Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supplementary Information

Base-induced isomerization of red uroleuconaphins revisited: Characterization and absolute stereochemistry of the yellow aphid pigments uroleuconaphins A₂ and B₂

Chiharu Ozakai, Kei Kitamura,* Mitsuyo Horikawa, Tetsuto Tsunoda, and Hiroto Kaku*

Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514

E-mail: kkitamura@ph.bunri-u.ac.jp, kaku@ph.bunri-u.ac.jp

Table of Contents

1.	General
2.	Optimization of conversion of uroleuconaphin $A_1(1)$ and $B_1(2)$
3.	Conversion of uroleuconaphin $A_1(1)$ to uroleuconaphin $A_2(3)$
4.	Conversion of uroleuconaphin $B_1(2)$ to uroleuconaphin $B_2(4)$ S8
5.	Dimethylation of uroleuconaphin $A_2(3)$ and $B_2(4)$
6.	Two-step procedure for conversion of uroleuconaphin $A_1(1)$ and $B_1(2)$
7.	Conditions for methylation of uroleuconaphin $B_2(4)$
8.	The ratio of isomers of 7-O, 7'-O-dimethyl uroleuconaphin B_2 (6) in equilibrium S21
9.	Reverse reaction of uroleuconaphin $B_2(4)$
10.	Isolation of uroleuconaphin A_2 (3) and B_2 (4)
11.	UV-Vis spectra
12.	CD spectra
13.	Optical rotation
14.	IR spectra
15.	HRMS spectra
16.	HPLC spectra
17.	Single crystal X-ray diffraction data
18.	NMR spectra
19.	Calculations
20.	Reference

1. General

Infrared (IR) spectra were measured on a JASCO FT/IR-4200 spectrophotometer. Circular dichroism (CD) spectra were recorded on a JASCO J-725 spectropolarimeter. Ultraviolet-visible (UV-vis) spectra were measured on a JASCO V-650 spectrophotometer. Melting points (Mp) were determined on a Büchi B-545 apparatus, and were uncorrected. Optical rotations ($[\alpha]_D$) were measured with a JASCO P-2300 polarimeter. High-resolution mass spectra (HRMS) were recorded on a JEOL JMS-S3000 Spiral TOF. High-performance liquid chromatography (HPLC) was performed using a Cosmosil 5C18-MS-II (5 μ m, 4.6 \times 250 mm, Nacalai Tesque Inc.) for column, a JASCO PU-980 pump and a JASCO UV-2070 Plus UV detector (detection: 254 nm). For column chromatography, silica gel 60 N (Spherical, 63–210 µm, Kanto Chemical Co., Inc.) was used. Preparative HPLC was performed with a Cosmosil 5C18-MS-II (5 μ m, 20 \times 250 mm, Nacalai Tesque Inc.) for column, a JASCO PU-4180 pump and a JASCO MD-4010 photodiode array detector (detection: 254 nm). For thin-layer chromatography (TLC) analysis, Merck precoated silica gel plates 60 F₂₅₄ were used. ¹H NMR spectra were recorded on a Bruker AVANCE-III (500 MHz) spectrometer; chemical shifts were referenced to tetramethylsilane as an internal standard and the residual solvent signal (acetone- d_6 : δ_H 2.05; CDCl₃: δ_H 7.26). ¹³C NMR spectra were recorded with a Bruker AVANCE-III (125 MHz) spectrometer; chemical shifts were referenced to the residual solvent signal (acetone- d_6 : δ_C 29.8; CDCl₃: δ_C 77.0).

2. Optimization of conversion of uroleuconaphin $A_1(1)$ and $B_1(2)$

2-1. Conversion of uroleuconaphin $A_1(1)$

entry	reagent (equiv)	<i>р</i> К _{аН} (THF) ^[1]	time (h)	yield (%) (5a :5 b)
1 ^a	pyridine (excess)	5.5	18	20 (<mark>4.2:1</mark>)
2	ethylenediamine (15)	13.6	0.2	95 (<mark>3.6</mark> :1)
3	<i>n</i> -PrNH ₂ (15)	13.8	0.5	97 (<mark>3.9:1</mark>)
4	<i>t</i> -BuNH ₂ (15)		4	67 (<mark>1</mark> :1.6)
5	Et ₃ N (15)	12.5	7	56 (<mark>1:6.3</mark>)
6	<i>n</i> -Ви ₃ N (15)	12.7	24	54 (<mark>1</mark> :2.7)
7	<i>t</i> -BuOK (2.0)		2	77 (1:6.7)

Table S1. Screening of base

^a Pyridine was used as a solvent (0.02 M) at 50 °C.

yield (%) (**5a**:**5b**) entry time (h) solvent 97 (<mark>3.9:1</mark>) THF 0.5 1 70 THF/H₂O 2 0.5 (1:1.2) 74 (<mark>4.8:1</mark>) CH_2CI_2 3 1.5 90 4 toluene 0.5 (<mark>4.5:1</mark>) 37 (<mark>3.6:1</mark>) 5 MeOH 0.5 69 (<mark>1:1.4</mark>) 6 acetone 1.5

Table S2. Screening of solvent

2-2. Conversion of uroleuconaphin $B_1(2)$

	10010 05	. Sereening or	ouse	
entry	reagent (equiv)	<i>р</i> К _{аН} (ТНF) ^[1]	time (h)	yield (%) (6a:6b)
1 ^{<i>a</i>}	pyridine (excess)	5.5	1.0	45 (2.1:1)
2	imidazole (15)	9.4	24	47 (1.9:1)
3	piperidine (15)	14.3	0.2	60 (<mark>2.3:1</mark>)
4	proton sponge (15)	11.1	24	68 (1.1:1)
5	ethylenediamine (15)	13.6	0.5	70 (<mark>2.3</mark> :1)
6	<i>n</i> -PrNH ₂ (15)	13.8	1.0	71 (2.5:1)
7	<i>n</i> -BuNH ₂ (15)	13.4	1.0	68 (1.8:1)
8	<i>t</i> -BuNH ₂ (15)		1.0	76 (<mark>2.5:1</mark>)
9	<i>п</i> -Ви ₂ NH (15)	12.6	1.0	59 (<mark>1.6</mark> :1)
10	Et ₃ N (15)	12.5	1.5	40 (1:5.0)
11	<i>n</i> -Pr ₃ N (15)	13.0	1.0	28 (1:2.2)
12	<i>n</i> -Bu ₃ N (15)	12.7	17	56 (1:1.2)
13	DBU (15)	16.9	0.2	trace
14	NaOMe (25)		50	64 (1:1.4)
15	<i>t</i> -BuOK (2.0)		0.5	89 (<mark>1</mark> :1)
16	LiOH·H ₂ O (105)		72	trace
17	NaH (35)		72	16 (1:1.1)

Table S3. Screening of base

^a Pyridine was used as a solvent (0.02 M) at 50 °C.

