Electronic Supplementary Information

Benzimidazole–acid hydrazide Schiff–Mannich combo ligands enable nano– molar detection of Zn²⁺ via fluorescence turn–on mode from semi–aqueous medium, HuH–7 cells, and plants

Riya Bag,^a Yeasin Sikdar,^{a§*} Sutapa Sahu,^a Md Majharul Islam,^b Sukhendu Mandal,^b Sanchita Goswami^{a*}

^aDepartment of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India.

E-mail: sgchem@caluniv.ac.in (S.G.), <u>y.sikdar@gmail.com</u> (Y.S.)

^bDepartment of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, India.

[§]Present address: Department of Chemistry, The Bhawanipur Education Society College, 5, Lala Lajpat Rai Sarani, Kolkata 700020, India.

Contents

	Page No.
Fig. S1 ¹ H NMR spectra of HBA in DMSO– d_6 .	S4
Fig. S2 ¹³ C NMR spectra of HBA in DMSO– d_6 .	S5
Fig. S3 ¹ H NMR spectrum of H_2BBH in DMSO- d_6 .	S6
Fig. S4 ¹³ C NMR spectrum of H_2BBH in DMSO– d_6 .	S7
Fig. S5 ¹ H NMR spectrum of H_3BSH in DMSO- d_6 .	S8
Fig. S6 ¹³ C NMR spectrum of H_3BSH in DMSO– d_6 .	89
Fig. S7 ESI–MS spectra of HBA	S10
Fig. S8 ESI–MS spectrum of H ₂ BBH.	S11
Fig. S9 ESI–MS spectrum of H ₃ BSH.	S12
Fig. S10 ESI–MS spectrum of [(HBBH) ₂ Zn] complex.	S13
Fig. S11 ESI–MS spectrum of [(H ₂ BSH) ₂ Zn] complex.	S14

Fig. S12 FT–IR spectra of HBA.	S15
Fig. S13 FT–IR spectrum of H_2BBH and [(HBBH) ₂ Zn] complex.	S15
Fig. S14 FT–IR spectrum of H_3BSH and [(H_2BSH) ₂ Zn] complex.	S16
Fig. S15 Emission spectra of (A) H_2BBH (0.1 μ M) and (B) H_3BSH (0.1 μ M) upon addition of 1 equivalent metal ions in (1 : 1) EtOH : HEPES–buffer solution (25 mM).	S16
Fig. S16 Anion independent emission behavior of (A) H_2BBH (0.1 µM) and (B) H_3BSH (0.1 µM) in presence of various Zn^{2+} salts [e.g. $ZnCl_2$, $ZnBr_2$, $Zn(NO_3)_2$, $Zn(OAc)_2$ and $Zn(ClO_4)_2$ in (1 : 1) EtOH : HEPES–buffer solution (25 mM, pH = 7.2).	S17
Fig. S17 Emission intensity of (A) H_2BBH (0.1 µM) and (B) H_3BSH (0.1 µM) with sequential addition of Zn ²⁺ and EDTA in (1 : 1) EtOH : HEPES–buffer solution (25 mM).	S17
Fig. S18 Emission intensity <i>vs</i> pH plot of (A) H_2BBH (0.1 µM) ($\lambda_{em} = 490$) and (B) H_3BSH (0.1 µM) ($\lambda_{em} = 484$) in absence and presence of Zn ²⁺ in (1 : 1) EtOH : HEPES–buffer solution (25 mM). Emission spectra of (C) H_2BBH (0.1 µM) and (D) H_3BSH (0.1 µM) in acidic and basic medium.	S18
Fig. S19 UV–Vis absorption spectra of (A) H_2BBH (1 µM) and (B) H_3BSH (1 µM) upon incremental addition of Zn ²⁺ in (1 : 1) EtOH : HEPES–buffer solution (25 mM). Inset: Changes in absorbance of (A) H_2BBH at 410 nm and (B) H_3BSH at 415 nm with gradual addition of Zn ²⁺ .	S19
Fig. S20 Determination of the limit of detection of Zn^{2+} by (A) H₂BBH and (B) H₃BSH in (1 : 1) EtOH : HEPES–buffer solution (25 mM, pH = 7.2).	S19
Fig. S21 Job's plot for the determination of (A) H_2BBH –Zn ²⁺ (2 : 1) and (B) H_3BSH –Zn ²⁺ (2 : 1) complex stoichiometry using absorbance values. (The Ligand (H_2BBH/H_3BSH) : Zn ²⁺ ratios used in Job's plot: 9:1, 5:1, 2:1, 3:2, 1:1, 2:3, 1:2, 1:5, and 1:9.)	S20
Fig. S22 Benesi-Hildebrand plot for the determination of binding constant between (A) H_2BBH and Zn^{2+} and (B) H_3BSH and Zn^{2+} .	S20
Fig. S23 ¹ H NMR titration of H ₂ BBH in presence of Zn^{2+} in DMSO– d_6 .	S21
Fig. S24 ¹ H NMR titration of H_3BSH in presence of Zn^{2+} in DMSO- d_6 .	S22
Fig. S25 Time–correlated single photon counting (TCSPC) decay profiles of (A) H_2BBH and $H_2BBH + Zn^{2+}$ and (B) H_3BSH and $H_3BSH + Zn^{2+}$.	S23

