Supporting Information

Bi$^{3+}$ and Sm$^{3+}$ co-doped Cs$_2$AgInCl$_6$ perovskite microcrystals
with co-enhancement of fluorescence emission

Zhihui Raoa, Zhilin Lia, Xiujian Zhaoa, and Xiao Gonga

a. State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China. E-mail: xgong@whut.edu.cn
Table S1. Element content measured by ICP-MS. The molar concentration of Bi$^{3+}$ = 100%[Bi]/[In]; and the molar concentration of Sm$^{3+}$ = 100%[Sm]/[In].

<table>
<thead>
<tr>
<th>Sample Category</th>
<th>Precursor</th>
<th>Product (ICP-MS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sm$^{3+}$</td>
<td>Bi$^{3+}$ Sm$^{3+}$</td>
</tr>
<tr>
<td>Cs$_2$AgInCl$_6$: Sm</td>
<td>20% 0%</td>
<td>0.61% 0%</td>
</tr>
<tr>
<td>Cs$_2$AgBiCl$_6$: Bi</td>
<td>0% 20%</td>
<td>0% 18.9%</td>
</tr>
<tr>
<td>Cs$_2$AgInCl$_6$: Bi-Sm</td>
<td>20% 20%</td>
<td>0.21% 20.7%</td>
</tr>
</tbody>
</table>

Figure S1. The PXRD patterns of Cs$_2$AgInCl$_6$: Bi, Cs$_2$AgInCl$_6$: Sm and Cs$_2$AgBiCl$_6$: Bi-Sm compared to the simulated PXRD patterns without doping.
Figure S2. XPS spectrum of Cs$_2$AgInCl$_6$: Bi-Sm microcrystals.

Figure S3. SEM images of the undoped, Cs$_2$AgInCl$_6$: Sm and Cs$_2$AgInCl$_6$: Bi-Sm microcrystals.

Figure S4. Tauc plot of diffuse absorption measurements of Cs$_2$AgInCl$_6$, Cs$_2$AgInCl$_6$: Bi and Cs$_2$AgBiCl$_6$: Bi-Sm microcrystals.
Figure S5. PL comparison spectra of Cs$_2$AgInCl$_6$:0.2Bi-0.2Sm and Cs$_2$AgInCl$_6$:0.2Bi excited at 370 nm. Intuitively, the 567 nm and 600 nm peaks arise after doping Sm$^{3+}$ ions.

Figure S6. PL comparison spectra of Cs$_2$AgInCl$_6$:0.2Bi-0.2Sm and Cs$_2$AgInCl$_6$:0.2Sm excited at 370 nm. After co-doping Bi$^{3+}$, the emission peaks (567 nm and 600 nm) belonging to Sm$^{3+}$ can still be observed, although the significant increase of PL intensity. Figure S5-S6 confirm that the 567 nm and 600 nm PL peaks arise from electronic transition of Sm$^{3+}$ dopants.
Figure S7. Photographs of Bi/Sm MCs under visible light and UV light (365 nm) excitation.

Figure S8. PLQY of Cs$_2$AgInCl$_6$: Bi MCs with average 12.6%.
Figure S9. PLQY of Cs$_2$AgInCl$_6$: Bi-Sm MCs with average 13.4%.

Figure S10. EDS spectrum recorded from the Cs$_2$AgInCl$_6$: Bi-Sm sample shows the existence of Bi, Sm elemental signals.
Figure S11. PLE spectra of Cs$_2$AgInCl$_6$: Bi-Sm, Cs$_2$AgInCl$_6$: Bi and Cs$_2$AgInCl$_6$: Sm samples obtained by monitoring emitting wavelength at 600 nm, and normalized to $[0,100]$.