3. Conversion of uroleuconaphin A₁(1) to uroleuconaphin A₂(3)

To a solution of red pigment 1 (236 mg, 418 μ mol) in THF (42 mL) was added *n*-PrNH₂ (0.52 mL, 6.3 mmol) at room temperature. After stirring for 1 h, the reaction was quenched by adding 1 M aqueous HCl at room temperature. The products were extracted with EtOAc (×3), and the combined organic extracts were washed with water, dried over Na₂SO₄. Concentration and purification by silica gel column chromatography (CHCl₃/MeOH = 50/1 \rightarrow 30/1 \rightarrow 10/1) afforded yellow pigment 3 (200 mg, 85%) as a yellow powder.

Note: Yellow pigment 3 gradually converted to red pigment 1 by extraction and purification process.

$R_f 0.37$ (hexane/EtOAc = 1/1);

IR (ATR) 3235, 2977, 2930, 1668, 1620, 1605, 1454, 1369, 1332, 1260, 1165, 1147, 1102, 1073, 1053, 1036, 982, 837, 817, 800, 789, 757, 716, 653, 596, 553, 515, 492, 472, 452, 425, 406 cm⁻¹; ¹H NMR (acetone- d_6 , 500 MHz) δ 1.20 (d, 6H, J = 6.0 Hz), *1.23 (d, 3H, J = 6.1 Hz), 1.49 (d, 3H, J = 6.7 Hz), 1.54 (d, 3H, J = 6.0 Hz), *1.58 (d, 3H, J = 6.8 Hz), 2.09–2.11 (m, 1H), *2.13–2.19 (m, 1H), 2.47 (dd, 1H, J = 19.5 Hz, 2.8 Hz), *2.55 (brd, 1H, J = 19.7 Hz), 3.10 (d, 1H, J = 10.7 Hz), 3.88 (dq, 1H, J = 9.9 Hz, 6.0 Hz), 3.93–3.98 (m, 1H), 4.22 (d, 1H, J = 9.9 Hz), *4.24 (d, 1H, J = 5.8 Hz), *4.28 (d, 1H, J = 6.2 Hz), 4.35 (dq, 1H, J = 10.7 Hz, 6.0 Hz), *4.62–4.68 (m, 2H), 4.66 (q, 1H, J = 6.7 Hz), *6.24 (brs, 1H), 6.28 (brs, 1H), *6.40 (brs, 1H), 6.46 (brs, 1H), *6.50 (s, 1H), 6.56 (s, 1H), *12.17 (s, 1H), 12.21 (s, 1H), *12.78 (s, 1H), 13.16 (s, 1H);

¹³C NMR (acetone-*d*₆, 125 MHz) δ *16.0, 18.9, *19.8, 19.9, 21.8, 23.0, 30.4, *31.1, 54.2, 62.6, 66.8, 67.9, *69.2, 71.1, *75.2, 75.4, 77.7, 85.7, 98.3, *99.9, 103.3, *103.4, *104.7, 104.8, 106.7, *108.7, 108.8, 109.5, *109.8, 114.2, *139.3, 139.7, 139.8, *139.9, 146.3, 147.8, *164.5, 164.7, *164.8, 165.0, *166.2, 167.3, 167.7, *186.9, 187.0, *198.9, 199.0;

The signals marked with an asterisk (*) were assigned to the minor diastereomer.

HRMS (MALDI) calcd for $C_{30}H_{27}O_{11}$ [M–H]⁺ m/z 563.1548; found m/z 563.1545.

4. Conversion of uroleuconaphin B₁ (2) to uroleuconaphin B₂ (4)

To a solution of red pigment **2** (212 mg, 365 μ mol) in THF (36 mL) was added *n*-PrNH₂ (0.46 mL, 5.6 mmol) at room temperature. After stirring for 1 h, the reaction was quenched by adding 1 M aqueous HCl at room temperature. The products were extracted with EtOAc (×3), and the combined organic extracts were washed with water, dried over Na₂SO₄. Concentration and purification by silica gel column chromatography (CHCl₃/MeOH = 15/1) afforded yellow pigment **4** (189 mg, 89%) as a yellow powder.

Note: Yellow pigment 4 gradually converted to red pigment 2 by extraction and purification process.

$R_f 0.31$ (hexane/EtOAc = 1/1);

IR (ATR) 3361, 2981, 2942, 1706, 1623, 1606, 1455, 1369, 1262, 1171, 1099, 1079, 1033, 998, 981, 966, 889, 790, 758, 719, 656, 534, 463, 454, 443, 419 cm⁻¹;

¹H NMR (acetone- d_6 , 500 MHz) δ 1.19 (d, 3H, J = 6.0 Hz), 1.21 (d, 3H, J = 6.2 Hz), *1.24 (d, 3H, J = 6.1 Hz), *1.45 (d, 3H, J = 7.3 Hz), 1.54 (d, 3H, J = 6.0 Hz), 1.55 (d, 3H, J = 6.6 Hz), 3.32 (d, 1H, J = 10.6 Hz), 3.78–3.84 (m, 1H), 3.90 (qd, 1H, J = 6.0 Hz, 10.0 Hz), 4.11 (brd, 1H, J = 8.6 Hz), 4.14–4.19 (m, 1H), 4.19 (d, 1H, J = 10.0 Hz), 4.34 (qd, 1H, J = 6.0 Hz, 10.6 Hz), *4.40 (brs, 1H), *4.47 (brs, 1H), 4.57 (brq, 1H, J = 6.6 Hz), *4.70 (qd, 1H, J = 6.6 Hz, 7.4 Hz), *6.30 (d, 1H, J = 2.0 Hz), 6.31 (d, 1H, J = 2.0 Hz), 6.35 (d, 1H, J = 2.0 Hz), *6.38 (brs, 1H), *6.49 (s, 1H), 6.51 (s, 1H), *12.06 (s, 1H), 12.08 (s, 1H), *12.87 (s, 1H), 13.15 (s, 1H);

¹³C NMR (acetone-*d*₆, 125 MHz) δ *16.6, 18.8, 18.9, *19.1, *19.2, 19.4, 23.0, *42.3, 53.8, 66.8, *67.5, *67.6, 67.7, 68.0, 68.7, 71.1, *72.4, *74.3, 75.0, *76.3, 77.8, 85.9, *87.9, 99.2, *99.8, 103.4, *104.4, 104.5, 108.9, 109.4, *109.5, 109.7, *112.7, 113.8, 139.8, *141.8, 142.0, 145.2, 147.9, 164.8, 164.9, *165.9, 166.1, *166.9, *167.2, 167.6, 187.7, *198.3, 199.3;

The signals marked with an asterisk () were assigned to the minor diastereomer.

HRMS (MALDI) calcd for C₃₀H₂₇O₁₂ [M–H]⁺ *m/z* 579.1497; found *m/z* 579.1511.

5. Dimethylation of uroleuconaphin A₂(3) and B₂(4)

5-1. Dimethylation of uroleuconaphin $A_2(3)$

To a solution of yellow pigment **3** (19.6 mg, 34.8 μ mol) in toluene/MeOH (1.8 mL/1.8 mL) was added trimethylsilyldiazomethane (0.6 M in hexane, 1.2 mL, 0.72 mmol) at room temperature. After stirring for 1 h, the reaction was quenched by adding AcOH at room temperature. The products were extracted with EtOAc (×3), and the combined organic extracts were dried over Na₂SO₄. Concentration and purification by silica gel column chromatography (hexane/acetone = 3/1) afforded dimethyl ethers **5a** and **5b** (20.3 mg, 98%) as a pale yellow powder. These diastereomers were separated by preparative HPLC (MeOH/H₂O/TFA = 80/20/0.1, flow rate 8.0 mL/min).