Fig. S26 MTT assay to determine the cytotoxic effect of probes, H_2BBH and H_3BSH and complexes, [(HBBH) ₂ Zn] and [(H ₂ BSH) ₂ Zn] on HuH–7 cells.	S23
Table S1 List of reported acylhydrazide based dipodal Schiff base probe for detection of Zn^{2+} .	S24
Table S2 Tolerance limit of other metal ions.	S25
Table S3 ¹ H NMR shift (ppm) data of NMR titration experiment of H_2BBH with Zn^{2+} .	S26
Table S4 ¹ H NMR shift (ppm) data of NMR titration experiment of H_3BSH with Zn^{2+} .	S26
Table S5 Emission parameters of H_2BBH and H_3BSH in absence and presence of Zn^{2+} .	S26
Table S6 Selected MOs and TD–DFT contribution of MO towards vertical transition and corresponding oscillator strength for enol (I) and keto (II) conformers of H ₂ BBH.	S27
Table S7 Selected MOs and TD–DFT contribution of MO towards vertical transition and corresponding oscillator strength for enol (I) and keto (II) conformers of H ₃ BSH .	S28
Table S8 Selected MOs and TD–DFT contribution of MO towards vertical transition andcorresponding oscillator strength for [(HBBH) ₂ Zn] complex.	S29
Table S9 Selected MOs and TD–DFT contribution of MO towards vertical transition and corresponding oscillator strength for [(H ₂ BSH) ₂ Zn] complex.	S30

Fig. S1 ¹H NMR spectra of HBA in DMSO–d₆.

Fig. S2 ¹³C NMR spectra of HBA in DMSO– d_6 .

Fig. S3 ¹H NMR spectrum of H_2BBH in DMSO- d_6 .

Fig. S4 ¹³C NMR spectrum of H_2BBH in DMSO- d_6 .

Fig. S5 ¹H NMR spectrum of H_3BSH in DMSO- d_6 .

Fig. S6 ¹³C NMR spectrum of H_3BSH in DMSO- d_6 .

Fig. S7 ESI–MS spectra of HBA.

Fig. S8 ESI–MS spectrum of H₂BBH.

Fig. S9 ESI–MS spectrum of H₃BSH.

Fig. S10 ESI–MS spectrum of $[(HBBH)_2Zn]$ complex.

Fig. S11 ESI–MS spectrum of $[(H_2BSH)_2Zn]$ complex.

Fig. S12 FT–IR spectra of HBA.

Fig. S13 FT–IR spectrum of H₂BBH and [(HBBH)₂Zn] complex.

Fig. S14 FT–IR spectrum of H₃BSH and [(H₂BSH)₂Zn] complex.

Fig. S15 Emission spectra of (A) H_2BBH (0.1 μ M) and (B) H_3BSH (0.1 μ M) upon addition of 1 equivalent metal ions in (1 : 1) EtOH : HEPES–buffer solution (25 mM).

Fig. S16 Anion independent emission behavior of (A) H_2BBH (0.1 µM) and (B) H_3BSH (0.1 µM) in presence of various Zn²⁺ salts [e.g. ZnCl₂, ZnBr₂, Zn(NO₃)₂, Zn(OAc)₂ and Zn(ClO₄)₂ in (1 : 1) EtOH : HEPES–buffer solution (25 mM, pH = 7.2).

Fig. S17 Emission intensity of (A) H_2BBH (0.1 µM) and (B) H_3BSH (0.1 µM) with sequential addition of Zn²⁺and EDTA in (1 : 1) EtOH : HEPES–buffer solution (25 mM).

Fig. S18 Emission intensity vs pH plot of (A) H_2BBH (0.1 μ M) ($\lambda_{em} = 490$) and (B) H_3BSH (0.1 μ M) ($\lambda_{em} = 484$) in absence and presence of Zn²⁺ in (1 : 1) EtOH : HEPES–buffer solution (25 mM). Emission spectra of (C) H_2BBH (0.1 μ M) and (D) H_3BSH (0.1 μ M) in acidic and basic medium.

Fig. S19 UV–Vis absorption spectra of (A) H_2BBH (1 μ M) and (B) H_3BSH (1 μ M) upon incremental addition of Zn²⁺ in (1 : 1) EtOH : HEPES–buffer solution (25 mM). Inset: Changes in absorbance of (A) H_2BBH at 410 nm and (B) H_3BSH at 415 nm with gradual addition of Zn²⁺.

