Supporting Information

Selective production of CH₄ for photocatalytic CO₂ reduction over Pd modified BiOCl

Zeai Huang^{a,b,*},Jundao Wu^b, Minzhi Ma^b, Junbu Wang^b, Shuqi Wu^b, Xiaoyun Hu^b, Chengdong Yuan^c, Ying Zhou^{a,b,c,*}

^aState Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China. E-mail: <u>zeai.huang@swpu.edu.cn;</u> <u>yzhou@swpu.edu.cn</u>; Fax: +86 28 8303-7411; Tel: +86 28 8303-7411 ^bInstitute of Carbon Neutrality & School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China.

^cDepartment of Petroleum Engineering, Kazan Federal University, Kazan 420008, Russia.

Fig.S1 The time course of Au, Ag, Pt, Pd modified BiOCl and pure BiOCl.

Fig.S2 (a) Mass result of main products during photocatalytic CO_2 reduction using ¹³CO₂ during photocatalytic reduction of CO₂ over 1.0 wt% Pd/BiOCl; (b)blank tests (i)with catalyst only and without (ii) catalyst, (iii) photoirradiation, (iv) CO₂, and (v) photocatalyt, respectively, (vi) with catalyst, photoirraidtion, CO_2 and photocatalyst over 1.0 wt% Pd/BiOCl.

Fig.S3 Recycle test of photocatalytic CO₂ reduction over 1.0 wt% Pd/BiOCl.

Fig.S4 Pd particle size distribution of 1.0 wt% Pd-BiOCl sample.