7-O, 7'-O-dimethyl uroleuconaphin A_{2a} (5a)

 $R_f 0.67$ (hexane/EtOAc = 1/1);

 $[\alpha]_D^{23}$ +36.8 (*c* 0.105, CHCl₃);

IR (ATR) 3522, 2977, 2930, 1604, 1443, 1370, 1260, 1201, 1146, 1107, 922, 958, 837, 756, 709, 554, 433, 408 cm⁻¹;

¹H NMR (CDCl₃, 500 MHz) δ 1.28 (d, 3H, J = 6.1 Hz), 1.30 (d, 3H, J = 6.0 Hz), 1.56 (d, 3H, J = 6.7 Hz), 1.63 (d, 3H, J = 6.1 Hz), 2.18 (ddd, 1H, J = 19.2 Hz, 10.1 Hz, 1.8 Hz), 2.31 (dd, 1H, J = 19.2 Hz, 3.5 Hz), 2.93 (d, 1H, J = 10.5 Hz), 3.71 (qd, 1H, J = 6.0 Hz, 9.9 Hz), 3.74 (s, 3H), 3.95–4.00 (m, 1H), 4.00 (s, 3H), 4.19 (d, 1H, J = 9.9 Hz), 4.37 (qd, 1H, J = 6.1 Hz, 10.5 Hz), 4.75 (brq, 1H, J = 6.7 Hz), 4.83 (s, 1H), 5.95 (d, 1H, J = 2.4 Hz), 6.36 (d, 1H, J = 2.4 Hz), 6.61 (s, 1H), 12.42 (s, 1H), 13.24 (s, 1H);

¹³C NMR (CDCl₃, 125 MHz) δ 18.6, 19.7, 21.6, 22.7, 29.9, 53.5, 55.6, 56.4, 62.0, 66.1, 67.7, 70.9, 74.3, 77.1, 84.5, 97.5, 100.1, 100.5, 106.9, 108.2, 108.6, 113.8, 137.6, 139.0, 145.4, 146.2, 163.7, 164.6, 166.2, 167.1, 186.2, 197.9;

HRMS (MALDI) calcd for $C_{32}H_{32}O_{11}Na [M+Na]^+ m/z$ 615.1837; found m/z 615.1833; Mp 188 °C (dec).

7-O, 7'-O-dimethyl uroleuconaphin A_{2b} (5b)

 $R_f 0.67$ (hexane/EtOAc = 1/1);

 $[\alpha]_D^{23}$ +32.3 (*c* 0.120, CHCl₃);

IR (ATR) 3523, 2975, 2933, 1666, 1605, 1442, 1367, 1280, 1258, 1202, 1139, 1107, 1055, 991, 957, 931, 909, 875, 837, 814, 736, 703, 656, 628, 563, 527, 451, 433, 412 cm⁻¹;

¹H NMR (CDCl₃, 500 MHz) δ 1.28 (d, 3H, *J* = 6.1 Hz), 1.36 (d, 3H, *J* = 6.5 Hz), 1.54 (d, 3H, *J* = 6.7 Hz), 1.59 (d, 3H, *J* = 6.7 Hz), 2.24 (ddd, 1H, *J* = 19.0 Hz, 10.1 Hz, 1.6 Hz), 2.44 (dd, 1H, *J* = 19.0 Hz, 3.5 Hz), 3.73 (s, 3H), 3.92 (qd, 1H, *J* = 6.5 Hz, 6.0 Hz), 3.96–4.03 (m, 1H), 4.05 (s, 3H), 4.27 (d, 1H, *J* = 6.0 Hz), 4.28 (d, 1H, *J* = 6.0 Hz), 4.71–4.76 (m, 2H), 5.07 (s, 1H), 6.05 (d, 1H, *J* = 2.3 Hz), 6.33 (d, 1H, *J* = 2.3 Hz), 6.59 (s, 1H), 12.40 (s, 1H), 12.98 (s, 1H);

¹³C NMR (CDCl₃, 125 MHz) δ 15.8, 19.5, 19.6, 21.6, 30.4, 44.4, 55.5, 56.5, 62.0, 66.2, 67.6, 68.7, 73.8, 74.8, 87.9, 99.0, 99.9, 100.1, 106.2, 108.7, 108.9, 113.1, 138.5, 139.0, 145.5, 146.4, 163.5, 164.3, 165.9, 166.0, 186.0, 197.5;

HRMS (MALDI) calcd for $C_{32}H_{32}O_{11}Na [M+Na]^+ m/z$ 615.1837; found m/z 615.1848; Mp 180 °C (dec).

Figure S1. Key 2D NMR correlations of **5a** and **5b** in CDCl₃

5-2. Dimethylation of uroleuconaphin $B_2(4)$

To a solution of yellow pigment **4** (20.1 mg, 34.6 μ mol) in toluene/MeOH (1.8 mL/1.8 mL) was added trimethylsilyldiazomethane (0.6 M in hexane, 1.2 mL, 0.72 mmol) at room temperature. After stirring for 1 h, the reaction was quenched by adding AcOH at room temperature. The products were extracted with EtOAc (×3), and the combined organic extracts were dried over Na₂SO₄. Concentration and purification by column chromatography (silica gel, hexane/acetone = 3/1) afforded dimethyl ethers **6a** and **6b** (20.1 mg, 96%) as a pale yellow powder. These diastereomers were separated by preparative HPLC (MeCN/H₂O/TFA = 75/25/0.1, flow rate 8.0 mL/min).

7-O, 7'-O-dimethyl uroleuconaphin B_{2a} (6a)

 $R_f 0.60$ (hexane/EtOAc = 1/1);

 $[\alpha]_D^{23}$ +32.8 (*c* 0.110, CHCl₃);

IR (ATR) 3528, 2977, 2936, 1617, 1604, 1442, 1365, 1262, 1200, 1160, 959, 894, 788, 756, 554, 464, 437, 418 cm⁻¹;

¹H NMR (CDCl₃, 500 MHz) δ 1.30 (d, 6H, *J* = 6.1 Hz), 1.62 (d, 3H, *J* = 6.1 Hz), 1.63 (d, 3H, *J* = 6.7 Hz), 2.98 (d, 1H, *J* = 10.5 Hz), 3.71–3.75 (m, 1H), 3.75 (s, 3H), 3.87 (qd, 1H, *J* = 6.1 Hz, 7.5

Hz), 4.02 (s, 3H), 4.22 (d, 1H, *J* = 10.0 Hz), 4.27 (d, 1H, *J* = 7.5 Hz), 4.35 (qd, 1H, *J* = 6.1 Hz, 10.5 Hz), 4.65 (q, 1H, *J* = 6.7 Hz), 4.82 (s, 1H), 5.95 (d, 1H, *J* = 2.4 Hz), 6.38 (d, 1H, *J* = 2.4 Hz), 6.64 (s, 1H), 12.26 (s, 1H), 13.22 (s, 1H);

¹³C NMR (CDCl₃, 125 MHz) δ 18.3, 18.6, 19.2, 22.6, 53.5, 55.6, 56.5, 66.1, 67.3, 67.6, 68.4, 71.0, 74.0, 77.2, 84.9, 98.6, 100.1, 100.8, 106.7, 108.1, 108.6, 114.0, 136.7, 141.9, 142.2, 145.8, 164.1, 164.7, 166.2, 167.2, 186.5, 197.5;

HRMS (MALDI) calcd for $C_{32}H_{32}O_{12}Na [M+Na]^+ m/z 631.1786$; found m/z 631.1782; Mp 185 °C (dec).

