Radical Directed Regioselective Functionalization of Diverse Alkene Derivatives.

Pavithira Suresh^a, Subramaniyan Prasanna Kumari,^a Singarajanahalli Mundarinti Krishna Reddy,^a Savarimuthu Philip Anthony, Subbiah Thamotharan^b and Subramaniapillai Selva Ganesan,^{*a}

^aDepartment of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thirumalaisamudram, Thanjavur 613401, Tamil Nadu, India. Fax: +91 (4362) 264120; E-mail: selva@biotech.sastra.edu

^bBiomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur-613401, Tamil Nadu, India.

Supporting information

Total number of pages: S47

Table of Context

S No	Details	Page no
1	Materials and Methods	S2-S9
2	Scanned copies of spectra	S10-S41
3	Disordered structure of 3b	S42
3	In silico studies	S43-S46
4	References	S47

Materials and methods:

All reactions were carried in oven-dried glassware with magnetic stirring. Starting material of 2-benzylidene-1,3-indandione were synthesized from aromatic aldehyde (purchased from Avra, HIMEDIA & SRL) and 1,3-indandione (Sigma Aldrich& SRL). Pivalic acid and pyruic acid were purchased from spectrochem and phenylglyoxylic acid was purchased from Alfa Asear. Silver nitrate and potassium peroxydisulfate were purchased from Merck. Acetronitrile was purchased from Ranbaxy. Double distilled water was used. Silica gel 100-200 (code 28112200) mesh size was purchased from SRL. Sodium chloride was purchased from SRL (Assay =99.5%). Melting points were uncorrected. ¹H NMR was recorded JEOL NMR Spectrometer (JNM-ECZ600R/S1) 600 MHz and ¹³C 150 MHz spectrometer using TMS as an internal standard and CDCl₃ as a solvent. High resolution ESI mass spectra were recorded on Q-TOF & MicrOTOF-Q-II mass spectrometer.

Methods:

General Procedure

1. Synthesis of 2-benzylidene-1,3-indandione (1a-h) derivatives

The synthesis of 2-benzylidene-1,3-indandione derivatives were performed by modified procedure of the literature.¹ In the 25 mL RBF, 1,3-indandione (146 mg, 1 mmol), aryl aldehydes (1 mmol), and in methanol was added L-proline (17 mg, 0.15 mmol) and the reaction mixture was reflux for 3 h to 16 h. The completion of the reaction was monitored by Thin Layer Chromatography (TLC). The solvent was removed under reduced pressure. The crude residue was washed with methanol; formation of solid was filtered and dried to afford crude residues. The crude residues were purified by flash chromatography at 10% EtOAc in hexanes.

2. General procedure for the synthesis of peroxo indandione (3a-g) derivatives

A suspension of 2-benzylidene-1,3-indandione derivatives (0.1 mmol) and pivalic acid (41 mg, 0.4 mmol) in H₂O:ACN (1:1 v/v) (2 mL) was stirred at room temperature. AgNO₃ (5 mg, 0.03 mmol) and K₂S₂O₈ (54 mg, 0.2 mmol) was added to the reaction mixture and allowed to stir till the complete the reaction. After completion, the mixture was quenched with water and extracted with ethyl acetate (3×5 mL). The organic layer was dried over anhydrous sodium sulfate. After drying, the organic layer was filtered, and concentrated under reduced pressure to afford crude reaction of product. The crude mixture was purified by column chromatography at 5% EtOAc in Hexane to afford pure product.

2-(1-(4-bromophenyl)-2,2-dimethylpropyl)-2-(tert-butylperoxy)-1H-indene-1,3(2H)-

dione (3a). Yellow liquid, Yield: 68% (31 mg), ¹H NMR (600 MHz, CDCl₃): δ = 7.88 (d, J = 7.8 Hz, 1H), 7.77-7.74 (m, 1H), 7.71-7.68 (m, 2H), 7.19 (dd, J = 7.8 Hz, 2.4 Hz, 1H), 7.13 (dd, J = 8.4 Hz, 2.4 Hz, 1H), 7.05 (dd, J = 8.4 Hz, 2.4 Hz, 1H), 6.84 (dd, J = 8.4 Hz, 2.4 Hz, 1H), 3.34 (s, 1H), 1.03 (s, 9H), 0.99 (s, 9H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 199.9, 199.6, 141.9, 140.9, 135.9, 135.8, 135.7, 134.8, 131.5, 131.0, 130.2, 122.9, 122.8, 121.0, 87.6, 81.4, 60.2, 35.2, 30.4, 26.3. HRMS (ESI): calcd for C₂₄H₂₇BrO₄ [M+Na⁺]: 481.0985, found: 481.0986.

2-(*tert*-butylperoxy)-2-(2,2-dimethyl-1-phenylpropyl)-1*H*-indene-1,3(2*H*)-dione(3b). Offwhite solid, Yield: 79% (30.2 mg), Mp: 118-121 °C. ¹H NMR (600 MHz, CDCl₃): δ = 7.84 (d, J = 7.8 Hz, 1H), 7.69-7.66 (m, 1H), 7.61-7.59 (m, 2H), 7.08 (d, J = 7.8 Hz, 1H), 7.03–7.00 (m, 1H), 6.93 – 6.91 (m, 2H), 6.84 – 6.81 (m, 1H), 3.34 (s, 1H), 1.084 (s, 9H), 1.077 (s, 9H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 200.1, 199.7, 142.2, 140.8, 136.6, 135.5, 135.3, 133.2, 129.7, 128.0, 127.1, 126.8, 122.7, 122.6, 88.8, 81.2, 60.9, 35.5, 30.7, 26.4. HRMS (ESI): calcd for C₂₄H₂₈O₄ [M+NH₄⁺]: 398.2326, found: 398.2330.

2-(*tert*-butylperoxy)-2-(2,2-dimethyl-1-(*p*-tolyl)propyl)-1*H*-indene-1,3(2*H*)-dione(3c).

Yellowish solid, Yield: 67% (26.6 mg), Mp: 120-122 °C. ¹H NMR (600 MHz, CDCl₃): δ = 7.84 (d, J = 7.8 Hz, 1H), 7.69-7.67 (m, 1H), 7.60 (d, J = 4.8 Hz, 2H), 6.90 (dd, J = 7.8 Hz, 1.8 Hz, 1H), 6.82–6.77 (m, 2H), 6.61 (d, J = 7.8 Hz, 1H), 3.30 (s, 1H), 2.08 (s, 3H), 1.09 (s, 9H) 1.07 (s, 9H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 200.2, 199.7, 142.3, 140.8, 136.4, 135.4, 135.2, 133.3, 133.1, 129.5, 128.6, 127.8, 122.7, 122.5, 88.9, 81.1, 60.5, 35.5, 30.6, 26.4, 20.9. HRMS (ESI): calcd for C₂₅H₃₀NO₄ [M+NH₄⁺]: 412.2482, found: 412.2503.

2-(tert-butylperoxy)-2-(1-(4-methoxyphenyl)-2,2-dimethylpropyl)-1H-indene-1,3(2H)-

dione (3d). Off-white solid, Yield: 72% (29.5 mg), Mp: 101-102 °C. ¹H NMR (600 MHz, CDCl₃): δ = 7.84 (d, *J* = 7.8 Hz, 1H), 7.70-7.67 (m, 1H), 7.62-7.61 (m, 2H), 6.95 (dd, *J* = 2.4 Hz, 9.0 Hz, 1H), 6.83 (dd, *J* = 3.0 Hz, 9.0 Hz, 1H), 6.55 (dd, *J* = 3.0 Hz, 8.4 Hz, 1H), 6.37 (dd, *J* = 3.0 Hz, 8.4 Hz, 1H), 3.61 (s, 3H), 3.30 (s, 1H), 1.09 (s, 9H), 1.07 (s, 9H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 200.2, 199.8, 158.3, 142.2, 140.8, 135.5, 135.3, 134.3, 130.6, 128.6, 122.7, 122.5, 113.0, 112.8, 88.9, 81.1, 60.0, 55.1, 35.6, 30.6, 26.4. HRMS (ESI): calcd for C₂₅H₃₀O₅ [M+Na⁺]: 433.1985, found: 433.1997.

2-(tert-butylperoxy)-2-(1-(4-chlorophenyl)-2,2-dimethylpropyl)-1H-indene-1,3(2H)-

dione(3e). Off-white solid, Yield: 54% (22.3 mg), Mp: 111-113 °C. ¹H NMR (600 MHz, CDCl₃): δ = 7.88 (d, *J* = 7.8 Hz, 1H), 7.76-7.74 (m, 1H), 7.70-7.69 (m, 2H), 7.18 (dd, *J* = 8.4 Hz, 2.4 Hz, 1H), 7.04 (dd, *J* = 7.8 Hz, 2.4 Hz, 1H), 6.91 – 6.89 (m, 2H), 3.35 (s, 1H), 1.03 (s, 9H), 1.00 (s, 9H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 199.9, 199.7, 141.9, 140.9, 135.9, 135.7, 135.3, 134.4, 132.8, 131.1, 128.0, 127.3, 122.9, 122.7, 87.7, 81.3, 60.1, 35.3, 30.4, 26.3. HRMS (ESI): calcd for C₂₄H₂₇ClO₄ [M+NH₄⁺]: 432.1936, found: 432.1939.

4-(1-(2-(tert-butylperoxy)-1,3-dioxo-2,3-dihydro-1H-inden-2-yl)-2,2-

dimethylpropyl)benzonitrile (3f). white solid, Yield: 60% (24.1 mg), Mp: 112-114 °C. ¹H NMR (600 MHz, CDCl₃): δ = 7.92 (d, J = 7.2 Hz, 1H), 7.82-7.75 (m, 3H), 7.69 (dd, J = 8.4 Hz, 1.2 Hz, 1H), 7.43 (dd, J = 7.8 Hz, 1.8 Hz, 1H), 7.36 (dd, J = 7.8 Hz, 1.2 Hz, 1H), 7.15 (dd, J = 7.8 Hz, 1.2 Hz, 1H), 3.48 (s, 1H), 0.94 (s, 9H), 0.92 (s, 9H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 199.5, 199.4, 142.8, 141.6, 141.0, 136.3, 136.1, 133.6, 131.5, 131.1, 130.8, 123.1, 123.0, 118.9, 110.7, 86.3, 81.6, 60.7, 35.0, 30.2, 26.1. HRMS (ESI): calcd for C₂₅H₂₇NO₄ [M+Na⁺]: 428.1832, found: 428.1831.

