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1. Characterization of material 

The morphologies of the catalysts were tested using a scanning electron microscope 

(SEM, Sirion 200). The particle size and internal structure of products were researched via 

transmission electron microscopy (TEM, FEI, Tecnai-F20). X-ray diffraction (XRD) patterns 

were measured via X-ray diffractometer (Bruker D8 Advance) with Cu-Kɑ radiation. Raman 

spectra were implemented on an invia Reflex spectrometer with an excitation wavelength of 

532 nm. The surface area of products was computed by the Brunauer-Emmett-Teller (BET) 

method in the adsorption data. The X-ray photoelectron spectroscopy was implemented by 

virtue of the ThermoFisher K-Alpha instrument. 

2. Electrochemical performance evaluation 

The electrochemical properties of the ORR were performed on the 760D electrochemical 

workstation. The three electrode system is made up of an Ag/AgCl (reference electrode), a Pt 

wire (counter electrode), a glass carbon electrode (GCE, working electrode). The preparation 

process of working electrode is as follows: 5.0 mg catalyst tested was mixed in 1 mL of 5% 

Nafion (100 μL), ethanol (450 μL) and water (450 μL) followed by ultrasonication for 30 min. 

Afterward, 10 µL of the above ink was dripped into the well-polished glassy carbon electrode 

using a microliter syringe, and then let it dry naturally. The loading capacity of all catalysts 

and the benchmark Pt/C catalyst is calculated as follows: The diameter of the glass carbon 

electrode is 5 mm, and its area is about 0.196 cm
2
. The concentration of catalyst ink is 5 

mg/mL. For CVs and LSV test, drop 0.01 mL catalyst ink, and the catalyst load is: 

5*0.01/0.196≈0.25 mg/cm
2
. All electrochemical measurements were performed in O2- or 

N2-saturated 0.1 M KOH. Then, cyclic voltammograms (CVs) were measured between -0.8 

and 0.2 V to activate the catalysts. The linear sweep voltammograms (LSV) were conducted 

at different electrode speeds from 400 to 2500 rpm. 

The ORR dynamics can be analyzed using the Koutecky-Levich (K-L) equations: 
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In which, jk and ω are kinetic current density on RDE and the rotating speed of the RDE, 

respectively. F is the Faraday constant (96485 C·mol
-1

), D0 is the diffusion coefficient of O2 in 



 

 

0.1 M KOH (1.9×10
-5

 cm
2
·s

-1
), v is the kinetic viscosity of the electrolyte (1.2×10

−6
mol cm

−3
), 

and C0 is the concentration of O2. 

The RRDE test was implemented via LSV from 0.2 to -1 V versus Ag/AgCl with a 

scanning speed of 10 mV s 
−1

 at 1600 rpm. Meanwhile the ring electrode was maintained at 

1.3 V versus RHE. The number of transferred electrons (n) and the percentage of hydrogen 

peroxide (H2O2) were counted by using the following formula: 

𝐻2𝑂2% = 200
𝐼𝑟/𝑁

𝐼𝑑+𝐼𝑟/𝑁
               (3) 

n = 4
𝐼𝑑

𝐼𝑑+𝐼𝑟/𝑁
                      (4) 

Here, Id refers to the disk current, Ir refers to the ring current, and N symbolizes the 

collection coefficient of the platinum wire (N = 0.37). 

  



 

 

 

 

Fig. S1. The SEM images of Fe/Zn-MOFs. 

 

 

Fig. S2. The SEM images of C-Fe/Zn-MOFs@GO.  



 

 

 

Fig. S3. XRD patterns of (a) GO and (b) rGO. 

 

 

Fig. S4. LSV curves of C-Fe/Fe3O4@NGF at different temperatures. 

 

 

Fig. S5. (a) LSV curves of C-Fe/Fe3O4 catalyst recorded at different rotation rates. (b) Corresponding 

Kouteck-Levich plots derived from the RDE data. (c) The calculated electron transfer number derived from 

Kouteck-Levich plots. 
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Fig. S6. (a) LSV curves of Fe/Fe3O4@NGF catalyst recorded at different rotation rates. (b) 

Corresponding Kouteck-Levich plots derived from the RDE data. (c) The calculated electron transfer 

number derived from Kouteck-Levich plots. 

 

 

Fig. S7. (a) LSV curves of Fe/Fe3O4 catalyst recorded at different rotation rates. (b) Corresponding 

Kouteck-Levich plots derived from the RDE data. (c) The calculated electron transfer number derived from 

Kouteck-Levich plots. 

 

 

Fig. S8. LSV curves of C-Fe/Fe3O4@NGF before and after stability tests. 
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Table. S1 Comparison of ORR performance under alkaline conditions for our synthesized sample with 

other reported benchmark catalysts. 

 ORR activity (0.1 M KOH solution) 

catalyst 

CV vs. 

RHE / V 

Eonset vs. 

RHE / V 

E1/2 vs. 

RHE / V 
Ref 

Co3Fe7-PCNF-850 0.83 V  0.85 V [1] 

H-Fe-Nx-C  1.05 V 0.92 V [2] 

Co/N CCPC-3 0.752 V 0.921 V 0.827 V [3] 

Fe@N­CNTs@rGO 0.769 V  0.83 V [4] 

a-Fe2O3/Fe3O4/hNCNC 0.82 V 1.030 V 0.838 V [5] 

N-Co3O4@NC-2  0.89 V 0.77 V [6] 

Co-N/CNFs  0.92 V 0.82 V [7] 

Ni-NC700 0.73 V 0.86 V 0.75 V [8] 

Fe20@N/HCSs  - 0.86 V [9] 

Co,N-C900 0.88 V 0.97 V 0.85 V [10] 

Fe3O4@NHCSs  0.952 V 0.822 V [11] 

L-CCNTs-Co-800 0.79 V 0.90 V 0.84 V [12] 

Co@BNCNTs-900 0.83 V 0.93 V 0.82 V [13] 

Fe3C-Co/NC 0.82 V 0.94 V 0.885 V [14] 

Co/N-CNTs@Ti3C2Tx 0.80 V 0.936 V 0.815 V [15] 

NG800  0.88 V 0.76 V [16] 

N-hG 0.77 V 0.91 V 0.833 V [17] 

COP@K10-Fe-900 0.816 V 0.97 V 0.85 V [18] 

N-Co3O4@NC-2  0.89 V 0.77 V [19] 

Co@N-CNTF-2 0.81 V 0.91 V 0.81 V [20] 

Co/N-BCNTs 0.80 V  0.83 V [21] 

CoZn-N-C-6 0.80 V 0.971 V 0.834 V [22] 

C-Fe/Fe3O4@NGF 0.84 V 0.96 V 0.86 V This Work 
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