7-O, 7'-O-dimethyl uroleuconaphin B_{2b} (**6b**)

 $R_f 0.60$ (hexane/EtOAc = 1/1);

 $[\alpha]_D^{23}$ +34.9 (*c* 0.111, CHCl₃);

IR (ATR) 3477, 2977, 2936, 1617, 1606, 1444, 1363, 1282, 1201, 1151, 963, 787, 756, 504, 444, 426, 412 cm⁻¹;

¹H NMR (CDCl₃, 500 MHz) δ 1.33 (d, 3H, J = 6.5 Hz), 1.46 (d, 3H, J = 7.5 Hz), 1.55 (d, 3H, J = 6.5 Hz), 1.62 (d, 3H, J = 7.0 Hz), 3.75 (s, 3H), 3.90 (qd, 1H, J = 6.5 Hz, 6.0 Hz), 4.02 (s, 3H), 4.06 (d, 1H, J = 8.0 Hz), 4.17–4.25 (m, 2H), 4.46 (s, 1H), 4.59 (d, 1H, J = 1.9 Hz), 4.64 (q, 1H, J = 7.0 Hz), 4.74 (qd, 1H, J = 6.5 Hz, 8.0 Hz), 4.87 (s, 1H), 5.93 (d, 1H, J = 2.5 Hz), 6.37 (d, 1H, J = 2.5 Hz), 6.60 (s, 1H), 12.25 (s, 1H), 12.99 (s, 1H);

¹³C NMR (CDCl₃, 125 MHz) δ 15.9, 18.9, 19.0, 40.8, 55.6, 56.5, 65.1, 66.7, 67.4, 67.5, 72.5, 72.8, 76.0, 86.5, 98.8, 100.0, 100.2, 106.3, 109.0, 109.1, 112.2, 138.6, 141.0, 143.9, 146.0, 164.0, 164.4, 166.1, 166.6, 186.9, 197.4;

HRMS (MALDI) calcd for $C_{32}H_{32}O_{12}Na [M+Na]^+ m/z 631.1786$; found m/z 631.1802; Mp 188 °C (dec).

Figure S2. Key 2D NMR correlations of 6a and 6b in CDCl₃

6. Two-step procedure for conversion of uroleuconaphin $A_1(1)$ and $B_1(2)$

6-1. Conversion of uroleuconaphin $A_1(1)$ to 7-0, 7'-O-dimethyl uroleuconaphin $A_2(5)$

To a solution of red pigment 1 (19.7 mg, 34.9 μ mol) in THF (3.5 mL) was added *n*-PrNH₂ (43.0 μ L, 525 μ mol) at room temperature. After stirring for 0.5 h, the reaction was quenched by adding 1 M aqueous HCl at room temperature. The products were extracted with EtOAc (×3), and the combined organic extracts were washed with water, dried over Na₂SO₄, and concentrated in vacuo. To a solution of crude material in toluene/MeOH (1.1 mL/1.1 mL) was added trimethylsilyldiazomethane (0.6 M in hexane, 0.70 mL, 0.42 mmol) at room temperature. After stirring for 1 h, the reaction was quenched by adding AcOH at room temperature. The products were extracted with EtOAc (×3), and the combined organic extracts were dried over Na₂SO₄. Concentration and purification by silica gel column chromatography (hexane/acetone = 3/1) afforded dimethyl ethers **5a** and **5b** (20.1 mg, 97%) as a pale yellow powder. These diastereomers were separated by preparative HPLC (MeOH/H₂O/TFA = 80/20/0.1, flow rate 8.0 mL/min).

6-2. Conversion of uroleuconaphin $B_1(2)$ to 7-0, 7'-0-dimethyl uroleuconaphin $B_2(6)$

To a solution of red pigment 2 (20.3 mg, 35.0 µmol) in THF (3.5 mL) was added *n*-PrNH₂ (43.0 µL, 525 µmol) at room temperature. After stirring for 1 h, the reaction was quenched by adding 1 M aqueous HCl at room temperature. The products were extracted with EtOAc (×3), and the combined organic extracts were washed with water, dried over Na₂SO₄, and concentrated in vacuo. To a solution of crude material in toluene/MeOH (0.9 mL/0.9 mL) was added trimethylsilyldiazomethane (0.6 M in hexane, 0.88 mL, 0.53 mmol) at room temperature. After stirring for 1 h, the reaction was quenched by adding AcOH at room temperature. The products were extracted with EtOAc (×3), and the combined organic extracts were dried over Na₂SO₄. Concentration and purification by column chromatography (silica gel, hexane/acetone = 3/1) afforded dimethyl ethers **6a** and **6b** (15.2 mg, 71%) as a pale yellow powder. These diastereomers were separated by preparative HPLC (MeCN/H₂O/TFA = 75/25/0.1, flow rate 8.0 mL/min).

7. Conditions for methylation of uroleuconaphin B₂ (4)

Table S4. Conditions for methylation of uroleuconaphin $B_2(4)$

			5		1					
ontry	oquiv	in to the terms (00) the			time (b)		yie	ld (%)		
entry	equiv	solvent	temp. (C)	une (n)	S1	S2	S3	S4		
1	100	MeOH	–15→rt	4	0	75	0	0		
2	15	toluene/MeOH = 1/1	rt	1	90	trace	0	0		
3	30	toluene/MeOH = 1/1	0→rt	1	0	94	0	0		
4	60	toluene/MeOH = 1/1	rt	5	0	0	19	39		

 $R_f 0.52$ (hexane/EtOAc = 1/1);

1H);

IR (ATR) 3522, 2981, 2936, 1620, 1445, 1370, 1265, 1167, 841, 431, 421 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.30 (d, 6H, J = 6.1 Hz), *1.33 (d, 3H, J = 6.1 Hz), *1.45 (d, 3H, J= 7.5 Hz), *1.55 (d, 3H, J = 6.6 Hz), 1.61 (d, 3H, J = 6.1 Hz), 1.63 (d, 3H, J = 6.0 Hz), 2.80 (d, 1H, J = 4.3 Hz), 2.98 (d, 1H, J = 10.4 Hz), 3.73 (qd, 1H, J = 6.1 Hz, 10.0 Hz), 3.85–3.93 (m, 1H), 4.02 (s, 3H), *4.03 (s, 3H), *4.06 (d, 1H, J = 8.0 Hz), 4.17–4.30 (m, 2H), 4.34 (qd, 1H, J = 6.1 Hz, 10.4 Hz), *4.45 (s, 1H), 4.61–4.67 (m, 1H), *4.74 (qd, 1H, J = 6.6 Hz, 8.0 Hz), 4.86 (s, 1H), *4.89 (s 1H), *5.87 (d, 1H, J = 2.1 Hz), 5.90 (d, 1H, J = 2.2 Hz), *6.30 (d, 1H, J = 2.1 Hz), 6.31 (d, 1H, J = 2.2 Hz), *6.60 (s, 1H), 6.63 (s, 1H), *12.23 (s, 1H), 12.25 (s, 1H), *12.87 (s, 1H), 13.08 (s,