2-(tert-butylperoxy)-2-(2,2-dimethyl-1-(4-nitrophenyl)propyl)-1H-indene-1,3(2H)-

dione(3g). Off-white solid, Yield: 60% (25.7 mg), Mp: 88-90 °C. ¹H NMR (600 MHz, CDCl₃): $\delta = 8.01$ (dd, J = 2.4 Hz, 8.4 Hz, 1H), 7.98-7.94 (m, 2H), 7.84-7.81 (m, 3H), 7.79-7.77 (m, 1H), 7.23 (dd, J = 1.8 Hz, 8.4 Hz, 1H), 3.57 (s, 1H), 0.93 (s, 9H), 0.91 (s, 9H) ppm. ¹³C NMR (150 MHz, CDCl₃): $\delta = 199.5$, 199.4, 146.8, 145.0, 141.5, 141.1, 136.4, 136.2, 133.8, 131.2, 123.2, 123.1, 122.8, 122.2, 86.0, 81.6, 60.4, 35.0, 30.2, 26.1. HRMS (ESI): calcd for C₂₄H₂₇NO₄ [M+K⁺]: 464.1470, found: 464.1471.

3. Synthesis of acetyl indandione (4a-g) derivatives.

A suspension of 2-benzylidene-1,3-indandione derivatives (0.2 mmol) and pyruvic acid (35.2 mg, 0.4 mmol)in 2 mL of H₂O:ACN (1:1 v/v) was stirred at room temperature.AgNO₃ (5 mg, 0.03 mmol) and K₂S₂O₈ (54 mg, 0.2 mmol) was added to the reaction mixture and allowed to complete the reaction. After completion, the mixture was quenched with water (3 mL) and extract with ethyl acetate (3 × 5 mL). The organic layer was dried over anhydrous sodium sulfate. After drying, the organic layer was filtered, and concentrated under reduced pressure

to afford crude reaction of product. The crude mixture was purified by column chromatography at 10% to 20%EtOAc in hexanes to afford pure product.

2-(2-oxo-1-phenylpropyl)-1*H***-indene-1,3(2***H***)-dione (4a)** Off-white solid, Yield: 85% (47.3 mg), Mp: 115-118 °C. ¹H NMR (600 MHz, CDCl₃): δ = 7.97-7.92 (m, 2H), 7.83-7.77 (m, 2H), 7.51-7.49 (m, 2H), 7.40-7.38 (m, 2H), 7.34-7.31 (m, 1H), 4.63 (d, *J* = 3 Hz, 1H), 3.35 (d, *J* = 3 Hz, 1H), 2.02 (s, 3H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 206.2, 198.8, 198.7, 142.7, 141.2, 136.3, 135.6, 135.1, 130.3, 129.1, 128.1, 123.3, 123.1, 60.1, 55.6, 28.2. HRMS (ESI): calcd for C₁₈H₁₄O₃ [M+Na⁺]: 301.0835, found: 301.0840.

2-(2-oxo-1-(*p***-tolyl)propyl)-1***H***-indene-1,3(2***H***)-dione (4b) yellow liquid, Yield: 77% (45.1 mg), ¹H NMR (600 MHz, CDCl₃): \delta = 7.96-7.92 (m, 2H), 7.82-7.77 (m, 2H), 7.37 (d,** *J* **= 8.4 Hz, 2H), 7.19 (d,** *J* **= 7.8 Hz, 2H), 4.60 (d,** *J* **= 2.4 Hz, 1H), 3.32 (d,** *J* **= 3.0 Hz, 1H), 2.34 (s, 3H), 2.02 (s, 3 H) ppm. ¹³C NMR (150 MHz, CDCl₃): \delta = 206.5, 198.9, 198.8, 142.8, 141.2, 137.8, 135.6, 135.1, 133.2, 130.1, 129.8, 123.3, 123.1, 59.7, 55.6, 28.1, 21.2. HRMS (ESI): calcd for C₁₉H₁₆O₃ [M+Na⁺]: 315.0992, found: 315.0978.**

2-(1-(4-methoxyphenyl)-2-oxopropyl)-1*H***-indene-1,3(2***H***)-dione(4c)** Off-white solid, Yield: 67% (41.5 mg), Mp: 106-109 °C. ¹H NMR (600 MHz, CDCl₃): δ = 7.96-7.91 (m, 2H), 7.82-7.77 (m, 2H), 7.41-7.39 (m, 2H), 6.91-6.90 (m, 2H), 4.58 (d, *J* = 3 Hz, 1H), 3.80 (s, 3H), 3.33 (d, *J* = 3.0 Hz, 1H), 2.01 (s, 3H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 206.5, 198.9, 159.3, 142.8, 141.3, 135.6, 135.1, 131.5, 128.2, 123.3, 123.1, 114.4, 59.3, 55.7, 55.4, 28.0. HRMS (ESI): calcd for C₁₉H₁₆O₄ [M+Na⁺]: 331.0941, found: 331.0951.

2-(1-(4-nitrophenyl)-2-oxopropyl)-1*H***-indene-1,3(2***H***)-dione (4d) Brownish semi solid, Yield: 53% (34.8 mg), ¹H NMR (600 MHz, CDCl₃): δ = 8.28-8.27 (m, 2H), 8.00-7.96 (m, 2H), 7.88-7.83 (m, 2H), 7.75-7.73 (m, 2H), 4.74 (d,** *J* **= 3.0 Hz, 1H), 3.40 (d,** *J* **= 3.0 Hz, 1H), 2.07** (s, 3H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 204.3, 198.2, 197.8, 147.8, 143.4, 142.5, 141.1, 135.9, 135.5, 131.4, 124.2, 123.5, 123.3, 59.2, 55.2, 28.4. HRMS (ESI): calcd for C₁₈H₁₃NO₅ [M+H⁺]: 324.0866, found: 324.0851.

2-(1-(4-chlorophenyl)-2-oxopropyl)-1*H***-indene-1,3(2***H***)-dione (4e)** yellow liquid, Yield: 52% (32.8 mg), ¹H NMR (600 MHz, CDCl₃): δ = 7.98-7.94 (m, 2H), 7.85-7.80 (m, 2H), 7.48-7.46 (m, 2H), 7.38-7.37 (m, 2H), 4.61 (d, *J* = 2.4 Hz, 1H), 3.35 (d, *J* = 3.0 Hz, 1H), 2.04 (s, 3H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 205.6, 198.6, 198.4, 142.6, 141.2, 135.7, 135.3, 134.7, 134.2, 131.7, 129.3, 123.3, 123.2, 59.2, 55.4, 28.1. HRMS (ESI): calcd for C₁₈H₁₃ClO₃ [M+Na⁺]: 335.0445, found: 335.0463.

2-(1-(4-bromophenyl)-2-oxopropyl)-1*H***-indene-1,3(2***H***)-dione (4f) Yellow liquid, Yield: 79% (56.2 mg), ¹H NMR (600 MHz, CDCl₃): δ = 7.97-7.93 (m, 2H), 7.84-7.79 (m, 2H), 7.53-7.51 (m, 2H), 7.40-7.39 (m, 2H), 4.57 (d,** *J* **= 3.0 Hz, 1H), 3.33 (d,** *J* **= 3.0 Hz, 1H), 2.02 (s, 3H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 206.5, 198.6, 198.4, 142.6, 141.2, 135.7, 135.3, 135.2, 132.3, 132.0, 123.4, 123.2, 122.4, 59.3, 55.4, 28.2. HRMS (ESI): calcd for C₁₈H₁₃BrO₃ [M+H⁺]: 357.0121, found: 357.0144.**

2-(1-(Furan-2-yl)-2-oxopropyl)-1*H***-indene-1,3(2***H***)-dione (4g)** Brown liquid, Yield: 55% (29.4 mg), ¹H NMR (600 MHz, CDCl₃): δ = 7.97-7.95 (m, 2H), 7.82-7.81 (m, 2H), 7.413-7.410 (m, 1H), 6.56 (d, *J* = 3.0 Hz, 1H), 6.394-6.386 (m, 1H), 4.72 (d, *J* = 3.0 Hz, 1H), 3.48 (d, *J* = 3.0 Hz, 1H), 2.09 (s, 3H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 204.0, 198.1, 197.8, 149.6, 142.6, 142.5, 141.5, 135.6, 135.3, 123.4, 123.2, 111.3, 110.2, 54.5, 52.2, 27.9. HRMS (ESI): calcd for C₁₆H₁₂O₄ [M+Na⁺]: 291.0628, found: 291.0628.

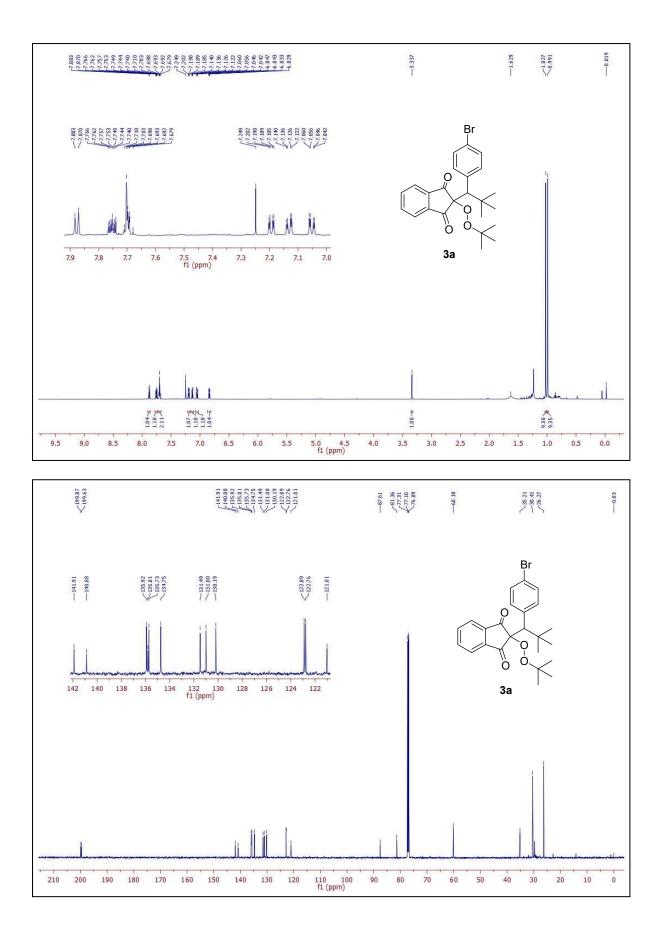
4. Synthesis of benzoyl indandione (5a):