Fig. S20 Determination of the limit of detection of Zn^{2+} by (A) **H₂BBH** and (B) **H₃BSH** in (1 : 1) EtOH : HEPES–buffer solution (25 mM, pH = 7.2).

Fig. S21 Job's plot for the determination of (A) H_2BBH –Zn²⁺ (2 : 1) and (B) H_3BSH –Zn²⁺ (2 : 1) complex stoichiometry using absorbance values. (The Ligand (H_2BBH/H_3BSH) : Zn²⁺ ratios used in Job's plot: 9:1, 5:1, 2:1, 3:2, 1:1, 2:3, 1:2, 1:5, and 1:9.)

Fig. S22 Benesi–Hildebrand plot for the determination of binding constant between (A) H_2BBH and Zn^{2+} and (B) H_3BSH and Zn^{2+} .

Fig. S23 ¹H NMR titration of H_2BBH in presence of Zn^{2+} in DMSO- d_6 .

Fig. S24 ¹H NMR titration of H_3BSH in presence of Zn^{2+} in DMSO- d_6 .

Fig. S25 Time-correlated single photon counting (TCSPC) decay profiles of (A) H_2BBH and $H_2BBH + Zn^{2+}$ and (B) H_3BSH and $H_3BSH + Zn^{2+}$.

Fig. S26 MTT assay to determine the cytotoxic effect of probes, H_2BBH and H_3BSH and complexes, [(HBBH)₂Zn] and [(H₂BSH)₂Zn] on HuH–7 cells.

Probe	% of Water	Limit of	λ	Reference
	Content	Detection		
	50%	27 nM	$\lambda_{ex} = 340 \text{ nm}$ $\lambda_{em} = 490 \text{ nm}$	This work
N N N HO		46 nM	$\lambda_{ex} = 343 \text{ nm}$ $\lambda_{em} = 484 \text{ nm}$	
OH HN N OH OH OH OH	40%	44 μΜ	$\lambda_{\rm ex} = 390 \ {\rm nm}$ $\lambda_{\rm em} = 490 \ {\rm nm}$	Org. Biomol. Chem., 2012, 10 , 2380–2384
HN-N-N-NH OH OT	80%	0.25 μΜ	$\lambda_{\rm ex} = 370 \ {\rm nm}$ $\lambda_{\rm em} = 497 \ {\rm nm}$	<i>Inorg.</i> <i>Chem.</i> , 2014, 53 , 6655–6664
	10%	0.889 µM	$\lambda_{\rm ex} = 407 \ {\rm nm}$ $\lambda_{\rm em} = 457 \ {\rm nm}$	Sens. Actuators B Chem., 2016, 224 , 892–898
	99.67%	1.05 μΜ	$\lambda_{\rm ex} = 470 \ {\rm nm}$ $\lambda_{\rm em} = 555 \ {\rm nm}$	Org. Biomol. Chem., 2014, 12 , 4975–4982
	10%	0.307 μM	$\lambda_{\rm ex} = 460 \text{ nm}$ $\lambda_{\rm em} = 536 \text{ nm}$	<i>Analyst</i> , 2019, 144 , 4024–4032

Table S1 List of reported acylhydrazide based dipodal Schiff base probe for detection of Zn	l ²⁺ .
---	-------------------

90% 0.52
$$\mu$$
M $\lambda_{ex} = 450 \text{ nm}$ *J. Photochem. P*
 $\lambda_{em} = 525 \text{ nm}$ *hotobio. A*, 2019,
370, 75–83

Table S2 Tolerance limit of other metal ions.

Metal ions	Tolerance limit		
	H ₂ BBH	H ₃ BSH	
Na ⁺	>10	>10	
K^+	>10	>10	
Ca ²⁺	>10	>10	
Mg^{2+}	>10	>10	
A1 ³⁺	9	8	
Cr ³⁺	7	7	
Fe ³⁺	6	6	
Fe ²⁺	7	6	
Mn^{2+}	7	7	
Co ²⁺	5	5	
Ni ²⁺	4	4	
Cu ²⁺	5	4	
Cd^{2+}	7	7	
Hg^{2+}	5	5	

Proton label	H ₂ BBH	$H_2BBH + 0.1 \text{ eqv. } Zn^{2+}$	$H_2BBH + 0.3 \text{ eqv. } Zn^{2+}$	H ₂ BBH + 0.5 eqv. Zn ²⁺
$\mathbf{H}_{\mathbf{q}}$	12.20	12.19	_	_
$\mathbf{H}_{\mathbf{j}}$	8.54	8.66	8.79	8.88

Table S3 ¹H NMR shift (ppm) data of NMR titration experiment of H_2BBH with Zn^{2+} .