¹³C NMR (CDCl₃, 125 MHz) δ *15.9, 18.3, 18.5, *18.8, *18.9, *19.0, 19.2, 22.6, *40.8, 53.4, 56.6, *65.1, 66.1, *66.7, 67.3, *67.4, *67.5, 67.6, 68.4, 71.1, *72.5, *72.8, 73.9, *76.0, 77.0, 84.9, *86.5, 98.6, *98.8, *100.2, 100.8, *103.3, 103.4, *106.3, 106.7, 107.8, *108.3, 108.6, *109.4, *112.1, 113.8, 136.7, *138.6, *141.0, 141.8, 142.1, *143.7, 146.9, *147.1, *162.7, 162.8, 164.0, *164.4, 164.6, *166.1, 166.6, 186.5, *186.8, *197.4, 197.5;

The signals marked with an asterisk (*) were assigned to the minor diastereomer.

HRMS (MALDI) calcd for $C_{31}H_{30}O_{12}Na [M+Na]^+ m/z$ 617.1629; found m/z 617.1633.

Key HMBC correlations in CDCl₃

 $R_f 0.48$ (hexane/acetone = 1/1);

IR (ATR) 3511, 2974, 2936, 1620, 1596, 1462, 1333, 1266, 1205, 1162, 1045, 835, 473, 446, 432, 419 cm⁻¹;

¹H NMR (CDCl₃, 500 MHz) δ 1.29 (d, 6H, J = 6.1 Hz), *1.32 (d, 3H, J = 6.5 Hz), *1.45 (d, 3H, J = 7.5 Hz), 1.63 (d, 3H, J = 6.1 Hz), 1.65 (d, 3H, J = 6.5 Hz), 3.00 (d, 1H, J = 10.4 Hz), 3.72–3.74 (m, 1H), *3.75 (s, 3H), 3.76 (s, 3H), 3.83–3.91 (m, 2H), *3.97–4.00 (m, 1H), 4.04 (s, 3H), 4.05 (s, 3H), 4.06 (s, 3H), *4.07 (s, 3H), 4.17 (d, 1H, J = 9.9 Hz), 4.20–4.28 (m, 1H), 4.36 (qd, 1H, J = 6.1 Hz, 10.4 Hz), *4.42 (s, 1H), 4.59–4.63 (m, 1H), *4.75 (qd, 1H, J = 6.5 Hz, 8.2 Hz), 4.95 (s, 1H), *5.01 (s 1H), *5.89 (d, 1H, J = 2.4 Hz), 5.93 (d, 1H, J = 2.4 Hz), *6.37 (d, 1H, J = 2.4 Hz), 6.39 (d, 1H, J = 2.4 Hz), *6.64 (s, 1H), 6.67 (s, 1H), *13.02 (s, 1H), 13.24 (s, 1H);

¹³C NMR (CDCl₃, 125 MHz) δ *16.0, 18.5, 18.6, *18.8, *19.1, 19.4, 22.6, *40.8, 53.3, 55.6, 56.3, 56.4, *65.1, 66.1, *66.6, *67.4, 67.5, 68.1, *68.2, 68.3, 71.0, *72.6, *72.9, 74.0, *76.2, 77.3, 84.2, *85.7, *95.8, 96.4, 99.1, *99.4, *99.8, 100.0, 108.1, 108.7, *109.0, *109.2, *110.9, 111.4, *112.2, 113.8, 138.6, 138.8, *139.6, *140.8, *142.6, 143.4, 145.8, *146.0, 162.6, 162.7, *166.0, 166.1, *166.6, 167.2, 181.1, *181.4, *197.5, 197.7;

The signals marked with an asterisk (*) were assigned to the minor diastereomer.

HRMS (MALDI) calcd for $C_{33}H_{34}O_{12}Na [M+Na]^+ m/z$ 645.1942; found m/z 645.1937.

Key HMBC correlations in CDCl₃

 $R_f 0.26$ (hexane/acetone = 1/1);

IR (ATR) 3514, 2980, 2936, 1733, 1651, 1597, 1569, 1457, 1373, 1329, 1266, 1202, 1162, 1068, 1046, 831, 698, 634, 580, 537, 498, 484, 468, 451, 423, 410 cm⁻¹;

¹H NMR (CDCl₃, 500 MHz) δ 1.28 (d, 3H, J = 6.1 Hz), 1.30 (d, 3H, J = 6.1 Hz), *1.34 (d, 3H, J = 6.7 Hz), 1.62 (d, 3H, J = 6.2 Hz), 1.65 (d, 3H, J = 6.7 Hz), 2.76–2.80 (m, 2H), 3.66–3.70 (m, 1H), 3.71 (s, 3H), *3.75 (s, 1H), 3.84–3.89 (m, 1H), 3.92 (s, 3H), *3.94 (s, 1H), *3.95 (s, 3H), *3.99–4.00 (m, 1H), 4.01 (s, 3H), 4.05 (s, 3H), *4.09–4.13 (m, 2H), 4.15 (d, 1H, J = 8.6 Hz), 4.26 (ddd, 1H, J = 7.8 Hz, 3.4 Hz, 1.0 Hz), 4.35 (qd, 1H, J = 6.2 Hz, 8.3 Hz), 4.63 (brd, 1H, J = 6.7 Hz), 4.78 (s, 1H), *5.68 (d, 1H, J = 2.1 Hz), 5.77 (d, 1H, J = 2.1 Hz), *6.42 (d, 1H, J = 2.1 Hz), 6.46 (d, 1H, J = 2.1 Hz), *6.63 (s, 1H), 6.65 (s, 1H);

¹³C NMR (CDCl₃, 125 MHz) δ *16.4, 18.4, 18.6, 19.3, 23.9, *24.1, 54.9, 55.2, *55.9, 56.2, 56.3, 56.4, *66.2, 67.1, 67.6, 68.0, 68.2, *69.4, 69.9, *90.9, *72.9, 74.4, *74.8, 77.0, 84.4, *84.8, *95.4, 95.9, *97.2, 97.5, 98.7, *102.3, 105.9, *106.3, 111.2, 113.7, 114.3, 138.4, 139.1, 143.1, 147.2, *159.6, 161.0, *161.2, 162.6, 162.7, 163.5, 181.2, 192.6, *192.9;

The signals marked with an asterisk (*) were assigned to the minor diastereomer.

HRMS (MALDI) calcd for $C_{34}H_{36}O_{12}Na [M+Na]^+ m/z$ 659.2099; found m/z 659.2101.