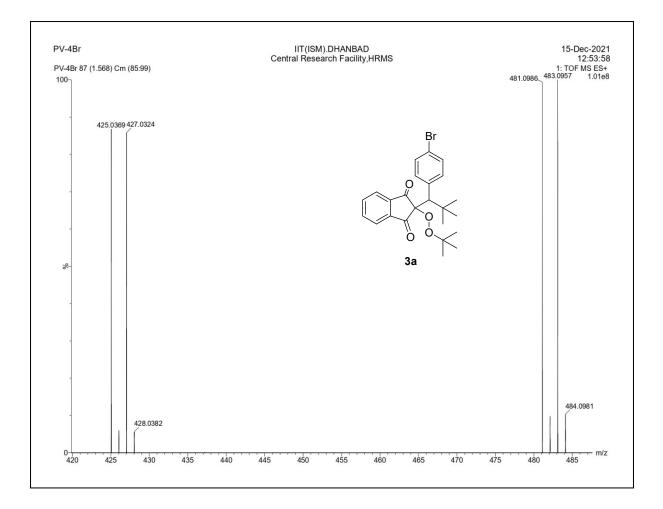
A suspension of 2-(4-methoxybenzylidene)-1H-indene-1,3(2H)-dione(52 mg, 0.2 mmol) and 2-oxo-2-phenylacetic acid (75 mg, 0.5 mmol) in 2 mL of H₂O:ACN (1:1 v/v) was stirred at room temperature. AgNO₃ (10 mg, 0.06 mmol) and K₂S₂O₈ (108 mg, 0.4 mmol) was added to the reaction mixture and allowed to stir for further 16 h. After completion of the reaction, the mixture was quenched with water (3 mL)and extract with ethyl acetate (3×5 mL). The organic layer was dried over anhydrous sodium sulfate. After drying, the organic layer was filtered, and concentrated under reduced pressure to afford crude reaction of product. The crude mixture was purified by column chromatography at 20% EtOAc in hexanes to afford pure product.

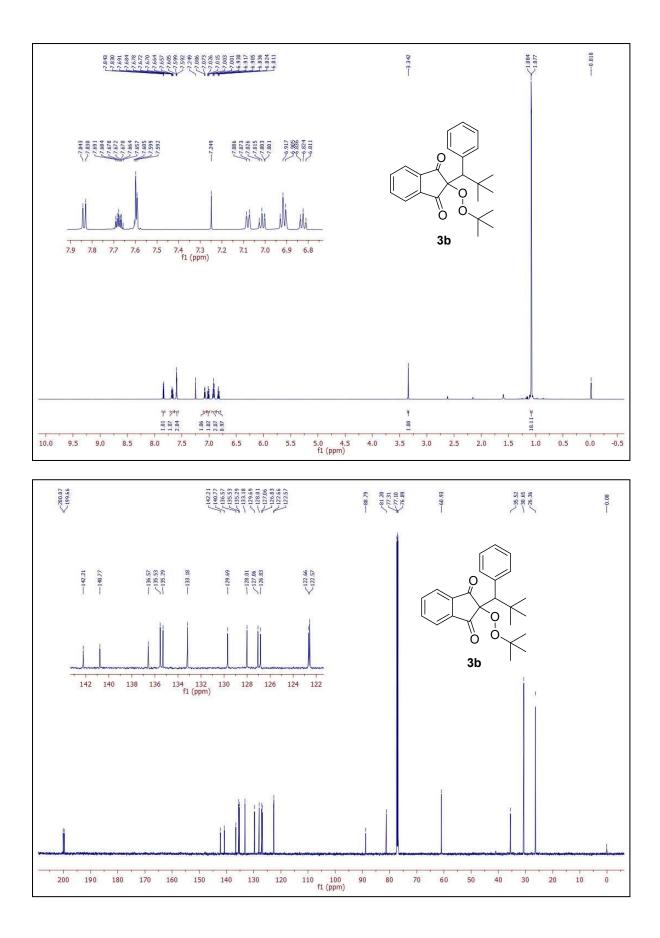
2-(1-(4-methoxyphenyl)-2-oxo-2-phenylethylidene)-1*H***-indene-1,3(2***H***)-dione (5a)** Yellow solid, Yield: 66% (48.9 mg), Mp: 77-79 °C. ¹H NMR (600 MHz, CDCl₃): δ = 7.97-7.92 (m, 3H), 7.83-7.74 (m, 5H), 7.54-7.52(m, 1H), 7.44-7.41 (m, 2H), 6.94(d, *J* = 7.8 Hz, 2H), 3.85 (s, 3H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 196.1, 189.7, 188.1, 163.2, 159.3, 142.4, 140.0, 135.8, 135.6, 135.5, 133.7, 133.3, 129.1, 128.9, 123.40, 123.36, 123.3, 114.1, 55.6. HRMS (ESI): calcd for C₂₄H₁₆O₄ [M+Na⁺]: 391.0941, found: 391.0930.

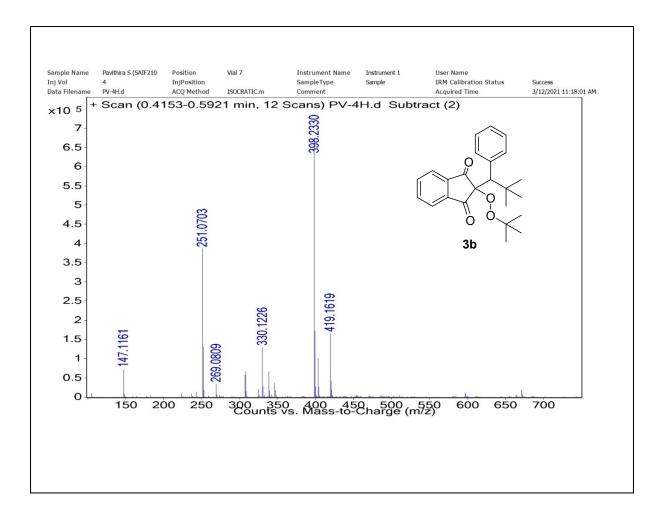
5. Reaction with 1,4-dione (6a-b) derivatives

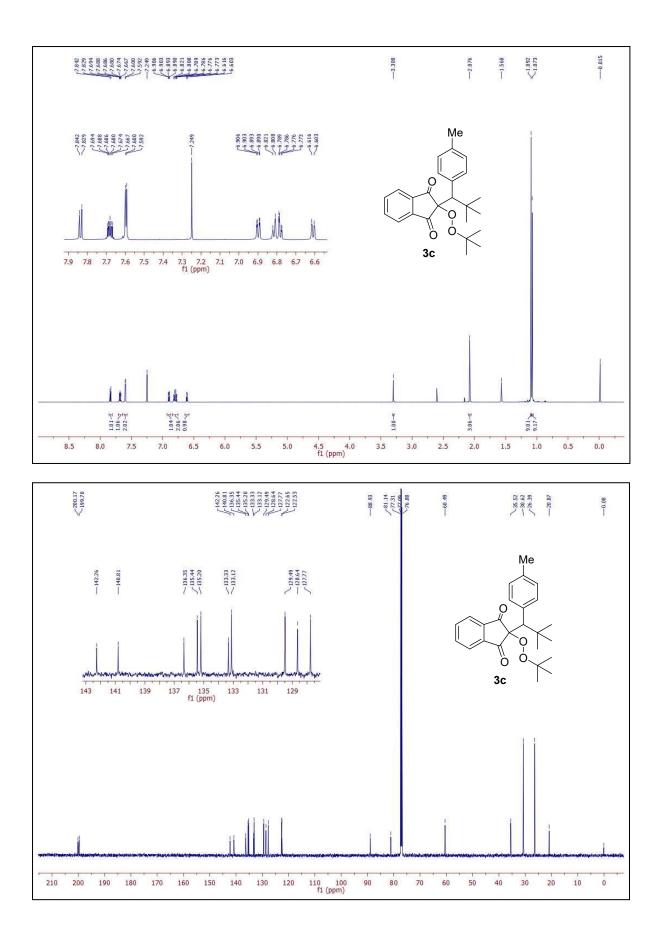
A suspension of 1,4-dione derivatives (0.4 mmol) and pivalic acid (66 mg, 0.65 mmol) in 2 mL of H₂O:ACN (1:1 v/v) was stirred at room temperature. AgNO₃ (10 mg, 0.06 mmol) and $K_2S_2O_8$ (108 mg, 0.4 mmol) was added to the reaction mixture and allowed to stir for further 16 h. After completion of the reaction, the mixture was quenched with water and extract with ethyl acetate (3 × 5 mL). The organic layer was dried over anhydrous sodium sulfate. After drying, the organic layer was filtered, and concentrated under reduced pressure to afford crude reaction of product. The crude mixture was purified by column chromatography at 5% EtOAc in hexanes to afford pure product.

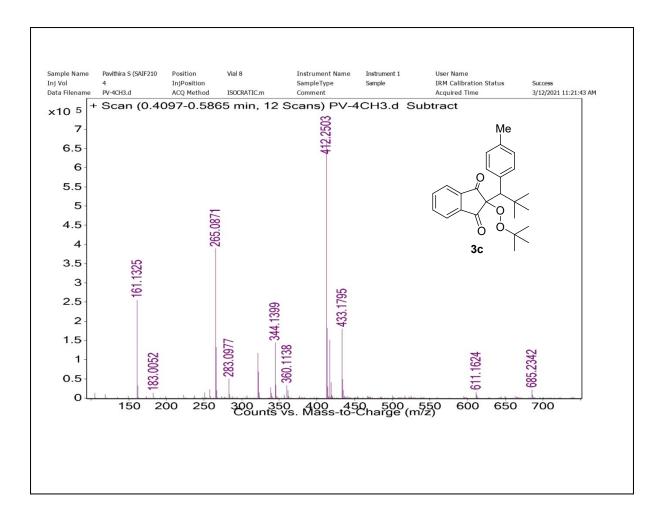

2-(*tert***-butyl)cyclohexa-2,5-diene-1,4-dione (6a)**² Brownish liquid, Yield: 61% (39.8 mg) (85%)[#] ¹H NMR (600 MHz, CDCl₃): δ = 6.67 (s (br), 2H), 6.58 (s (br), 1H), 1.27 (s, 9H). [#] - yield based on recovery starting material.