Table S4 ¹H NMR shift (ppm) data of NMR titration experiment of H₃BSH with Zn²⁺.

Proton label	H ₃ BSH	H ₃ BSH + 0.1 eqv. Zn ²⁺	H ₃ BSH + 0.3 eqv. Zn ²⁺	H ₃ BSH + 0.5 eqv. Zn ²⁺
Hq	12.10	12.09	_	_
$\mathbf{H}_{\mathbf{j}}$	8.57	8.73	8.87	8.92

Table S5 Emission parameters of H_2BBH and H_3BSH in absence and presence of Zn^{2+} .

Compound	$ au_1(lpha_1)$	$ au_2(lpha_1)$	$ au_{av}$	χ^2	$k_r \times 10^{-2}$	k _{nr} × 10 ⁻²
	ns	ns	ns		ns ⁻¹	ns ⁻¹
H_2BBH	4.61 (55%)	0.46 (45%)	4.31	1.12	0.42	99.58
$H_2BBH + Zn^{2+}$	1.41	_	1.41	1.16	19.85	80.14
H_3BSH	4.06 (82%)	0.46 (18%)	3.97	1.15	0.35	99.64
$H_3BSH + Zn^{2+}$	3.98	_	3.98	1.14	6.28	93.71

Table S6 Selected MOs and TD–DFT contribution of MO towards vertical transition andcorresponding oscillator strength for enol (I) and keto (II) conformers of H_2BBH .

Electronic transitions	Composition	Excitation energy (λ)	Oscillator strength (f)	λ_{exp} (nm)
	Enol co	onformer (I)		
$S_0 \rightarrow S_1$	HOMO \rightarrow LUMO (93%)	3.181 eV (390 nm)	0.3193	
$S_0 \rightarrow S_2$	HOMO–1 \rightarrow LUMO (96%)	3.253 eV (381 nm)	0.1351	344
$S_0 \rightarrow S_3$	HOMO–3 → LUMO (83%)	3.708 eV (334 nm)	0.2589	
$S_0 \rightarrow S_6$	HOMO-4 → LUMO (83%)	4.175 eV (297 nm)	0.3273	297
Keto conformer (II)				

$S_0 \rightarrow S_2$	HOMO-2 → LUMO (66%) HOMO-1 → LUMO (23%)	3.922 eV (316 nm)	0.2163	344
$S_0 \rightarrow S_5$	HOMO–4 → LUMO (94%)	4.377 eV (283 nm)	0.2297	297

Table S7 Selected MOs and TD–DFT contribution of MO towards vertical transition and corresponding oscillator strength for enol (I) and keto (II) conformers of H₃BSH.

Electronic transitions	Composition	Excitation energy (λ)	Oscillator strength (f)	λ_{exp} (nm)
$S_0 \rightarrow S_3$	HOMO-1 \rightarrow LUMO (34%) HOMO \rightarrow LUMO+1 (56%)	2.863 eV (433 nm)	0.1899	410
$S_0 \rightarrow S_4$	HOMO−1 → LUMO+1 (67%) HOMO → LUMO (18%)	2.926 eV (423 nm)	0.3290	410
$S_0 \rightarrow S_{16}$	HOMO–5 → LUMO (55%)	3.800 eV (326 nm)	0.0981	
$S_0 \rightarrow S_{23}$	HOMO–7 → LUMO (80%)	3.970 eV (312 nm)	0.1390	296
$S_0 \rightarrow S_{26}$	HOMO–7 → LUMO+1 (71%)	4.170 eV (297 nm)	0.4264	

Table S9 Selected MOs and TD–DFT contribution of MO towards vertical transition andcorresponding oscillator strength for $[(H_2BSH)_2Zn]$ complex.

Electronic transitions	Composition	Excitation energy (λ)	Oscillator strength (f)	λ_{exp} (nm)
$S_0 \rightarrow S_3$	HOMO-1 \rightarrow LUMO (64%) HOMO \rightarrow LUMO+1 (21%)	2.897 eV (428 nm)	0.1581	415
$S_0 \rightarrow S_4$	HOMO-1 → LUMO+1 (69%) HOMO → LUMO (10%) HOMO → LUMO+1 (10%)	3.021 eV (410 nm)	0.2959	
$S_0 \rightarrow S_{14}$	HOMO-7 \rightarrow LUMO (20%) HOMO-5 \rightarrow LUMO (13%) HOMO-4 \rightarrow LUMO (15%) HOMO-3 \rightarrow LUMO+1 (28%)	3.863 eV (320 nm)	0.1597	298
$S_0 \rightarrow S_{21}$	HOMO-6 \rightarrow LUMO+1 (68%)	4.110 eV (301 nm)	0.2456	