8. The ratio of isomers of 7-0, 7'-O-dimethyl uroleuconaphin B₂ (6) in equilibrium

mixture of 6a and 6b
$\left(\begin{array}{c} \textbf{6a:} \text{10a-H}\alpha\\ \textbf{6b:} \text{10a-H}\beta \end{array}\right)$

Table S5. Ratio of $6a$ and $6b^a$						
time	6a / 6b					
ume	<i>n</i> -PrNH ₂	Et ₃ N	Et ₃ N	<i>t</i> -BuOK		
0 h	2.5:1	23.5:1	1:23.5	1:1		
1 h	3.7:1	15.7:1	1:8.1	2.1:1		
6 h	3.4:1	4.6:1	1:1	2.2:1		
12 h	3.5:1	3.5:1	3.2:1	2.5:1		
24 h	3.5:1	3.5:1	3.2:1	2.5:1		

^{*a*} Determined by ¹H-NMR (acetone- d_6).

9. Reverse reaction of uroleuconaphin B₂ (4)

Yellow pigment 4 (4.0 mg, 6.9 μ mol) adsorbed on silica gel (120 mg) was suspended in MeOH (4.3 mL). After stirring at room temperature for some time, the suspension was filtered by a glass filter, and concentrated. The residue was analyzed by ¹H-NMR without purification.

		1	- () 1	, 0	
time		4 (4 <mark>a</mark>	:4 <mark>b</mark>) / 2		
time	1	2	3	4	
10 min	>99 (<mark>78:22</mark>) / 1	>99 (<mark>55:45</mark>) / 1	>99 (<mark>31:69)</mark> / 1	>99 (<mark>20:80</mark>) / 1	
12 h	94 (77:23) / 6	>99 (<mark>55:45</mark>) / 1	81 (<mark>48:52)</mark> / 19	84 (<mark>29</mark> :71) / 16	
24 h	94 (<mark>80:20</mark>) / 6	88 <mark>(52:48)</mark> / 12	78 (<mark>52:48</mark>) / 22	70 (<mark>43</mark> :57) / 30	
48 h	91 (<mark>84:16</mark>) / 9	85 (<mark>58</mark> :42) / 15	74 (<mark>64:36</mark>) / 26	67 (<mark>43:57</mark>) / 33	
72 h	91 (<mark>84</mark> :16) / 9	84 (<mark>63:37</mark>) / 16	73 (<mark>70:30</mark>) / 27	62 (<mark>50:50</mark>) / 38	

Table S6.	Reverse re	eaction of u	iroleuconaphir	$B_{2}(4)$	promoted by	v silica gel ^a
1 4010 000	110 . 0100 1			$\mathbf{D}_{2} (\mathbf{I})$	promotes o	

^{*a*} Determined by ¹H-NMR (acetone- d_6).

10. Isolation of uroleuconaphin A₂ (3) and B₂ (4)

Based on our previously reported procedure, ^[2, 3] the extraction and purification of yellow pigments **3** and **4** were performed as follows. The red aphid, *Uroleucon nigrotuberculatum* was obtained from *Solidago altissima L*. The aphids (total mass, 297 g) were crushed with diethyl ether using a pestle, and filtered using by a Buchner funnel. The aphid pigments were extracted with diethyl ether (total volume, 5.5 L) by further grinding the aphids. The combined ethereal extracts were concentrated to obtain crude extracts (26.8 g). The residue was purified by silica gel chromatography (hexane/EtOAc = $4/1 \rightarrow 1/2$) to afford the red pigments **1** (3.6 g) and **2** (1.3 g) and then further eluted by CHCl₃/MeOH (50/1 \rightarrow 30/1) to afford the yellow pigments **3** (0.95 g, **3a**:**3b** = 2.8:1) and **4** (0.42 g, **4a**:**4b** = 3.6:1).

Fig. 1. Collecting aphids

Fig. 2. Crushing aphids in diethylether

ds After

Before

Fig. 3. Concentration the extract

Fig. 4. Purification by silica gel chromatography (hexane/EtOAc and CHCl₃/MeOH)

Right: Uroleuconaphin B_1 (2) Left: Uroleuconaphin A_1 (1)

Figure S3. Isolation method

Right: Uroleuconaphin B_2 (4) Left: Uroleuconaphin A_2 (3)

Fig. 6. TLC Eluent: $CHCl_3/MeOH = 10/1$ Right: 4 Center: cospot of 3 and 4 Left: 3

Figure S4. UV–Vis spect	ra (MeOH, 2.0×10^{-5} M)
-------------------------	-----------------------------------

	$\lambda_{\max} \operatorname{nm} (\log \varepsilon)$
1	276 (4.33), 498 (3.42)
2	278 (4.29), 326 (3.91), 500 (3.59)
3	291 (4.15), 326 (3.98), 379 (3.80)
4	289 (4.14), 330 (3.97), 389 (3.79)

Figure S5. UV–Vis spectra (CHCl₃, 2.0×10^{-5} M)

	$\lambda_{\max} \operatorname{nm} (\log \varepsilon)$
1	277 (4.47), 400 (3.73), 502 (3.49)
2	279 (4.10), 420 (2.82), 511 (2.19)
3	290 (4.17), 330 (3.87)
4	289 (4.20), 330 (4.09)

Figure S6. CD spectra of 7-0, 7'-O-dimethyl uroleuconaphin A_{2a} (5a) (2×10⁻⁵ M, MeOH)

Figure S7. CD spectra of 7-O, 7'-O-dimethyl uroleuconaphin A_{2b} (**5b**) (2×10⁻⁵ M, MeOH)

Figure S8. CD spectra of 7-*O*, 7'-*O*-dimethyl uroleuconaphin B_{2a} (6a) (2×10⁻⁵ M, MeOH)

Figure S9. CD spectra of 7-*O*, 7'-*O*-dimethyl uroleuconaphin B_{2b} (**6b**) (2×10⁻⁵ M, MeOH)

13. Optical rotation

compound	$[\alpha]_D$	temp. (°C)	<i>c</i> (g / dL)		
5a from 1	+36.9	23	0.105		
from 3	+36.8	23	0.105		
5b from 1	+32.3	23	0.120		
from 3	+32.2	23	0.153		
6a from 2	+32.8	23	0.110		
from 4	+32.1	23	0.100		
6b from 2	+34.9	23	0.111		
from 4	+34.7	24	0.123		

Table S7. Optical rotation of compound 5a, 5b, 6a and $6b^a$

^{*a*} CHCl₃ was used for solvent.