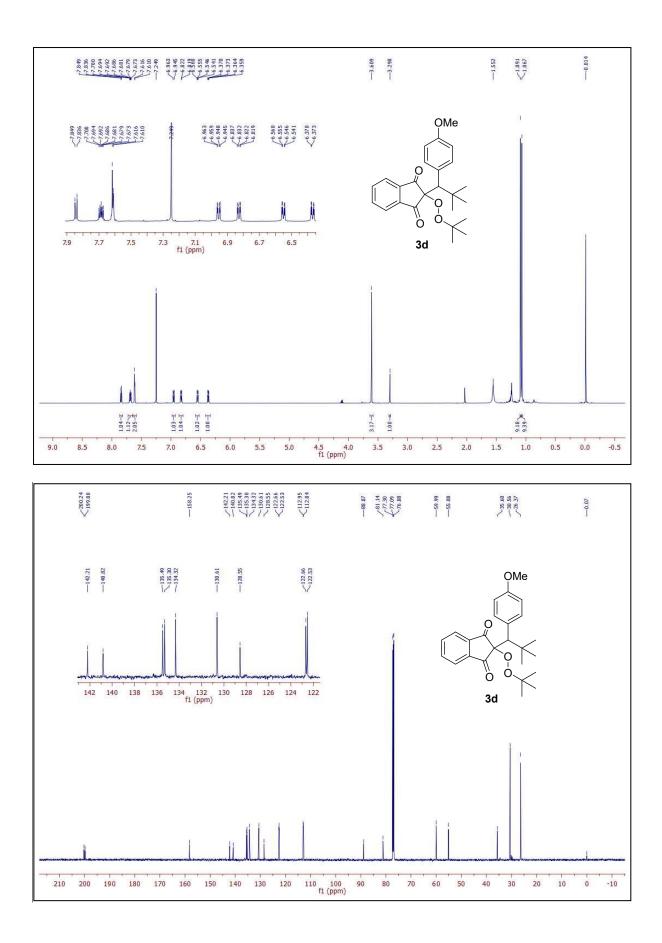

2-(tert-butyl)naphthalene-1,4-dione (6b) Yellow solid, Yield: 74% (63.4 mg), (94%)[#], Mp: 73-74 °C (Lit 76 °C)³. ¹H NMR (600 MHz, CDCl₃): δ = 8.08-8.07 (m, 1H), 8.03-8.01 (m, 1H), 7.73-7.67(m, 2H), 6.83 (s, 1H), 1.36 (s, 9H) ppm. [#] - yield based on recovery starting material.

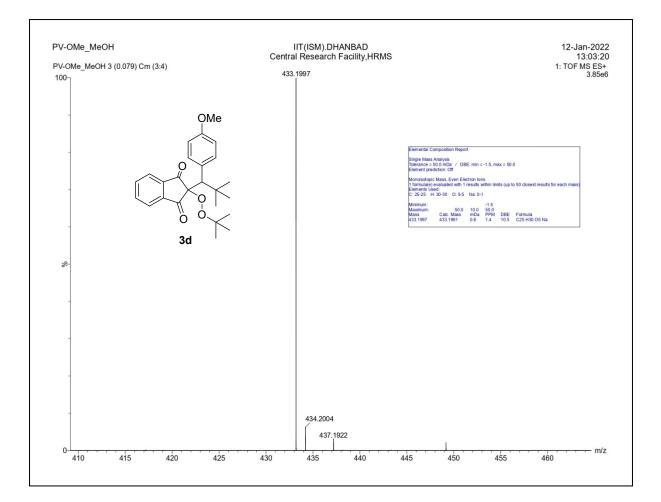

6. Reaction with TBHP

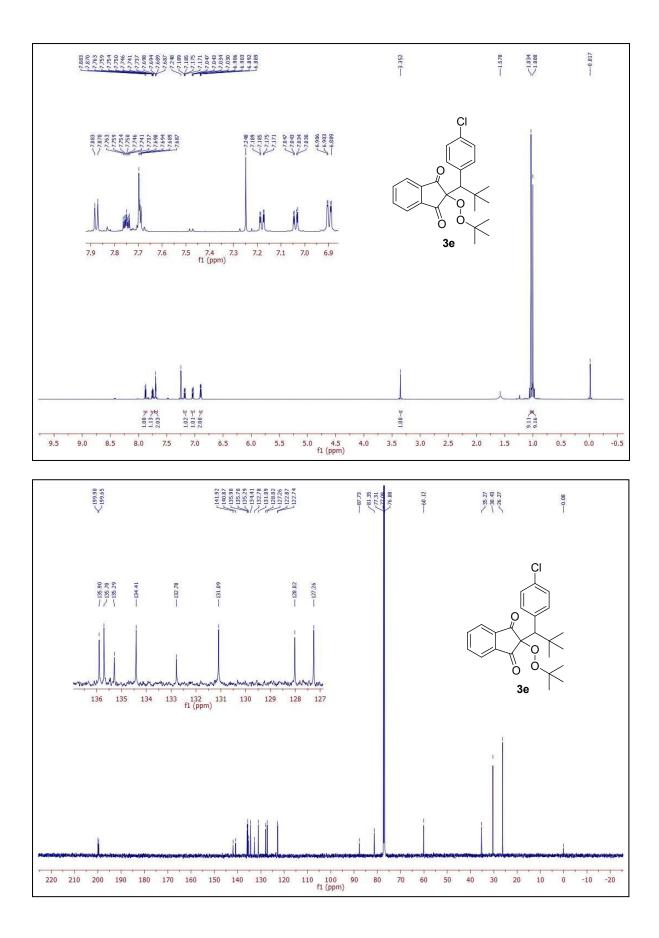

A suspension of 2-benzylidene-1,3-indandione(23 mg, 0.1 mmol) and pyruvic acid (35 mg, 0.4mmol) in 2 mL of H₂O:ACN (1:1 v/v) was stirred at room temperature. 70% TBHP solution in water (200 μ L, 0.02 mmol) and K₂S₂O₈ (54 mg, 0.2 mmol) was added to the reaction and allowed for 16 h. After completion of the reaction, the mixture was quenched with water and extract with ethyl acetate (3 × 5 mL). The organic layer was dried over anhydrous sodium sulfate. After drying, the organic layer was filtered, and concentrated under reduced pressure to afford crude reaction of product. The crude mixture was purified by column chromatography at 10% EtOAc in hexanes to afford pure product.

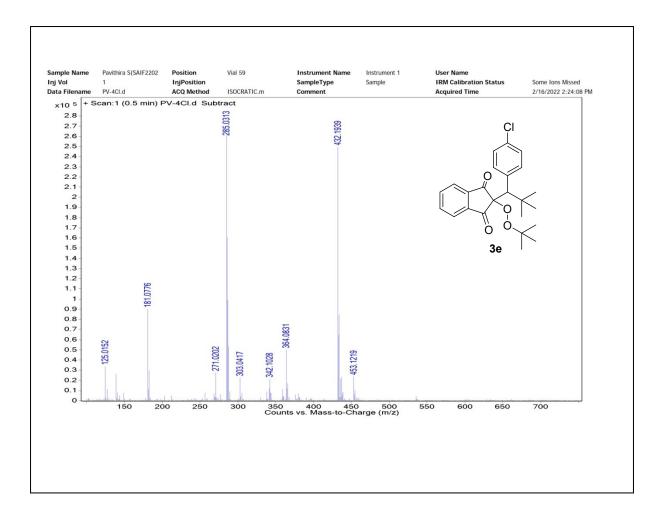

3'-phenylspiro[indene-2,2'-oxirane]-1,3-dione (7). white solid, Yield: 77% (19.3 mg), Mp: 134-136 °C (Lit 140-143 °C)⁴. ¹H NMR (600 MHz, CDCl₃): δ = 8.04-8.03 (m, 1H), 7.90-7.84 (m, 3H), 7.59 (dd, *J* = 7.8 Hz, 1.8 Hz, 2H), 7.40-7.37 (m, 3H), 4.73 (s, 1H) ppm.

