Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Influence of Ultra-micropore Volume of Activated Carbons Prepared from Noble Mung Bean on the Adsorption Properties of CO₂, CH₄, and N₂

Kyung-Jun Hwang^{a,†}, M.S. Balathanimigami^{b,†}, Young Hyeon Choi^c,

Soon-Do Yoon^{d,*}, and Wang-Geun Shim^{e,*}

^aGangwon Regional Agency for Science & Technology,

Gangneung Science & Industry Promotion Agency, Gangneung-si, Gangwon-do 25440, Republic of Korea

^b Department of Chemical Engineering and Biochemical Engineering,

Rajiv Gandhi Institute of Petroleum Technology, Jais 229 304, India

^cDepartment of Material Engineering, Gangneung-Wonju National University, Gangneung-si, Gangwon-do 25457, Republic of Korea

^dDepartment of Chemical and Biomolecular Engineering, Chonnam National University,

Yeosu-si, Jeollanam-do 59626, Republic of Korea

^eDepartment of Chemical Engineering, Sunchon National University,

255 Jungang-Ro, Suncheon-si, Jeollanam-do 57922, Republic of Korea

*Corresponding Author: Prof. S.-D. Yoon, Prof. W.-G. Shim,

E-mail: sdyun03@jnu.ac.kr, wgshim@sunchon.ac.kr

Figure S1 shows the thermal decomposition curve of mung bean powder used as a raw material for activated carbon with ultra-micropore volume by TGA analysis. It can be seen that three different weight loss stages were observed in the thermal decomposition of mung bean powder under a nitrogen atmosphere. That is, the first stage represents a loss of trapped water molecules (3.20% of the weight loss at 130 °C), while the second stage occurs in the temperature range of about 200-400 °C, resulting in a rapid 82.94% weight loss. This second stage is the main decomposition stage, which is completed at about 400 °C. In this step, the major components such as carbohydrate and protein degradation of mung bean powder occur. In the last stage, the carbonization of mung bean powder occurred between 400 °C and 950 °C. The pyrolysis temperature provides important information in determining the carbonization conditions for producing adsorbents in this study.

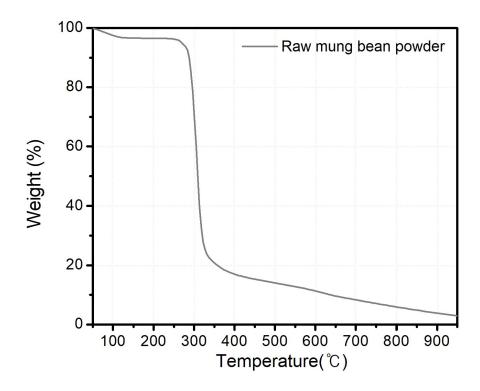


Figure S1 TGA curves for the raw mung bean powders under N₂ gas condition.

Sample —	Atomic content (%)			
	С	0	Ν	
C-400	93.4	6.2	0.41	
1:4-800	91.4	8.0	0.53	
1:4-900	88.2	11.0	0.81	
1:1-800	91.9	7.6	0.49	

 Table S1 Surface composition of C-400 and MACs measured by XPS

Table S2 Functional groups obtained from the deconvolution of the C_{1s} peak for C-400 and MACs

Sample	Graphite [at.(%)]	Phenol [at.(%)]	Carbonyl [at.(%)]	Carboxyl [at.(%)]
C-400	66.3	25.8	6.8	1.2
1:4-800	46.3	36.5	10.6	6.6
1:4-900	46.1	37.4	13.5	3.0
1:1-800	50.0	34.6	13.0	2.4