14. IR spectra

Figure S10. IR spectrum of uroleuconaphin $A_2(3)$

Figure S11. IR spectrum of uroleuconaphin B₂ (4)

Figure S12. IR spectrum of 7-O, 7'-O-dimethyl uroleuconaphin A_{2a} (5a)

Figure S13. IR spectrum of 7-O, 7'-O-dimethyl uroleuconaphin A_{2b} (5b)

Figure S14. IR spectrum of 7-O, 7'-O-dimethyl uroleuconaphin B_{2a} (6a)

Figure S15. IR spectrum of 7-O, 7'-O-dimethyl uroleuconaphin B_{2b} (6b)

15. HRMS spectra

msTornado Analysis 1.12.1, 2021-11-05T11:00:34+09:00

Figure S16. HRMS (MALDI) spectrum of uroleuconaphin A₂ (3)

Figure S17. HRMS (MALDI) spectrum of uroleuconaphin B₂ (4)

Figure S18. HRMS (MALDI) spectrum of 7-O, 7'-O-dimethyl uroleuconaphin A_{2a} (5a)

Figure S19. HRMS (MALDI) spectrum of 7-O, 7'-O-dimethyl uroleuconaphin A_{2b} (5b)

Figure S20. HRMS (MALDI) spectrum of 7-0, 7'-O-dimethyl uroleuconaphin B_{2a} (6a)

Figure S21. HRMS (MALDI) spectrum of 7-O, 7'-O-dimethyl uroleuconaphin B_{2b} (6b)

Figure S22. HPLC chromatogram of 7-*O*, 7'-*O*-dimethyl uroleuconaphin A_{2a} (**5a**) (ODS, MeOH/H₂O/TFA = 80/20/0.1, flow rate: 0.8 mL/min, detector UV: 254 nm)

Figure S23. HPLC chromatogram of 7-*O*, 7'-*O*-dimethyl uroleuconaphin A_{2b} (**5b**) (ODS, MeOH/H₂O/TFA = 80/20/0.1, flow rate: 0.8 mL/min, detector UV: 254 nm)

Figure S24. HPLC chromatogram of 7-*O*, 7'-*O*-dimethyl uroleuconaphin B_{2a} (**6a**) (ODS, MeCN/H₂O/TFA = 75/25/0.1, flow rate: 1.0 mL/min, detector UV: 254 nm)

Figure S25. HPLC chromatogram of 7-*O*, 7'-*O*-dimethyl uroleuconaphin B_{2b} (**6b**) (ODS, MeCN/H₂O/TFA = 75/25/0.1, flow rate: 1.0 mL/min, detector UV: 254 nm)

17. Single crystal X-ray diffraction data

Identification code	CCDC 2171364
Moiety formula	2 (C ₃₂ H ₃₂ O ₁₂), C ₄ H ₈ O ₂
Formula weight	3057.83
Temperature	100 K
Wavelength	0.71073 Å
Crystal system	monoclinic
Space group	$P2_1$
Until cell dimensions	$a = 11.4954 (7) \text{ Å} \qquad \alpha = 90^{\circ}$
	$b = 20.8647 (13) \text{ Å} \beta = 110.359 (1)^{\circ}$
	$c = 13.5984 (9) \text{ Å} \qquad \gamma = 90^{\circ}$
Volume	3057.8 (3) Å ³
Ζ	2
Density (calculated)	1.331 g/cm^3
Absorption coefficient	0.099 mm^{-1}
F (000)	1296.0
Crystal size	$0.030\times0.100\times0.200~mm^3$
Theta range for data collection	1.597 to 29.243°
Index ranges	-15<=h<=12, -26<=k<=27, -15<=l<=18
Reflections collected	18984
Independent reflections	11076 [R(int) = 0.0388]
Absorption correction	none

Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	12642 / 1 / 864
Goodness-of-fit on F ²	1.025
Final R indices [I>2σ (I)]	$R_1 = 0.0388, wR_2 = 0.0915$
R indices (all data)	$R_1 = 0.0475, \mathrm{wR_2} = 0.0961$
Absolute structure parameter	0.3 (3)

120 110 100 Figure S27. ¹³C NMR spectrum of uroleuconaphin A₂ (**3**) (125 MHz, acetone-*d*₆)

190 180

 нó

10 ppm

Figure S29. ¹³C NMR spectrum of uroleuconaphin B₂ (4) (125 MHz, acetone-*d*₆)

Figure S30. ¹H NMR spectrum of 7-*O*, 7'-*O*-dimethyl uroleuconaphin A_{2a} (**5a**) (500 MHz, CDCl₃)

Figure S31. ¹³C NMR spectrum of 7-O, 7'-O-dimethyl uroleuconaphin A_{2a} (5a) (125 MHz, CDCl₃)

Figure S32. NOESY spectrum of 7-0, 7'-O-dimethyl uroleuconaphin A_{2a} (5a) (CDCl₃)

Figure S34. ¹³C NMR spectrum of 7-*O*, 7'-*O*-dimethyl uroleuconaphin A_{2b} (**5b**) (125 MHz, CDCl₃)

Figure S35. NOESY spectrum of 7-0, 7'-O-dimethyl uroleuconaphin A_{2b} (5b) (CDCl₃)

Figure S36. ¹H NMR spectrum of 7-O, 7'-O-dimethyl uroleuconaphin B_{2a} (**6a**) (500 MHz, CDCl₃)

Figure S37. ¹³C NMR spectrum of 7-O, 7'-O-dimethyl uroleuconaphin B_{2a} (6a) (125 MHz, CDCl₃)

Figure S38. NOESY spectrum of 7-0, 7'-O-dimethyl uroleuconaphin B_{2a} (6a) (CDCl₃)

Figure S39. ¹H NMR spectrum of 7-*O*, 7'-*O*-dimethyl uroleuconaphin B_{2b} (**6b**) (500 MHz, CDCl₃)

Figure S40. ¹³C NMR spectrum of 7-O, 7'-O-dimethyl uroleuconaphin B_{2b} (6b) (125 MHz, CDCl₃)

Figure S41. NOESY spectrum of 7-*O*, 7'-*O*-dimethyl uroleuconaphin B_{2b} (**6b**) (CDCl₃)

Figure S43. ¹³C NMR spectrum of S1 (125 MHz, CDCl₃)

Figure S44. HMBC spectrum of S1 (CDCl₃)

Figure S46. ¹³C NMR spectrum of S3 (125 MHz, CDCl₃)

Figure S47. HMBC spectrum of S3 (CDCl₃)

Figure S49. ¹³C NMR spectrum of S4 (125 MHz, CDCl₃)

19. Calculations

DFT calculations were performed with the Gaussian 16 program.^[4] Geometry optimizations were carried out at the RB3LYP level of density functional theory with the 6-311G(d) basis set for compounds **4a** and **4b**.

Table S8. Cartesian coordinates of the optimized structure for uroleuconaphin B_{2a} (4a)

Atom	Х	Y	Z
С	4.0099203	2.1265355	2.3564977
С	4.0383345	0.7614064	2.0628434
С	3.1941062	0.2229061	1.046209
С	2.3437226	1.1061059	0.3267699
С	2.3196216	2.4490704	0.6423885
С	3.1512221	2.9558355	1.6550003
Н	4.6630795	2.498914	3.1396164
Н	1.6761468	3.1491822	0.1319707
С	1.5353493	0.5542062	-0.8604271
0	2.3902376	0.4204301	-1.9951189
Н	2.6229005	1.3064429	-2.3025866
С	1.055622	-0.8828101	-0.5471132
С	0.2856404	1.3989912	-1.1691946
С	0.3296254	2.5961554	-1.914861
С	-0.9655726	0.9871833	-0.7268838
С	-0.8040234	3.3621691	-2.1460394
С	-2.1307046	1.7448172	-0.9170898
С	-2.0407116	2.9648341	-1.6330476
Н	-0.7537088	4.2870904	-2.7125811