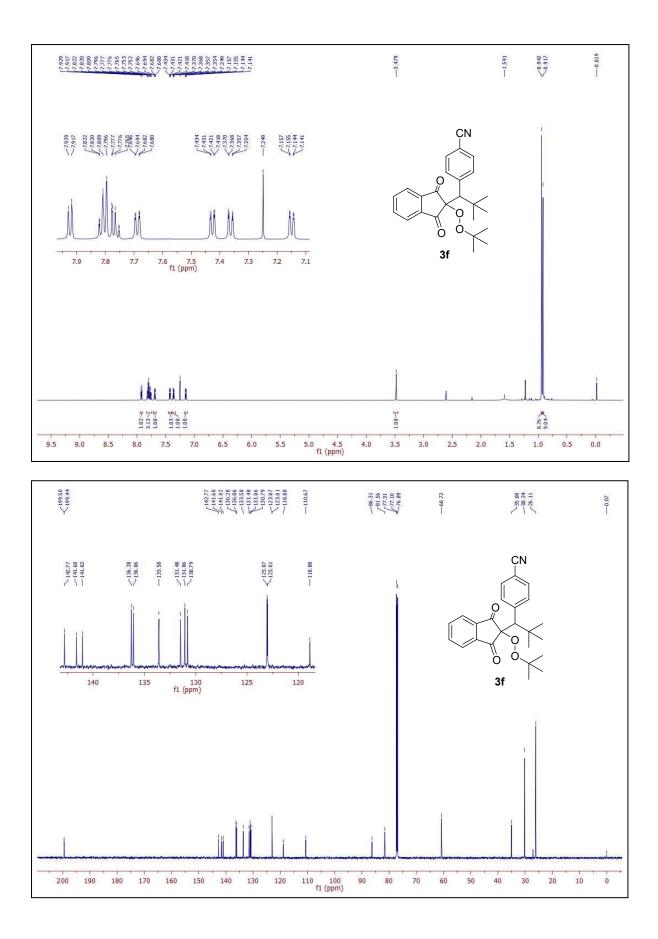


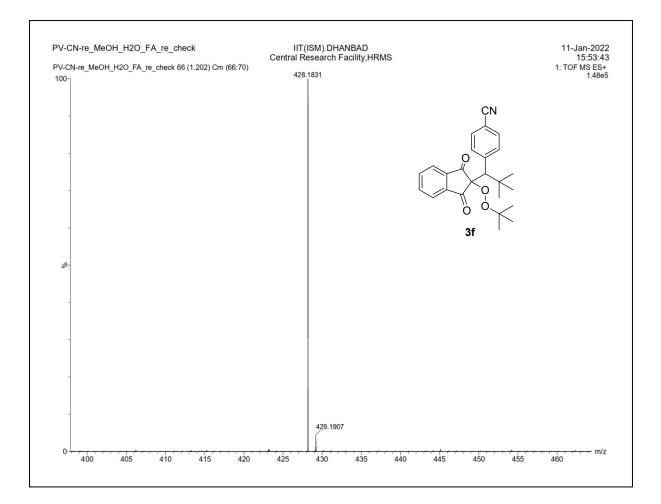


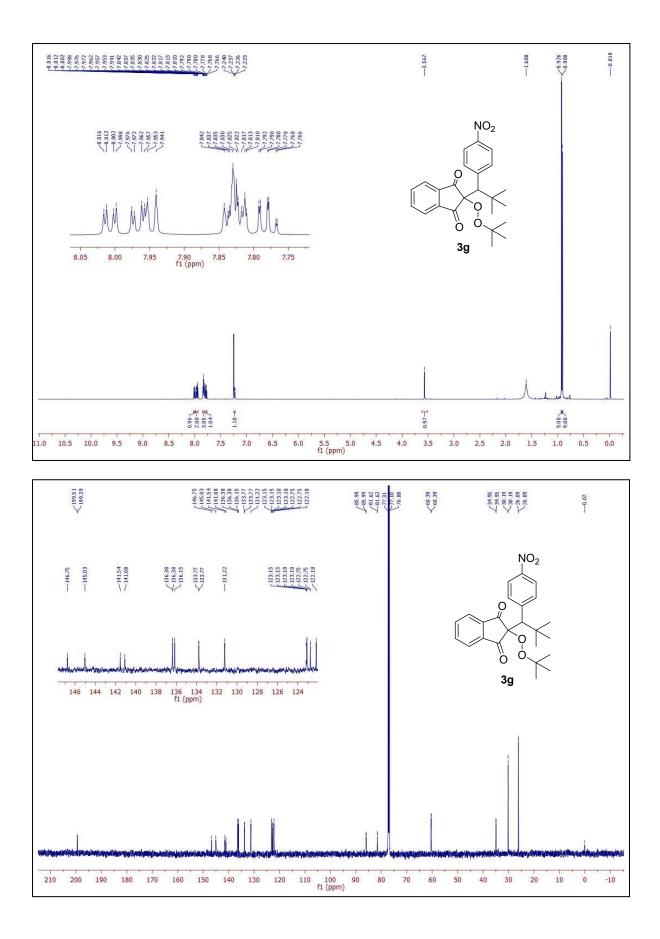


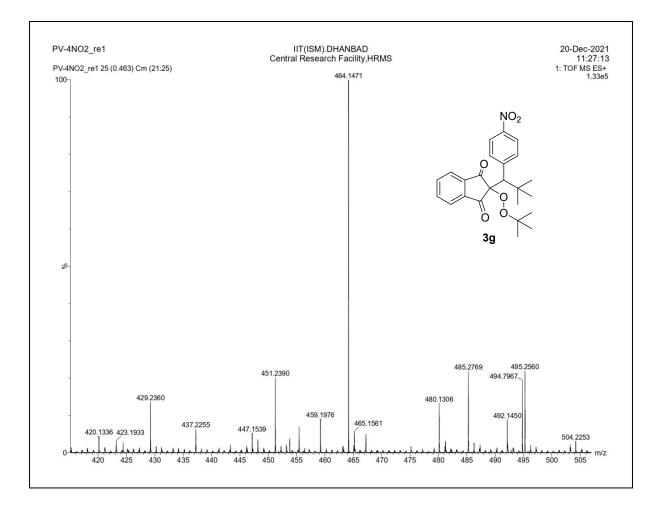


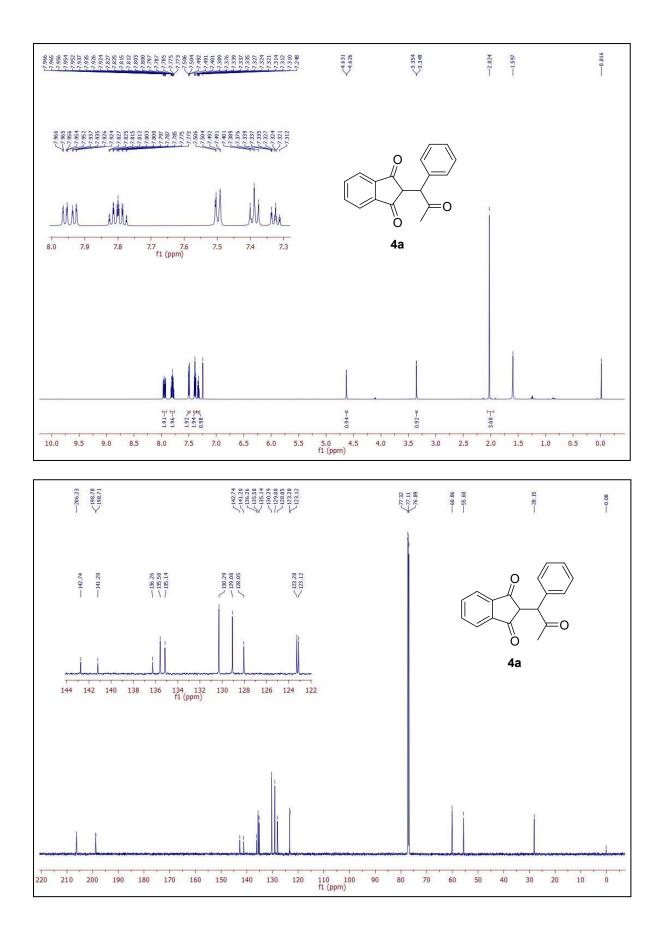


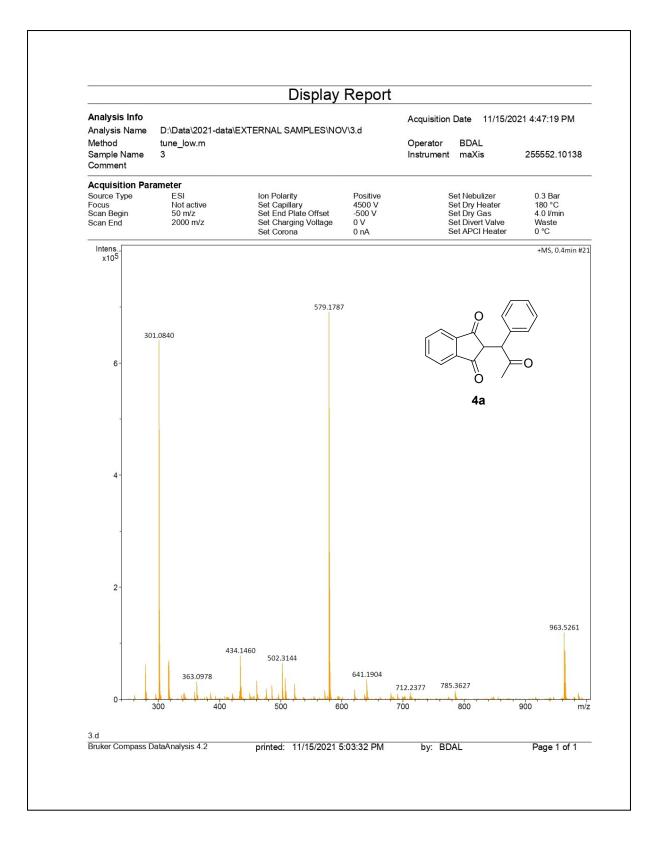


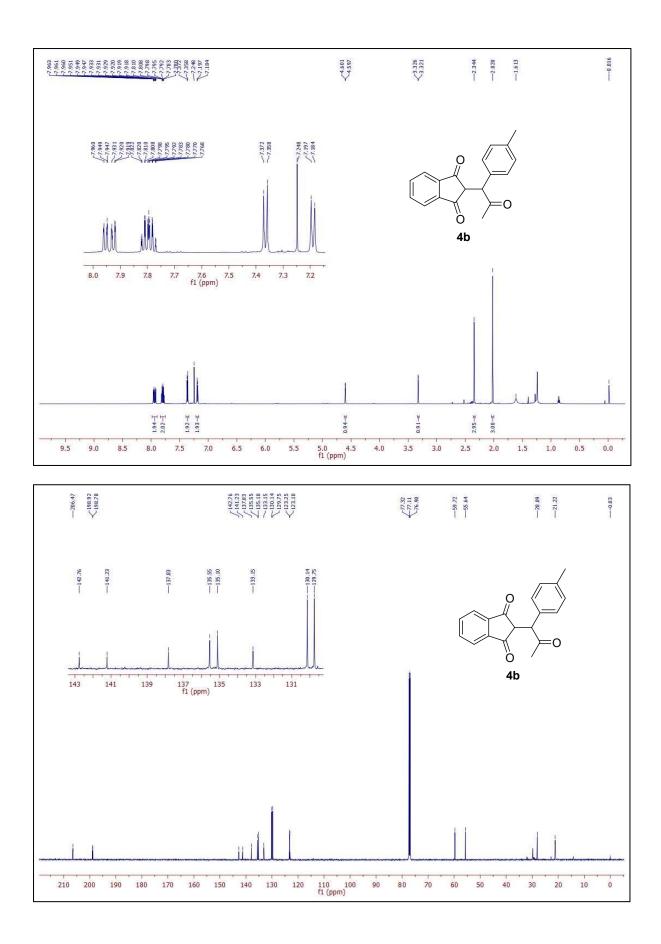


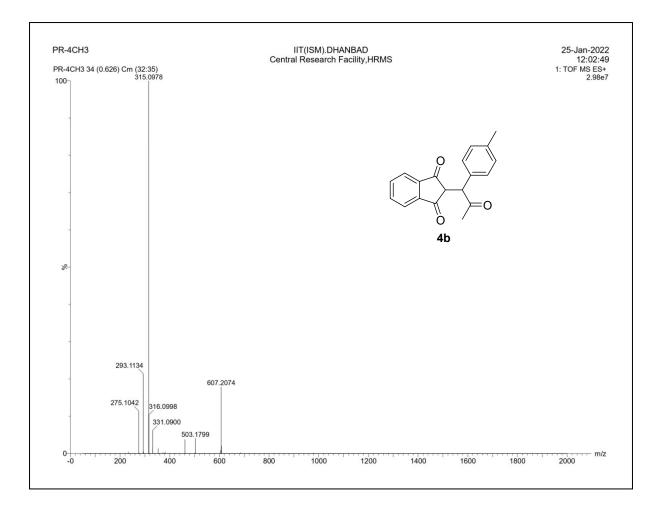


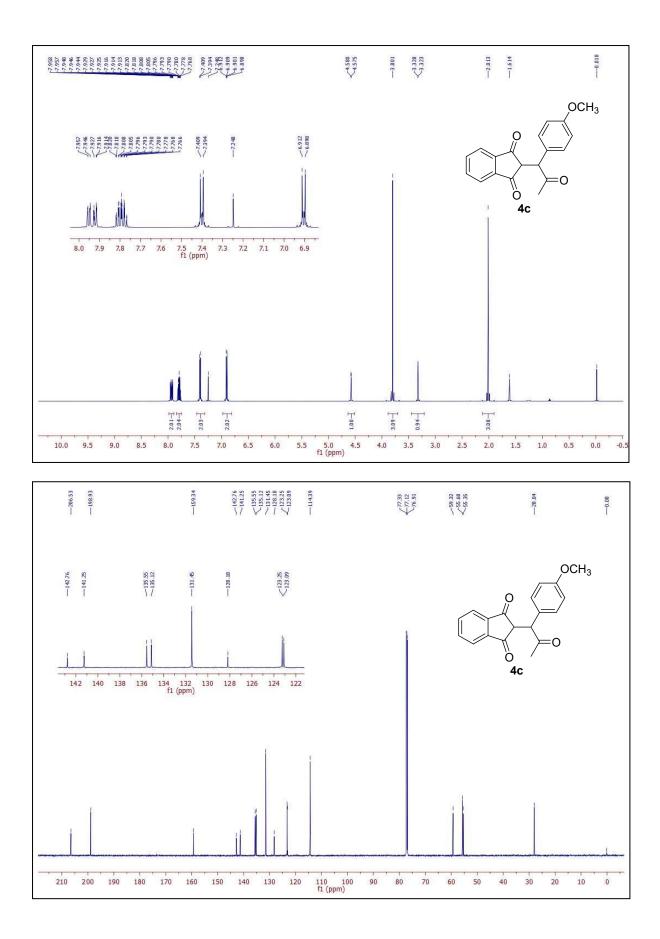


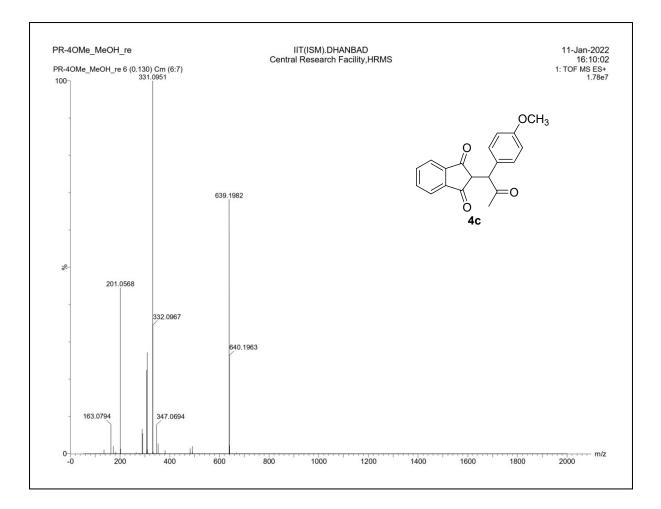


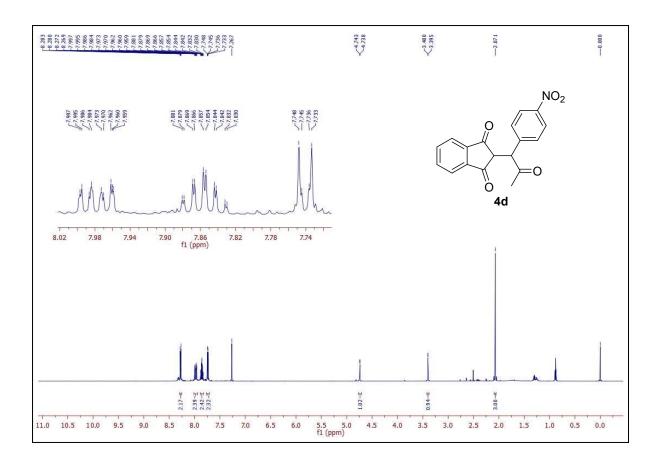


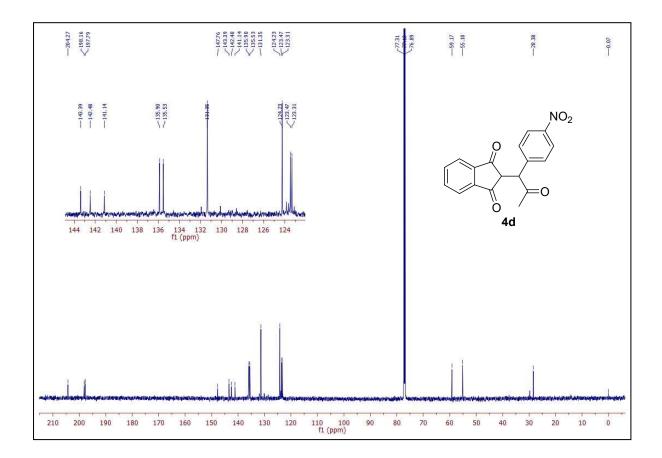


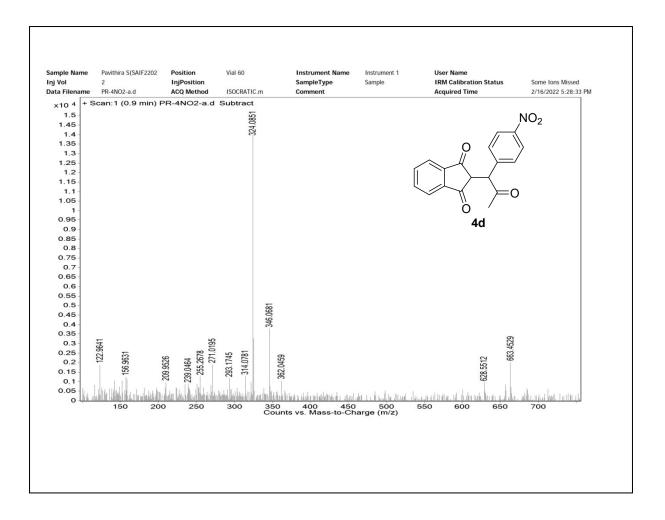


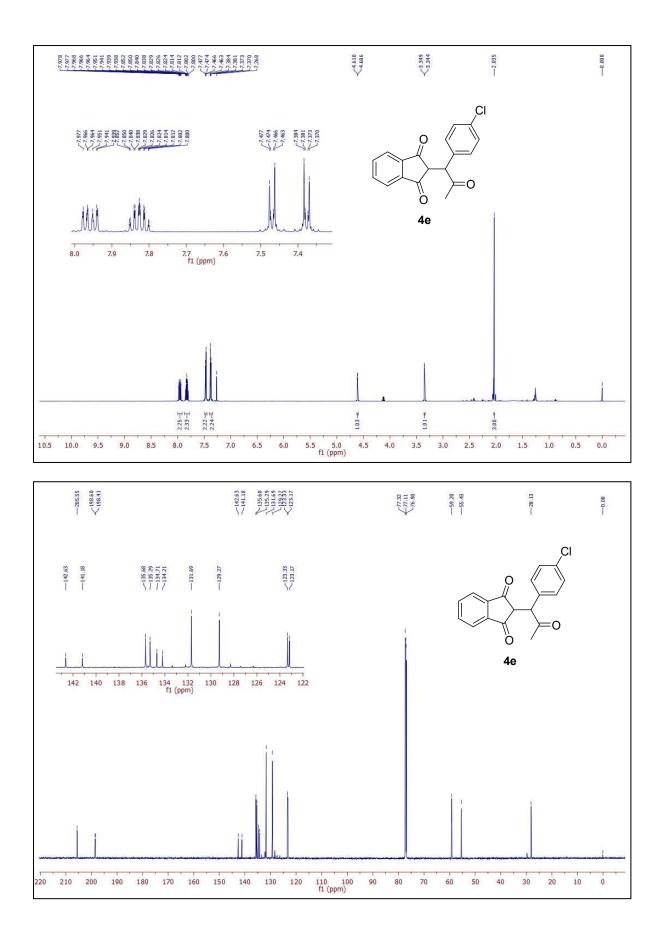


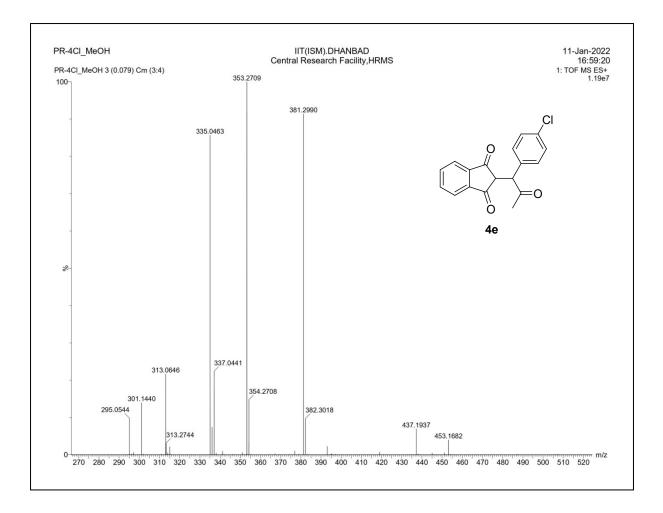


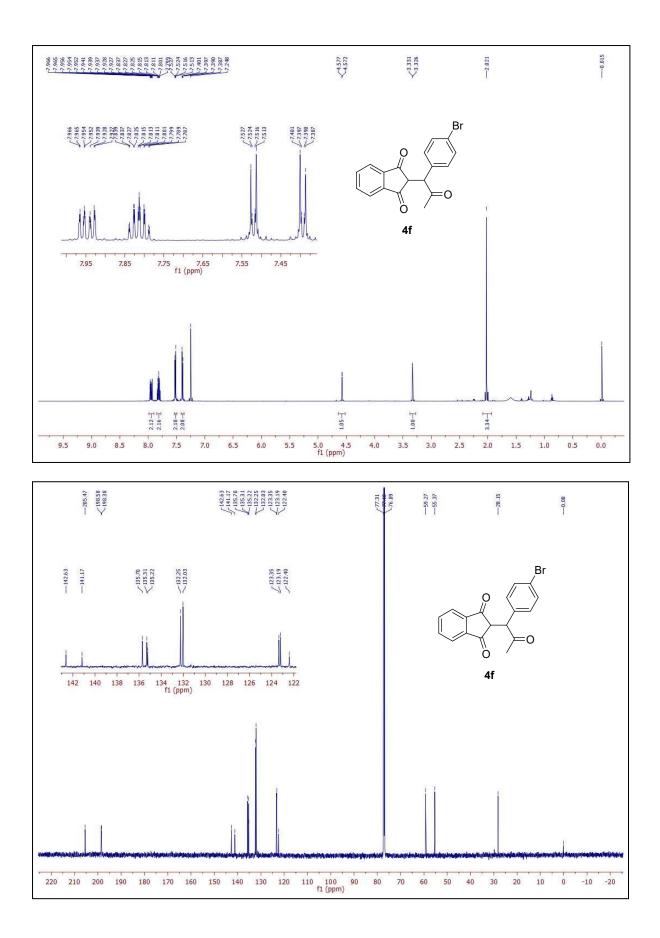


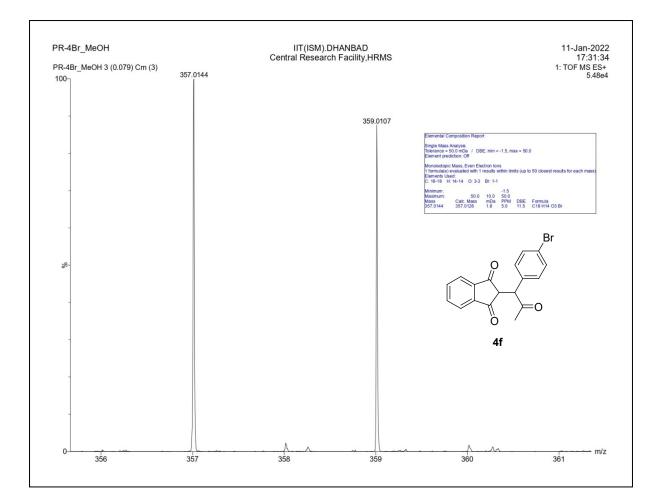


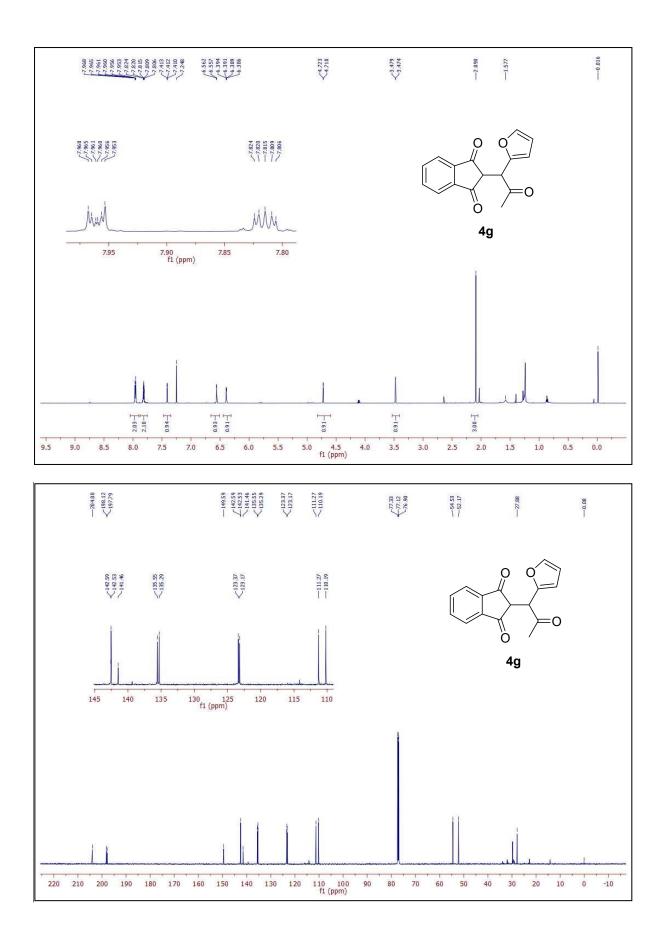


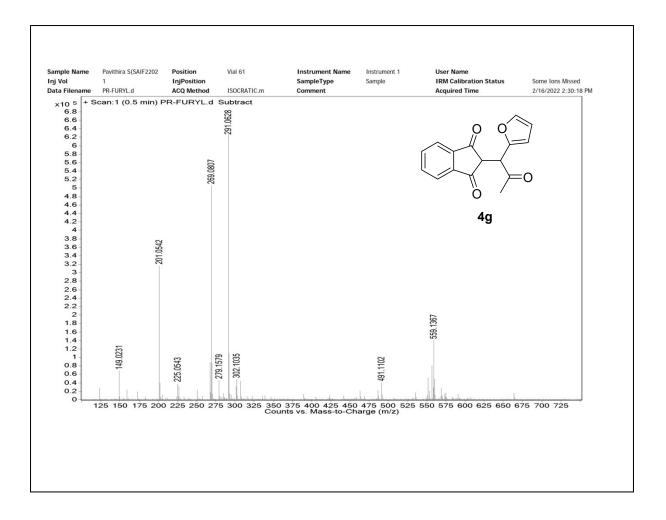


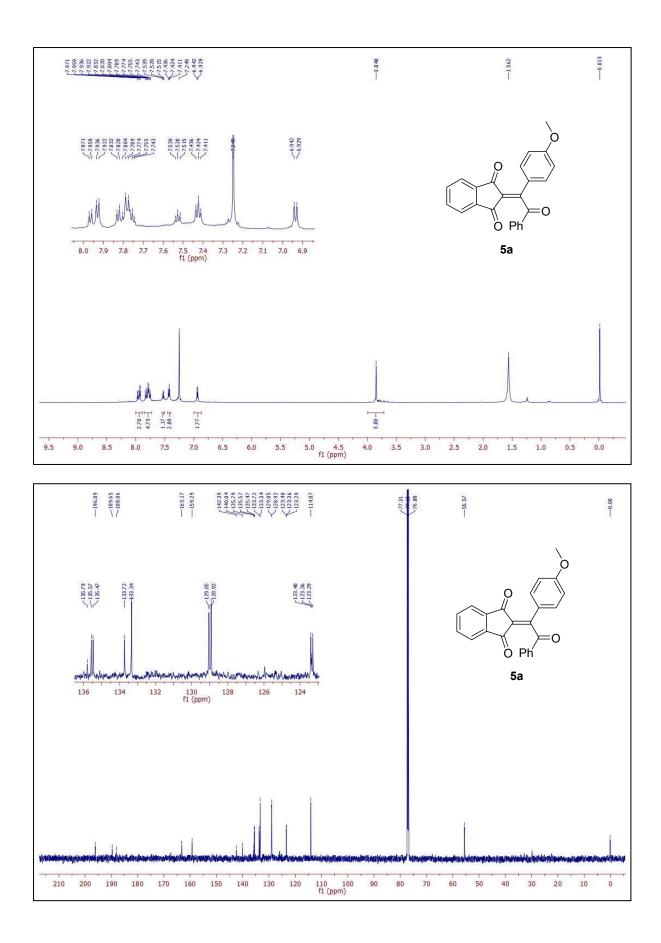


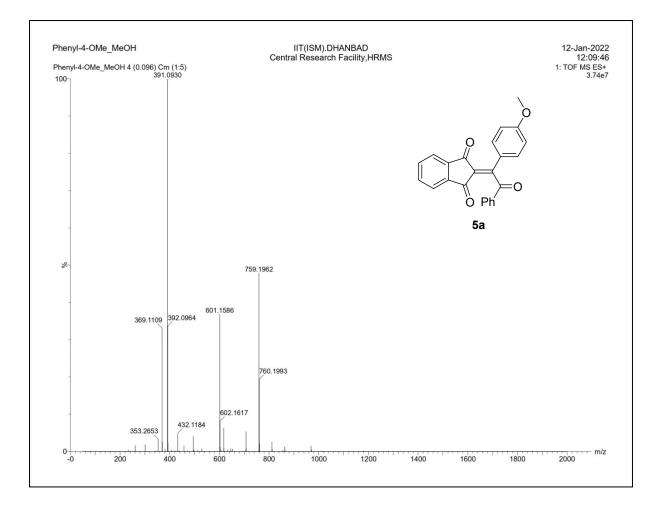


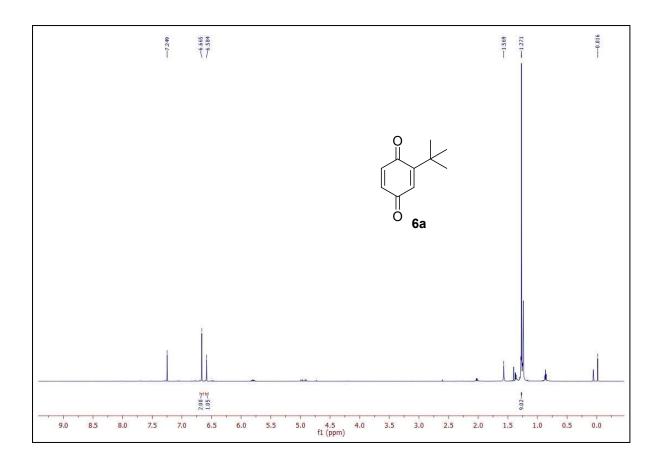


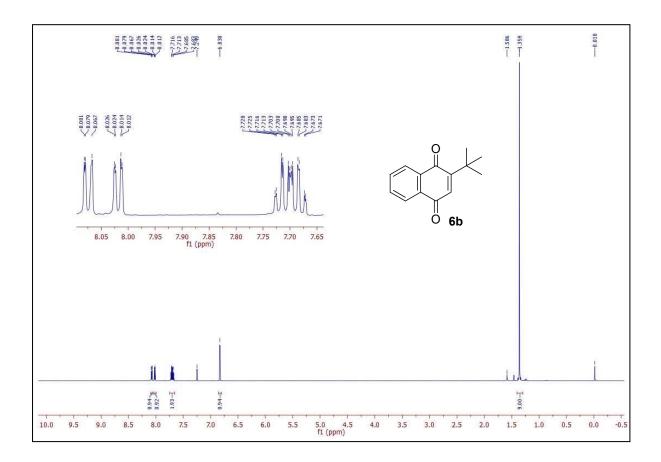


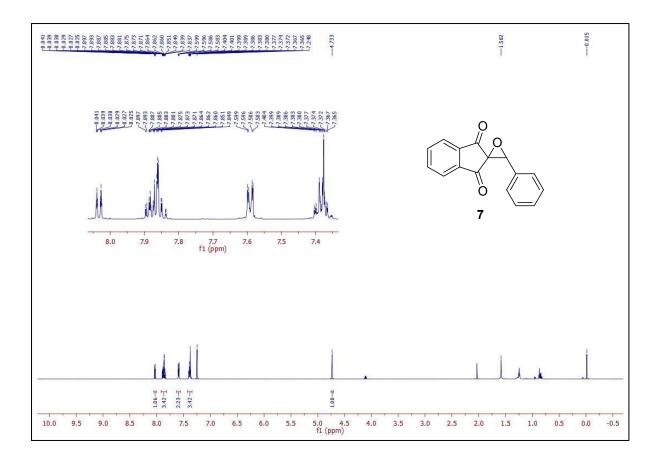












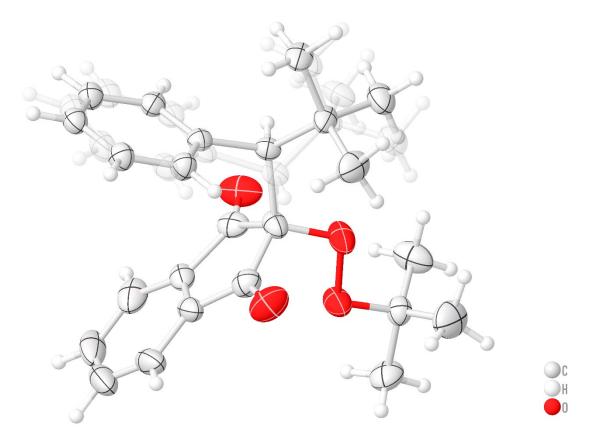
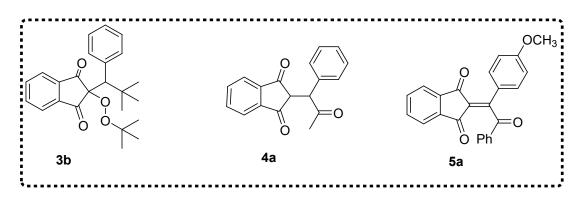



Figure. S1. Disordered structure of **3b** (ORTEP drawn at 25% probability)

In silico studies

The given below molecules were chosen for in silico studies

Prediction of Biological Activity

The bioactivities of the three synthesized compounds were predicted using the PASS (Prediction of Activity Spectra for Substances) online server (way2drug.com/passonloine/predict.php). Currently, this online server predicts more than 4000 kinds of biological activity and provides the probability of being active (Pa) and the probability of being inactive (Pi) for the given molecule. The bioactivity of these compounds with more than 0.8 (Pa) are tabulated.

