuO, Bi₂S₃, Ag@CuO, Ag@Bi₂S₃, CuO@Bi₂S₃, and CuO@Ag@Bi₂S₃ ternary composite.

Figure S3. The UV-vis absorption profiles of the removal efficiencies of (a) STV and (b) ZDV HIV drugs using CuO@Ag@Bi₂S₃ ternary composite

Figure S4. The degradation efficiencies of (a) MB, (b) RhB, (c) MB at 664 nm in MB + RhB, and (d) RhB at 553 nm in MB + RhB mixed dye using CuO, Bi_2S_3 , Ag@CuO, $Ag@Bi_2S_3$, $CuO@Bi_2S_3$, and $CuO@Ag@Bi_2S_3$ ternary composite under visible light irradiation.

Figure S5. The kinetics of (a) MB, (b) RhB, (c) MB at 664 nm in MB + RhB, (d) RhB at 553 nm in MB + RhB mixed dye, and (e) MCP degradation using CuO, Bi_2S_3 , Ag@CuO, $Ag@Bi_2S_3$, $CuO@Bi_2S_3$, and $CuO@Ag@Bi_2S_3$ ternary composite under visible light irradiation.

Figure S6. Reuse experiments of the synthesized CuO@Ag@Bi₂S₃ ternary composite in the photocatalytic degradation of (a) MB and (b) RhB dyes under visible light irradiation.

Figure S7. Trapping experiments of active species during the photocatalytic degradation of (a) MB, (b) RhB, (c) MB at 664 nm in MB + RhB, and (d) RhB at 553 nm in MB + RhB mixed dye using CuO@Ag@Bi₂S₃ ternary composite under visible light irradiation.

Figure S8. Trapping experiment of active species during degradation of MCP over CuO@Ag@Bi₂S₃ ternary composite catalyst under visible light irradiation.

Figure S9. The kinetics of 4-NP reduction using CuO, Bi₂S₃, Ag@CuO, Ag@Bi₂S₃, CuO@Bi₂S₃, and CuO@Ag@Bi₂S₃ ternary composite.

Scheme S2. Speculated reaction mechanism of the photocatalytic degradation of organic pollutants (dyes, pesticides, and antibiotics) catalyzed by CuO@Ag@Bi₂S₃ ternary composite.

Supplementary Figures

Scheme S1

Figure S1

Figure S2

Figure S3

Figure S4

20 -

10 · 0 ·

0 10 20

40 50 60 70 80 90

Time (min.)

30

20

10

0

0 10 20 30 40 50 60 70 80 90

Time (min.)

Figure S5

Figure S6

Figure S7

Figure S8

Figure S9

Scheme S2