0	0.0953943	-0.7611315	0.5249594
С	3.1738516	-1.2173428	0.8429184
0	3.9414604	-1.9704314	1.4604961
С	2.1545273	-1.84792	-0.0943038
Н	1.6459769	-2.5968079	0.5219389
С	2.8444232	-2.6110755	-1.2729266
Н	3.571461	-1.9412012	-1.7372754
С	0.196835	-1.4593184	-1.7124822
Н	0.3608029	-0.8800613	-2.6240129
0	1.9186781	-2.9356105	-2.3250409
0	-1.1561441	-1.3099091	-1.2625758
С	0.5334058	-2.9178056	-1.9940359
Н	0.3237502	-3.5208101	-1.1003995
С	3.5250634	-3.9011578	-0.8254801
Н	4.3060626	-3.7148983	-0.0898173
Н	2.7960902	-4.5862798	-0.3816925
Н	3.9611775	-4.3905963	-1.6990009
С	-3.3992247	1.3159293	-0.3285306
0	-4.4257615	2.0007399	-0.4577004
С	-3.4251099	0.0878841	0.5141902
С	-2.3130762	-0.6454176	0.7035157
С	-1.0935133	-0.41148	-0.1478499
С	-0.2322856	-3.4891325	-3.1725311
Н	-1.3066758	-3.4405324	-2.9843043
Н	-0.0063892	-2.9260355	-4.0818762
Н	0.0502189	-4.5308584	-3.3371776
С	-4.7259974	-0.2502128	1.2237467
Н	-5.0018805	0.6000871	1.8634064
0	-4.610374	-1.4297423	2.0241805
С	-2.2676761	-1.7766214	1.7118698
Н	-1.2886625	-1.7821631	2.1927519
С	-3.3799462	-1.5831324	2.7449359

Н	-3.5019762	-2.5353569	3.2665673
С	-5.8806928	-0.5336873	0.2616606
Н	-6.7396699	-0.8762936	0.8419209
Н	-6.1556617	0.3592948	-0.2946745
Н	-5.6064081	-1.3252801	-0.4403051
С	-3.1269511	-0.4792662	3.7690874
Н	-3.9982651	-0.3677633	4.4184009
Н	-2.2704664	-0.7391174	4.3970713
Н	-2.9169456	0.488756	3.3086965
0	-2.3750458	-3.0510528	1.0809542
Н	-3.2608274	-3.0999998	0.6973092
0	-3.0948006	3.7566444	-1.847532
Н	-3.8732733	3.3366622	-1.4145679
0	4.8723906	0.004818	2.7795394
Н	4.7708111	-0.9261302	2.4642901
0	3.0653161	4.2891092	1.8942216
Н	3.6659837	4.53527	2.6078502
0	1.5490585	2.9909189	-2.3955451
Н	1.4683627	3.8143256	-2.8912441

Table	S9.	Cartesia	n coordinates	of the	optimized	structure	for uro	leuconaphin	B2h (4b)
1	~ .				• p • • • • • • •		101 0010		- 20 (•~/

Atom	Х	Y	Z
С	4.252631	1.4196759	2.4036661
С	4.0567861	0.0994939	1.995017
С	3.2045681	-0.1964388	0.8931617
С	2.5400054	0.8687205	0.2248438

С	2.7387849	2.1663606	0.6555805
С	3.5971941	2.4389238	1.733062
Н	4.9124049	1.6094146	3.2446432
Н	2.2500586	3.0094508	0.1931106
0	4.7002736	-0.8528129	2.6778186
Н	4.4636537	-1.7211998	2.2736836
0	3.735681	3.7456722	2.0758821
Н	4.3328722	3.8269934	2.8290628
С	1.6389776	0.585791	-1.0079595
С	0.4777249	1.5865729	-1.0904946
С	0.5909696	2.8743704	-1.6540872
С	-0.769769	1.2307441	-0.5995101
С	-0.4698347	3.7688919	-1.6676062
С	-1.8621874	2.1089838	-0.5774646
С	-1.6999292	3.4116941	-1.112337
Н	-0.3654072	4.7608293	-2.0966785
С	1.0513019	-0.8578478	-0.8957868
С	0.0822694	-1.2262417	-2.0549056
Н	0.327502	-0.6401266	-2.943357
С	2.2038271	-1.8497497	-0.7475942
Н	2.8669458	-1.5848945	-1.5823881
С	3.0317162	-1.5832794	0.4868881
0	3.5846332	-2.5233572	1.0741014
0	-2.6818592	4.3169306	-1.1200642
Н	-3.4695324	3.9026486	-0.6981567
0	1.8047619	3.227892	-2.18362
Н	1.7669284	4.1167265	-2.5560743
0	2.4247527	0.5754293	-2.1984003
Н	2.6958234	1.4827541	-2.3904431
0	0.1628294	-0.8395706	0.2395442
0	-1.2152883	-0.8440719	-1.5586078
С	1.8434044	-3.3261192	-0.9962415

Н	2.7845466	-3.8664952	-1.1101669
С	1.0276462	-4.0310389	0.0880146
Н	0.0904439	-3.5237769	0.3145572
Н	0.7993756	-5.0473397	-0.244442
Н	1.6180734	-4.0933503	1.0024882
С	-0.0135517	-2.7353004	-2.3880761
Н	-0.7176146	-3.1601019	-1.6666481
С	-0.5396994	-2.9629037	-3.7946886
Н	0.1612484	-2.5666001	-4.5346146
Н	-0.6659513	-4.0310799	-3.9821173
Н	-1.5059588	-2.4698227	-3.9238168
0	1.243532	-3.3985381	-2.2941056
С	-3.1342892	1.69748	0.0134011
0	-4.0959394	2.4785773	0.0669625
С	-3.2372681	0.3458834	0.6329834
С	-2.2010233	-0.5080433	0.6006142
С	-1.005633	-0.2332074	-0.2765707
С	-4.5249749	0.0236	1.3678018
Н	-4.7067683	0.8236675	2.0997015
С	-5.7270627	-0.0663745	0.4245744
Н	-6.6006862	-0.3726413	1.0035777
Н	-5.9305114	0.8922443	-0.0483495
Н	-5.5405535	-0.824238	-0.3390914
С	-2.2055407	-1.7697318	1.4259534
Н	-1.2037072	-1.8896759	1.8562105
С	-3.2308358	-1.647196	2.5627001
Н	-3.4290452	-2.6555891	2.9424679
0	-4.4863536	-1.2351098	2.0392963
С	-2.7487776	-0.779157	3.7279564
Н	-3.5410802	-0.6955345	4.4748034
Н	-1.8748232	-1.2262436	4.2099931
Н	-2.4724083	0.2293122	3.4115692

0	-2.4877565	-2.8667765	0.5532081
Н	-2.3645447	-3.6867872	1.0469756

20. Reference

- S. Tshepelevitsh, A. Kütt, M. Lõkov, I. Kaljurand, J. Saame, A. Heering, P. G. Plieger, R. Vianello, I. Leito, *Eur. J. Org. Chem.* 2019, 2019, 6735.
- M. Horikawa, T. Hashimoto, Y. Asakawa, S. Takaoka, M. Tanaka, H. Kaku, T. Nishii, K. Yamaguchi, H. Masu, M. Kawase, S. Suzuki, M. Sato, T. Tsunoda, *Tetrahedron* 2006, 62, 9072.
- 3. M. Horikawa, M. Tanaka, H. Kaku, T. Nishii, T. Tsunoda, Tetrahedron 2008, 64, 5515.
- Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.