Table S1: Predicted	bioactivity	for the synthesize	d compounds
---------------------	-------------	--------------------	-------------

Pa	Pi	Activity		
3b (Peroxygenated derivative)				
0.821	0.015	Antiseborrheic		
0.815	0.022	Testosterone17β-dehydrogenase (NADP+) inhibitor		
0.820	0.031	CYP2C12 substrate		
0.817	0.029	Aspulvinone dimethylallyltransferase inhibitor		
4a (Acetylated derivative)				
0.942	0.002	Gluconate 2-dehydrogenase (acceptor) inhibitor		
0.920	0.004	Anticoagulant		
0.833	0.011	Mucomembranous protector		
5a (Benzoylated derivative)				
0.932	0.004	Aspulvinone dimethylallyltransferase inhibitor		

0.905	0.011	CYP2C12 substrate
0.894	0.005	Chlordecone reductase inhibitor
0.890	0.004	Feruloyl esterase inhibitor
0.884	0.015	Membrane integrity agonist
0.866	0.006	Gluconate 2-dehydrogenase (acceptor) inhibitor
0.860	0.014	Ubiquinol-cytochrome-c reductase inhibitor
0.833	0.004	3-Hydroxybenzoate 6-monooxygenase inhibitor
0.819	0.016	Antiseborrheic
0.808	0.010	Nicotinic alpha6beta3beta4alpha5 receptor antagonist
0.804	0.006	Alkane 1-monooxygenase inhibitor
0.801	0.004	Carminative
0.806	0.009	Aldehyde oxidase inhibitor

Molecular docking

