Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

1

Electronic Supplementary Information

Electrode Surface Embedded Manganese(III)-Pincer Complexes: Efficient Electrocatalysts for Oxygen Evolution Reaction

Abhinandan Mahanta, ^[a] Koushik Barman, ^[b] Umme Solaem Akond ^[a] and Sk. Jasimuddin*^[a]

^a Department of Chemistry, Assam University, Silchar, Assam-788011, India

^b Department of Chemistry, Queens College-CUNY, Flushing, NY, 11367 USA

Synthesis of N,N'-(2,6-dimethylphenyl)-2,6-pyridinedicarboxamide (L)

The ligand N,N'-(2,6-dimethylphenyl)-2,6-pyridinedicarboxamide (L) is prepared by using a reported procedure with slight modification. 363.54 mg, 3.0 mmol 2,6-dimethyl aniline was dissolved in dichloromethane (DCM) and added 0.626 mL Et₃N added dropwise with stirring at 0°C under inert atmosphere. Thereafter, a DCM solution of pyridine dicarbonyl dichloride (306.02 mg, 1.5 mmol) was added drop wise and stirred with heating at around 40 °C under inert atmosphere for 4 hours. The resulting solution was washed with 10% HCl, water and dried over Na₂SO₄. After drying, the crude product was recrystallized by using petroleum ether/DCM mixture. Yield: 453.6 mg, 81%.

Similar procedure was adopted for the synthesis of N,N'-(diphenyl)-2,6pyridinedicarboxamide) (L₁) using aniline instead of 2,6-dimethyl aniline. Yield: 395.08 mg, 82.98%

Characterization

N,*N*'-(2,6-dimethylphenyl)-2,6-pyridinedicarboxamide (*L*):

High resolution mass spectra: Chemical formula: $C_{23}H_{23}N_3O_2$, (m/z) $[M+H]^+$ (Calculated) 374.1863,(m/z) $[M+H]^+$ (Experimental): 374.1871.

¹H-NMR (400 MHz, CDCl₃): δ 9.07 (s, NH), 8.53 (d, 1H^{Py}), 8.17 (t, 1H^{Py}), 7.19-7.14 (m, 2H^{Bz}), 2.32 (s, 3H).

N,N'-(diphenyl)-2,6-pyridinedicarboxamide) (L_1) :

High resolution mass spectra: Chemical formula: $C_{19}H_{15}N_3O_2$, (m/z) [M+H]⁺ (Calculated): 318.1243, (m/z) [M+H]⁺ (Experimental): 318.3004.

¹H-NMR: (400 MHz, CDCl₃): δ 9.13 (s, NH), 8.59 (d, 1H^{Py}), 8.22 (t, 1H^{Py}), 7.24-7.19 (m, 2H^{Bz}).

High resolution mass spectra and ¹H-NMR spectra supports the formation of ligand N,N'-(2,6-dimethylphenyl)-2,6-pyridinedicarboxamide (L) and N,N'-(diphenyl)-2,6-pyridinedicarboxamide) (L₁).

Scheme S1 Electrode modification process

Fig. S2 ATR-FTIR of $[Mn(OAc)(L_1)(cbpy)]$ -Au

Fig. S3 ATR-FTIR of pincer ligand, L

Fig. S4 ATR-FTIR of pincer ligand, L_1

Fig. S5 ATR-FTIR of cbpy-Au

Table S1. ATR-FTIR spectral data

Compounds	C=O	N-H	C=N	C-N	-	-COO-	CH	CH ₃ of	Aromatic	Mn-
					COO-	(asym.)	str.	CH ₃ COO-	CH str.	N
					(sym.)		of -			
							CH ₃			
Ligand L	1748	3305	1657	1314	-	-	2919		3020	-
[Mn(OAc)(L)(cbpy)]-	1750	-	1645	1310	1467	1539	2923	2854	3014	543
Au										
Ligand L ₁	1744	3294	1664	1306	-	-	-	-	3024	-
$[Mn(OAc)(L_1)(cbpy)]$ -	1748	-	1643	1303	1468	1557	-	2847	3024	528
Au										
cbpy-Au	-	-	1681	-	1451	1542	-	-	3029	-

