Supporting information for:

Synthesis, Characterization of $Mo_xFe_{1-x}O$ Nanocomposites for Ultrafast Degradation of Methylene Blue via Fenton-like Process: A Green Approach

Shatarupa Basak^a, Suranjan Sikdar^b, Salim Ali^a, Modhusudan Mondal^a, Vikas Kumar Dakua^c, Mahendra Nath Roy^{a,d*}

^aDepartment of Chemistry, University of North Bengal, Darjeeling-734013, West Bengal, India. ^bDepartment of Chemistry, Govt. General Degree College, Kushmandi, Dakshin Dinajpur-733121, West Bengal, India.

^cDepartment of Chemistry, Alipurduar University, Alipurduar-736122, West Bengal, India. ^dVice-Chancellor, Alipurduar University, Alipurduar-736122, West Bengal, India.

*Corresponding Author:

Mahendra Nath Roy: <u>mahendraroy2002@yahoo.co.in</u>, <u>vcapduniversity@gmail.com</u>.

Number of pages: 07

Number of Figures: 09

Number of Tables: 03

Number of Scheme: 01

Table S1: Different amount of Ferrous sulphate heptahydrate (FeSO₄.7H₂O) & AmmoniumMolybdate ($(NH_4)_6Mo_7O_{24}.4H_2O$) salts for the synthesis of $Mo_xFe_{1-x}O$ Nanocomposites

Samples	% of Mo in composites	Amount of (NH ₄) ₆ Mo ₇ O ₂₄ .4H ₂ O in g	Amount of FeSO ₄ . ^{7H} 2 ^O in g
MoI1	5	1.1695	5.0003
MoI2	10	2.4682	5.0009
MoI3	15	3.9223	5.0007

Table S2: Average hydrodynamic particle sizes of the nanocomposites from dynamic light scattering

Samples	mples Average hydrodynamic size of nanocomposites (nm)		
MoI1	5		
MoI2	10		
MoI3	15		

Table S3: Kinetic parameters obtained from the zero order kinetic model at different reaction conditions

Parameter	Samples	Concentration	Zero order	
			lz.	D 2
Decage of Catalysts	MOII	10 mM	κ_1	N 72562
Dosage of Catalysis	WOII	20 mM	0.03977	0.73302
		30 mM	0.03378	0.56305
	MOI2	10 mM	0.03425	0.97832
	11012	20 mM	0.043472	0.5398
		30 mM	0.03333	0.90918
	MOI3	10 mM	0.02959	0.75654
		20 mM	0.01349	0.76704
		30 mM	0.02733	0.71596
H ₂ O ₂ concentration	MOI1	10 mM	0.04011	0.91953
		20 mM	0.03977	0.73562
		30 mM	0.00916	0.64027
	MOI2	10 mM	0.03228	0.94843
		20 mM	0.04349	0.90918
		30 mM	0.04282	0.75965
	MOI3	10 mM	0.00916	0.64027
		20 mM	0.02959	0.75654
		30 mM	0.01337	0.73016
Dye concentration	MOI1	15mg/L	0.03977	0.73562
		10 mg/L	0.03955	0.80048
		5 mg/L	0.03225	0.87351
	MOI2	15 mg/L	0.08478	0.97301
		10 mg/L	0.16524	0.96883
	MOD	5 mg/L	0.03452	0.95096
	MOI3	15 mg/L	0.02959	0./5654
		10 mg/L	0.01298	0.88/85
nU variation	MOII	5 mg/L	0.00934	0.79895
pri variation	WIOII	pH 2	0.04170	0.88934
		pH 10	0.03273	0.94933
	MOI2	nH 2	0.02935	0.48856
		pH 2 pH 7	0.04126	0.80593
		pH 10	0.04159	0.83938
	MOI3	pH 2	0.02067	0.92089
		pH 7	0.01298	0.88785
		pH 10	0.03013	0.62956
Temperature	MOI1	283.15 K	0.04234	0.8597
variation		303.15 K	0.03955	0.80048
		323.15 K	0.03288	0.557
	MOI2	283.15 K	0.04304	0.94645
		303.15 K	0.04126	0.80593
		323.15 K	0.0295	0.5901
	MOI3	283.15 K	0.01119	0.9821
		505.13 K	0.01298	0.00/00

	323.15 K	0.00617	0.8912
--	----------	---------	--------

Scheme S1 Formation mechanism of nanomaterials by PGP extract (alkaloids and flavonoids compounds).

Figure S1: Degradation of MB only in presence of 20 mM (a) MoI1, (b) MoI2, (c) MoI3

Figure S2: Degradation of MB only in presence of MoO₃ catalyst only.

Figure S3: Zero order kinetics of catalyst concentration variation for (a) MoI1, (b) MoI2, (c) MoI3.

Figure S4: Zero order kinetics of H₂O₂ concentration variation for (a) MoI1, (b) MoI2, (c) MoI3.

Figure S5: Zero order kinetics of dye concentration variation for (a) MoI1, (b) MoI2, (c) MoI3.

Figure S6: Zero order kinetics of pH variation for (a) MoI1, (b) MoI2, (c) MoI3.

Figure S7: Zero order kinetics of temperature variation for (a) MoI1, (b) MoI2, (c) MoI3.

Figure S8: % of degradation of MB in presence of $Mo_xFe_{1-x}O$ ([$Mo_xFe_{1-x}O$]=10 mM, [MB] =15 mg/L, [H_2O_2]=20 mM, T= 303.15 K) by using (a) 6.7 µg/mL NaN₃ & (b) 67 µL/mL MeOH as scavenger.

Figure S9: SEM images of MoI1, MoI2 & MoI3 catalysts after catalytic experiment.