To validate the predicted bioactivity and to see the binding modes of these compounds at the active site of the target proteins, we have performed molecular docking analysis for these compounds with selected protein targets. All the docking calculations were carried out using the Schrodinger software (Schrodinger Release 2021-4 Schrodinger, LLC, New York, 2021) and proteins and ligands were prepared as described in our earlier report.⁵ Two target proteins such as Gluconate 2-dehydrogenase from a plant pathogen Pantoea cypripedii and cytochrome P450 2C12 (CYP2C12) from Rattus norvegicus were selected for molecular docking. The 3D structure of Gluconate 2-dehydrogenase (uniport id: O34213) was retrieved from AlphaFold database⁶ and compound **4a** was docked with this protein. Compounds **3b** and **5a** were docked with CYP2C12 protein. The 3D structure of P450 2C12 was built using the structure of (PDB ID: 5X23) with SWISS CYP2C9 from *Homo* sapiens Model server (https://swissmodel.expasy.org). The CYP2C12 and CYP2C9 share 65.81% sequence identity. The active site of Gluconate 2-dehydrogenase was predicted using the sitemap module of the Schrodinger suite, whereas the active site of CYP2C12 was defined based on the losartan drug (used to treat high blood pressure, heart failure and diabetic kidney diseases) complexed with CYP2C9 protein. We noted that losartan drug bound at the three different sites on the CYP2C9 protein. The same sites were used for CYP2C12 protein for docking simulation. For Gluconate 2-dehydrogenase, five active sites were predicted by the sitemap module. The glide XP (extra

precision) module was used for all docking calculations. The glide XP scores for these three compounds at different active sites of Gluconate dehydrogenase and P450 2C12 are summarized in Table S2.