Table S2. SERS spectral data

Complexes on	δ	δ	C=N	C-N	-CH ₃ COO ⁻				Au-	Mn-	Mn-
gold electrode	(COO	(COO-	/						0	0	N
surface	-) _{sym}) _{asym}	C=C		CH	γCO	γCO	CH ₃			
						Ō		rock			
Mn(OAc)(L)(c	1388	882	1548	1152	2949	2880	1252	1015	253	573	645
bpy)]-Au						,					
						1388					
$Mn(OAc)(L_1)($	1385	893	1532	1137	2951	2872	1258	1016	246	566	664
cbpy)]-Au											

Fig. S6 Overlaid CVs obtained at bare Au and [Mn(OAc)(L)(cbpy)]-Au electrodes in 0.1 M PBS at pH 7.0 (scan rate 1000 mVs⁻¹).

Fig. S7 CVs of [Mn(OAc)(L)(cbpy)]-Au electrode in 0.1 M PBS at pH 7.0 at different scan rate (20-100 mVs⁻¹) (a), A plot of current density *versus* scan rate (b).

Fig. S8 Overlaid LSV taken in aqueous (red curve) and non-aqueous solvent (black curve) at [Mn(OAc)(L)(cbpy)]-Au electrode.

Fig. S9 Formation of O_2 gas bubbles on the [Mn(OAc)(L)(cbpy)]-Au electrode after 25 repetitive runs.

Fig. S10 Oxygen evolution during the controlled potential electrolysis of water in a gas tight electrochemical cell under N₂ atmosphere (0.1 M PBS, pH 7.0) with [Mn(OAc)(L)(cbpy)]-Au electrode at an applied potential of + 1.48 V *versus* RHE. Dotted line denotes the theoretical oxygen evolution with 100 % efficiency.

Faraday efficiency (%) = (Amount of $O_2 \times$ Number of electron needed to produce O_2) / Amount of charge passed to the solution.

Fig. S11 Overlaid LSV in 0.1 M PBS using [Mn(OAc)(L)(cbpy)]-Au and $[Mn(OAc)(L_1)(cbpy)]$ -Au electrode.

Fig. 12 Plot of ΔJ (J_a - J_c) versus scan rate (v) for bare Au (a), cbpy-Au (b), [Mn(OAc)(L)(cbpy)]-Au (c) and [Mn(OAc)(L_1)(cbpy)]-Au electrode. The slope (2C_{dl}) were used to represent ECSA.

Fig. S13 Overlaid LSV obtained at [Mn(OAc)(L)(cbpy)]-Au electrode with increasing pH from 6.0 to 8.0.

Fig. S14 Plot of potential *versus* pH of the medium (a). Plot of current density *versus* pH of the medium (b).

Fig. S15 Overlaid LSV in 0.1 M PBS (pH 7.0) with increasing scan rate (20-100 mVs-1) at [Mn(OAc)(L)(cbpy)]-Au electrode.

Fig. S16 Plot of E_{pa} versus $\ln\nu$

Fig. S17 Plot of potential versus pH

Fig. S18 Overlaid CVs before and after CPE using [Mn^{III}(OAc)(L)(cbpy)]-Au electrode (scan rate 100 mVs⁻¹)

Fig. 19 FE-SEM of $[Mn^{III}(OAc)(L)(cbpy)]$ -Au electrode before (a) and after (b)after six hours of CPE

(b)

Fig. S20 EDX spectra of [Mn(OAc)(L)(cbpy)]-Au electrode before (a) and after (b) CPE.

Scheme S2. Plausible mechanism of OER at the [Mn(OAc)(L)(cbpy)]-Au electrode