Compound	Protein target	Glide XP score
3b	P450 2C12	
	Site 1	-3.767
	Site 2	-2.267
	Site 3	-2.709
4a	Gluconate 2-dehydrogenase	
	Site 1	-7.031
	Site 2	-5.681
	Site 3	-5.796
	Site 4	-5.836
	Site 5	-3.909
5a	P450 2C12	
	Site 1	-4.738
	Site 2	-0.173
	Site 3	-4.533

 Table S2: Glide XP docking score (in kcal/mol)

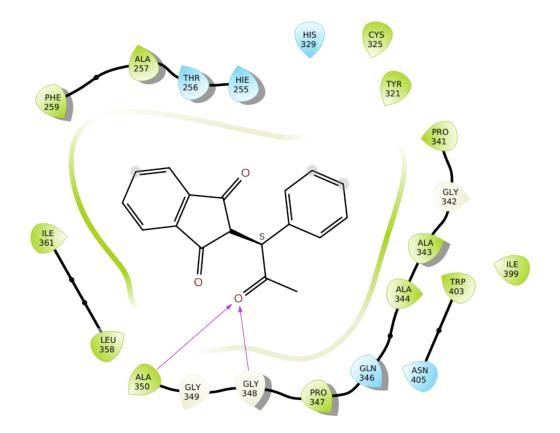


Figure. S2. Binding mode of 4a at site 1 of Gluconate 2-dehydrogenase.

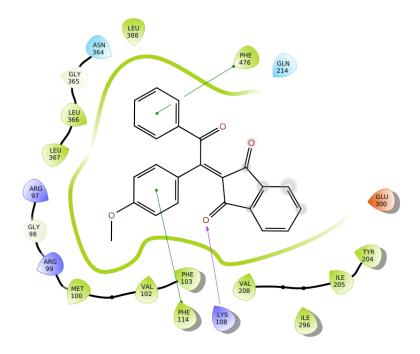


Figure. S3. Binding mode of 5a at the site 1 of P450 2C12 protein.

References

- Y. -C. Liou, Y. -A. Lin, K. Wang, J. -C. Yang, Y. -J. Jang, W. Lin and Y. -C. Wu, *Int. J. Mol. Sci.* 2021, 22, 6251.
- 2 M. H. Ali, A. Welker, C. A. York, Synthesis 2015, 47, 3207-3211.
- P. T. Perumal and M. V. Bhatt, Proc. Indian Acad. Sci. (Chem. Sci.). 1995, 107, 567-572.
- 4 A. Russo, A Lattanzi, Org. Biomol. Chem., 2010, 8, 2633–2638.
- A. A. Al-Mutairi, K. Alagappan, O. Blacque, M. A. Al-Alshaikh, A. A. El-Emam, M. J. Percino and S. Thamotharan. *ACS Omega*, 2021, 6, 27026-27037
- J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool, R. Bates, A. Žídek, A. Potapenko, A. Bridgland, C. Meyer, S. A. A. Kohl, A. J. Ballard, A. Cowie, B. Romera-Paredes, S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen, D. Reiman, E. Clancy, M. Zielinski, M. Steinegger, M. Pacholska, T. Berghammer, S. Bodenstein, D. Silver, O. Vinyals, A. W. Senior, K. Kavukcuoglu, P. Kohli and D. Hassabis. *Nature*, 2021, **596**, 583-589.